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ARTICLE INFO ABSTRACT
Keywords: The generalized integral transform technique (GITT) is employed to obtain a hybrid analyt-
Axially moving beam ical-numerical solution for dynamic response of clamped axially moving beams. The use of
Transverse vibration the GITT approach in the analysis of the transverse vibration equation leads to a coupled

Integral transform

. : system of second order differential equations in the dimensionless temporal variable.
Hybrid solution

The resulting transformed ODE system is then solved numerically with automatic global
accuracy control by using the subroutine DIVPAG from IMSL Library. Excellent convergence
behavior is shown by comparing the vibration displacement of different points along the
beam length. Numerical results are presented for different values of axial translation veloc-
ity and flexural stiffness. A set of reference results for the transverse vibration displace-
ment of axially moving beam is provided for future co-validation purposes.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic behavior of axially moving beams has been extensively studied because of its technological relevance in various
applications such as data storage tapes [1], textile machines [2], automotive belts [3], band saws [4] and fluid conveying
pipes [5,6].

Many experimental, analytical and numerical approaches have been employed to investigate the vibration characteristics
and dynamic stability of axially moving beams. By simplifying the tape drive to a fixed-fixed Euler-Bernoulli beam model
with axial velocity, Hayes and Bhushan [1] determined the natural frequencies and mode shapes of the gyroscopic system,
performed parametric studies on axial velocity, tension, free span length and tape thickness, and compared the numerical
results to experimental data measured by both static and dynamic methods. Lee and Mote [5] presented the energy expres-
sion of translating tensioned beams and fluid conveying pipes, and discussed the dynamic stability of the translating con-
tinua under both symmetric and asymmetric boundary configurations. Ni et al. [6] demonstrated the application of the
technique of differential transformation method to the free vibration problem of pipes conveying fluid with several typical
boundary conditions, where the natural frequencies and critical flow velocities were obtained. Based on the method of multi-
ple scales, Oz and Pakdemirli [7] and Oz [8] studied the stability boundaries of an axially moving Euler-Bernoulli beam with
time-dependent velocity under simply supported and clamped boundary condition, respectively. Chen and Zhao [9] obtained
a conserved quantity in the free nonlinear transverse vibration of axially moving nonlinear beams with simple or fixed sup-
ports, which was applied to verify the Lyapunov stability of the straight equilibrium configuration of a beam moving with
low axial speed. Chen et al. [10] applied the Galerkin method to descretize the governing equation of the axially accelerating
viscoelastic tensioned beam under the fixed-fixed boundary conditions and employed the method of averaging to analyze
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the dynamic stability of the 2-term truncated system. As a continuation of their research, Chen and Yang [11] derived the
governing equation of axially accelerating viscoelastic beams from Newton’s second law, the constitution relation and the
strain—-displacement relation, used the method of multiple scales to investigate the stability conditions for combination
and principal resonance, and obtained the stability boundaries for the beams with simple supports and fixed supports.

There are acomprehensive studies on the dynamic response of axially moving structures. Chen and Zhao [12] presented a
modified finite difference method to simulate transverse vibration of an axially moving string, where the techniques of alter-
nating computation and discretization at frictional knots were adopted to improve the efficiency and stability of the algo-
rithm. To enhance the effectiveness of the approach, Chen et al. [13] developed another modified finite difference
algorithm to simulate the transverse vibrations of an axially moving string, where only the spatial variable was discretized
by finite difference. Using Galerkin’s method, Behdinan and Tabarrok [14] computed the transient response of axially inex-
tensible sliding beams and further extended the analysis to the non-linear case in the fixed domain. Cepon and BolteZar [15]
utilized an approximate Galerkin finite-element method to study the dynamic response of a viscously damped axially mov-
ing pre-tensioned beam to arbitrary support excitations, then the solution was compared with the results obtained by the
finite-difference and Galerkin methods. Based on extended Hamilton’s principle, Wang et al. [16] performed a dynamic anal-
ysis for an axially translating cantilever beam simulating the spacecraft antenna with changing length at a time-variant
velocity, where the assumed modes method and the separation of variables were applied for discretizing the equation of
motion. Extending previous work, Wang et al. [17] solved the dynamics problem of axially moving beams using the radial
basis collocation method for spatial discretization and Newmark method for temporal discretization. Besides, Lee and Oh
[18] developed a spectral element model for the axially moving viscoelastic beams subjected to axial tension and examined
the effects of viscoelasticity and moving speed on the dynamics of an example axially moving beam.

Recently, a hybrid numerical-analytical approach, known as GITT, has been successfully developed in heat and fluid flow
applications [19-21]. The most interesting feature of this technique is the automatic and straightforward global error control
procedure, which makes it particularly suitable for benchmarking purposes, and the only mild increase in overall computa-
tional effort with increasing number of independent variables. Ma et al. [22] applied the GITT to solve a transverse vibration
problem of an axial moving string, where the convergence behavior of the integral transform solution was examined. How-
ever, to the authors’ best knowledge, there are no previous study endeavored to perform the vibration analysis of the axially
moving beams based on GITT approach. To address the lack of research in this aspect, the GITT approach is adopted to ana-
lyzes dynamic response of a clamped axially moving beam in the present paper. The rest of the paper is organized as follows.
In the next section, the mathematical formulation of the problem of transverse vibration of a clamped axially moving beam is
presented. In Section 3, the hybrid numerical-analytical solution is obtained by carrying out integral transform. Numerical
results with automatic global accuracy control are presented in Section 4, where the convergence of the present approach is
assessed. Parametric study are then performed to investigate the effects of moving speed and flexural stiffness on the dy-
namic response of an axially moving beam. Finally, Section 5 concludes the paper.

2. Mathematical formulation

The governing equation for linear free vibration of a tensioned Euler-Bernoulli beam travelling at constant speed » with
two fixed supports can be written as [5]:

PUy + 2p 0y — (Po — p*)Upe + Eltlgx =0, 0 <x <L, (1a)
subjected to the following boundary conditions
B ou(0,t) _ ou(l,t)
u(0,t) =0, e 0, u(Lt)=0, e 0, (1b-e)

where u(x,t) is the transverse displacement, p the mass density, Py the axial tension, EI the flexural rigidity of the beam and L
the beam length. The following dimensionless variables are introduced

X u Po p ., H
X'== W=—, t'=t/—, V=07, =—. 2a-e
L L \/ pL? Py Pl (22-€)

Substituting Eq. (2) into Eq. (1) gives the dimensionless equation (dropping the superposed asterisks for simplicity)
U + 20Uy — (1 — V) Uy + Elpox =0, 0 <x < 1, (3a)

together with the boundary conditions

B ou(0,t) B ou(l,t) !
u(0,t) =0, x 0, u(1,t)=0, e 0, (3b-e)
The initial conditions are defined as follows:
u(x,0) =0, u(x,0)= vsin(nx), (4a,b)

which are the same initial conditions adopted by Wang et al. [16] to analyze the transverse vibration of an axially moving
simply supported beam.
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3. Integral transform solution
According to the principle of the generalized integral transform technique, the auxiliary eigenvalue problem needs to be

chosen for the dimensionless governing Eq. (3a) with the homogenous boundary conditions (3b-e). The eigenvalue problem,
previously studied in [19], is adopted for the transverse displacement representation as follows:

4

d Xi(x) =uiX;(x), 0<x<1, (5a)
dx*

with the following boundary conditions

v 4Xi(0)

Xi(0)=0, —5~=0, (5b,¢)
1 4Xi(1)

Xi(1)=0, =;==0, (5d,e)

where X;(x) and y; are, respectively, the eigenfunctions and eigenvalues of problem (5). The eigenfunctions satisfy the follow-
ing orthogonality property

/ Xi(x = 0N, (6)
with 6;=0 for i #j, and ¢;; =1 for i =j. The norm, or normalization integral, is written as
1
N; = / XZ(x)dx. (7)
0

Problem (5) is readily solved analytically to yield

{ coslpy(x=1/2)] __ eoshliy(x=1/2)]  for i odd.

cos(1;/2) cosh(p;/2) ’
sin[u;(x—1/2)]  sinh[g;(x—1/2)] (Sa’ b)
sin(y/2)  sinh(i;/2)

Xi(x) = )
for i even,

where the eigenvalues are obtained from the transcendental equations:

anne/2) = { o5 o even (2.)
and the normalization integral is evaluated as

Ni=1, i=1,2,3,... (10)
Therefore, the normalized eigenfunction coincides, in this case, with the original eigenfunction itself, i.e.

v Xi(x)

Xi(x) = N7 (11)

Note that the eigenfunction employed here is different from the stationary eigenfunctions of a clamped-clamped beam pre-
sented by Bishop and Johnson [23].

The solution methodology proceeds towards the proposition of the integral transform pair for the potentials, the integral
transformation itself and the inversion formula. For the transverse displacement:

1
i t):/ Xi(x)u(x,t)dx, transform, (12a)
=Y " Xi(xu(t), inverse. (12b)

i=1

The integral transformation process is now employed through operation of (3a) with fo i(x)dx to eliminate the spatial coor-
dinate x, resulting in the transformed transverse displacement system:

d2

du(t - .
+21/Z i f 1)) Byty(t) + epfwi(t) =0, i=1,2,3,..., (13)
=
where the coefficients are defined as follows:

1 1
Aj = / XiXjdx, Bj= / XX/ dx. (14a,b)
0 0
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In the similar manner, initial conditions are also integral transformed to eliminate the spatial coordinate, yielding
du;(0)
dt
For computational purposes, the expansion is truncated at sufficiently large order N. The coefficients A;; and B;; are obtained
analytically through symbolic computation packages, such as the Mathematica [24], and automatically generated in Fortran
form. The truncated system is then solved by a computer program developed in Fortran 90, based on the use of the subrou-

tine DIVPAG from IMSL Library [25] with automatic control of the local relative error (1072 is selected for this problem). For
this purpose, the system composed by Eq. (13) is first rewritten as a first-order ODE system, i.e.

w :f(W, t)7 (16)

al(o) = 07

1~
= vo/ Xisin(mx)dx, i=1,2,3,... (15a,b)
0

where the solution vector, w, is defined as
we Loy gy, G0 dE o diT
- ]7 27"'7 N7 dt7dt7"'7 dt N

Once the transformed potential, 4;, has been numerically evaluated under controlled accuracy, the inversion formula (12b) is
recalled to provide explicit analytical expressions for the original potentials, the dimensionless transverse displacement
u(x,t).

(17)

4. Results and discussion

We now present numerical results for the transverse displacement u(x, t) of clamped axially moving beams by employing
the GITT approach. For all the cases studied, 7o = 0.01 is employed in the initial conditions (4a,b). The solution of the system
(13) is obtained with N < 50 to analyze the convergence behavior.

The dimensionless transverse deflection u(x,t), for three typical sets of values of axially moving velocity and flexural stiff-
ness, viz. (i) v=0.15, £ =0.1, (ii) v=1, £ = 0.1 and (iii) = 0.15, ¢ = 1, are presented in Tables 1-3. The convergence behavior of
the integral transform solution is examined for increasing truncation terms N = 10, 20, 30, 40 and 50 at t = 5, t = 20, t = 100,
respectively. For the dimensionless transverse deflection with v=0.15 and ¢ =0.1 at t =5, it can be observed that conver-
gence is achieved essentially with a reasonably low truncation order (N < 30). For a full convergence to six significant digits,
more terms (e.g., N =40) are required. In addition, based on the numerical results, further investigation shows that all the
solutions converge to the values with four significant figures at a truncation order of N < 30. The results at t = 100 indicate
that the excellent convergence behavior of the integral transform solution does not change with time, verifying the good
long-time numerical stability of the scheme. Through the comparisons between the results of Cases (i) and (ii), it can be ob-
served that the increasing of v does not affect the convergence behavior, as shown in Tables 1 and 2, while the comparisons
between the results of Cases (i) and (iii) demonstrate that the increasing of ¢ can make the solution convergent at relatively
low truncation orders (e.g., N = 20), as shown in Tables 1 and 3. For the same cases, the profiles of the transverse displace-
ment at different time are illustrated in Figs. 1-3 with different truncation orders.

Next, the dynamic response is calculated at different axially moving velocities. Fig. 4 demonstrates the dimensionless
midpoint dynamic deflection of the clamped beam without axial movement (v = 0), where the dimensionless flexural rigidity

Table 1

Convergence behavior of the dimensionless transverse displacement u(x,t) of a clamped axially moving beam for »=0.15 and ¢ =0.1
X N=10 N=20 N=30 N=40 N=50
t=5
0.1 0.00017961 0.00017987 0.00018008 0.00018008 0.00018007
03 0.00095469 0.00095545 0.00095541 0.00095540 0.00095539
0.5 0.00138727 0.00138818 0.00138819 0.00138825 0.00138824
0.7 0.00100125 0.00100210 0.00100207 0.00100207 0.00100206
0.9 0.00019338 0.00019366 0.00019381 0.00019381 0.00019381
t=20
0.1 —0.00000245 —0.00000040 —0.00000042 —0.00000046 -0.00000049
03 0.00013515 0.00013578 0.00013558 0.00013557 0.00013558
0.5 0.00030980 0.00030830 0.00030851 0.00030850 0.00030845
0.7 0.00022366 0.00022469 0.00022457 0.00022455 0.00022456
0.9 0.00002870 0.00003044 0.00003045 0.00003038 0.00003037
t=100
0.1 0.00015980 0.00015935 0.00015943 0.00015932 0.00015933
03 0.00082299 0.00082194 0.00082181 0.00082172 0.00082175
0.5 0.00117286 0.00117528 0.00117511 0.00117520 0.00117521
0.7 0.00085454 0.00085375 0.00085376 0.00085367 0.00085368

0.9 0.00016346 0.00016247 0.00016253 0.00016243 0.00016243
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Table 2

Convergence behavior of the dimensionless transverse displacement u(x,t) of a clamped axially moving beam for =1 and ¢ =0.1
X N=10 N=20 N=30 N=40 N=50
t=5
0.1 0.00010376 0.00010330 0.00010340 0.00010340 0.00010340
0.3 0.00082191 0.00082151 0.00082158 0.00082162 0.00082162
0.5 0.00140029 0.00140008 0.00140005 0.00140003 0.00140004
0.7 0.00098868 0.00098777 0.00098775 0.00098776 0.00098774
0.9 0.00015766 0.00015721 0.00015709 0.00015710 0.00015708
t=20
0.1 0.00001042 0.00000905 0.00000908 0.00000911 0.00000911
0.3 0.00042738 0.00042769 0.00042780 0.00042781 0.00042778
0.5 0.00111051 0.00111123 0.00111115 0.00111117 0.00111120
0.7 0.00102581 0.00102448 0.00102448 0.00102445 0.00102445
0.9 0.00021355 0.00021356 0.00021370 0.00021370 0.00021370
t=100
0.1 —-0.00019196 —-0.00019370 —0.00019369 —0.00019356 -0.00019357
0.3 —0.00101019 —0.00101004 —0.00101042 —0.00101053 -0.00101058
0.5 —0.00135663 —0.00135629 —0.00135640 —-0.00135638 -0.00135640
0.7 —0.00095047 —0.00095246 —0.00095205 —0.00095197 -0.00095196
0.9 —0.00019424 —0.00018997 —0.00018984 —0.00018982 -0.00018985

Table 3

Convergence behavior of the dimensionless transverse displacement u(x,t) of a clamped axially moving beam for »=0.15 and ¢ =1
X N=10 N=20 N=30 N=40 N=50
t=5
0.1 0.00000164 0.00000199 0.00000199 0.00000199 0.00000200
0.3 0.00002353 0.00002375 0.00002380 0.00002381 0.00002380
0.5 0.00004377 0.00004369 0.00004361 0.00004363 0.00004363
0.7 0.00003385 0.00003406 0.00003410 0.00003412 0.00003411
0.9 0.00000503 0.00000539 0.00000539 0.00000539 0.00000540
t=20
0.1 0.00002067 0.00002009 0.00002007 0.00002009 0.00002009
0.3 0.00011580 0.00011567 0.00011565 0.00011565 0.00011565
0.5 0.00015621 0.00015611 0.00015607 0.00015605 0.00015605
0.7 0.00012854 0.00012837 0.00012836 0.00012836 0.00012836
0.9 0.00002519 0.00002459 0.00002457 0.00002458 0.00002458
t=100
0.1 0.00005094 0.00005080 0.00005077 0.00005078 0.00005078
0.3 0.00032736 0.00032688 0.00032674 0.00032670 0.00032669
0.5 0.00048935 0.00048986 0.00048971 0.00048977 0.00048976
0.7 0.00033050 0.00032998 0.00032984 0.00032980 0.00032979
0.9 0.00005189 0.00005187 0.00005185 0.00005185 0.00005185

&=0.1. It can be observed that the amplitudes of the system do not change over time. The different behavior is found for the
cases with translating velocities = 0.15 and v =1, as shown in Figs. 5 and 6, which present the effects of the dimensionless
moving velocity on the transient amplitudes and vibration frequencies of the clamped axially moving beam. It can be seen
that for both cases, v=0.15 and v = 1, the amplitudes of the system increase with time. The comparisons between Figs. 5 and
6 show that as the translating velocity increases, the amplitudes increase and the vibration frequencies decrease.

Finally, we consider the influence of the dimensionless flexural rigidity ¢ on dynamic responses of the midpoint of the
clamped axially moving beam. The results at ¢ = 0.05, 0.3 and 1 are shown respectively in Figs. 7-9. Note that the dimension-
less moving velocity adopted is v= 0.5. It can be seen from the time-history of midpoint response computed that increasing
the value of ¢ leads to a decrease in amplitudes and an increase in vibration frequencies of the system.

5. Conclusions

The generalized integral transform technique (GITT) has been shown in this work to be an adequate approach for the
analysis of the dynamic response of an clamped axially moving beam, providing a hybrid numerical-analytical solution
for the transverse displacement. Excellent convergence behavior is shown for typical values of axially moving velocity
and flexural stiffness. The investigation shows that all solutions converge to the values with four significant figures at a rea-
sonable low truncation order of N < 30. Good long-time numerical stability is also verified. The comparisons between the
numerical results show that the increasing of v does not affect the convergence behavior, while the increasing of ¢ can make
the solution converge faster. The parametric study indicates that the amplitudes of the system increase and the vibration
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5 (104)

X

Fig. 1. GITT solutions with different truncation orders N for the dimensionless transverse displacement u(x, t) of a clamped axially moving beam at t = 5 for
v=0.15and ¢=0.1.

20 (107)

-1 T I T I T I T I T

X

Fig. 2. GITT solutions with different truncation orders N for the dimensionless transverse displacement u(x,t) of a clamped axially moving beam at t = 20 for
v=0.15and ¢=0.1.
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Fig. 3. GITT solutions with different truncation orders N for the dimensionless transverse displacement u(x,t) of a clamped axially moving beam at t = 100
for v=0.15 and ¢=0.1.
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Fig. 4. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x = 0.5 for =0 and ¢ =0.1.
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Fig. 5. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x = 0.5 for #=0.15 and ¢ =0.1.
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Fig. 6. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x=0.5 for =1 and ¢=0.1.
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Fig. 7. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x = 0.5 for #=0.5 and ¢ = 0.05.

T
TRy

Fig. 8. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x = 0.5 for »=0.5 and ¢=0.3.

frequencies decrease with the translating velocity, and increasing the flexural rigidity leads to a decrease in amplitudes and
an increase in vibration frequencies of the system. This approach can be either employed for benchmarking purposes, yield-
ing sets of reference results with controlled accuracy, or alternatively, as an engineering simulation tool with lower trunca-
tion orders and exceptional computational performance.
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Fig. 9. Dimensionless transverse displacement u(x,t) of a clamped axially moving beam at x=0.5 for =0.5 and ¢=1.
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