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Abstract:

The Thomas-Fermi equation describing the screemihghe Coulomb potential inside heavy neutral atoims
reconsidered. An accurate representation forutaarical solution was obtained by means of theatianal principle. The
proposed new solution has more precise asymptetialdour at large distances from the origin andvadl us to obtain the
exact value of the initial slope. The obtained nawsiational solution can also be developed in posesies similar to the
Baker’s ones but more precise even than some safigions that have been recently obtained withenHhomotopy analysis
method and a modified variational method.
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I. Introduction.

Due to its simplicity, the statistical model of Thas-Fermi (TF) knew wide applications in physick [tlis
considered as a suitable means to estimate th&ielebarge densities and the electric fields patérly in
heavy atoms. This model also allows simplifying mautysical problems whose treatment by the method o
Hartree - Fock (HF) proves rather complicated. dswhe first attempt to relate the energy of aesgswith its
electronic density before the advent of the Densifunctional - Theory (DFT) which was a great ssscand
which is regarded today as being an alternativihéomore complicated method of HF. So The TF mbdsl
motivated the development of several versions of OFhas proved to be efficient in the study oflenules,
crystals and Bose-Einstein condensates [2-4]. dtdlso been applied to atoms in external fieldsaj] dense
plasmas [6] and astrophysics [7]. But the princigakstion of this model still remains the solutiohits
fundamental equation, namely: the TF equation. Tdaisous second order nonlinear differential equatias
continued to attract interest of physicists and hmataticians. Several attempts were devoted to sthilge
problem [8-27] in the past. Recently there has beeeanewed interest to solve it both numericallg][2nd
analytically [29-36]. From the analytical viewpoinarious methods have been used to achieve thik goa
particularly thed-expansion method [27], the power series developmertedure [25], the Pade approximant
approach [23], the modified decomposition methdal,[the homotopy analysis method [29-32], the \tanal
principle [33-34], the modified variational iterati methods [35] and the Chebyshev pseudospectpabagh
[36].

Generally, the proposed solutions so far have adsgthptotic behaviour at long distances from thgitor
and didn’t allow reproducing the numerical valuetwd initial slope. While the recently obtainedutimins have
succeeded in reproducing the initial slope with dypoecision; most of them don’t have a precise gigtic
behaviour.

In the present work, we propose a new simple \ariat solution of the TF equation which reproduties
numerical solution accurately in wide range witlt@rect asymptotic behaviour at long distances fthm
origin and which allows us to calculate with exast:the initial slope. The proposed solution wélldeveloped
in power series which have the same form as sedksions that have been obtained previously byeB#&3]
and recently by Noor [35].
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I1. Thomas-Fer mi equation.

The Thomas — Fermi non-linear differential equat®fi]:
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where x is a dimensionless variable definedxby 4(2Z/9m2)~'/3(r/ay), where r is the distance from the
origin, in units of the Bohr radiuggand Z is the atomic number. The boundary andigiaog conditions are
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for a neutral atom, whegeis the electron density which is relatedfty:
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The use of the variational principle to the lagiand33-34]

L(g) = [°Fdx, (5)

where

o= 3{8e -4 7] ©

taking into account the constraint (3) is equivaterthe equation (1) [33-34].

Il Results and discussion

In a previous work [34], we proposed the followwayiational solution
JX 2
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which depends on three parameter$ andy and gave an initial slope equal to - 1.6162364% €rror is
about 1.77% in comparison with the numerical solu{il6]. In order to improve our result, we havditothe
parametef. The choice of this parameter in the followingnfior

p=-ma (8)

where0.937 < m < 1 allows us to obtain more precise results for tfigail slope (table 1).

In table 2, we compare our results for the inisidpe with those obtained by Liao [ 29], Khan [30],
Yao [ 31], Noor [35] and Kobayashi [16]. From théble, one can see that for m = 0.93799968, wedejme
exactly the Kobayashi's result.



In figure 1 we compare the behaviour of our solutjven by
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where m = 0.93799968 with Khan's solution [30] ahd numerical one [24]. Also, we present in thmea
figure the function [26]
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known as the Sommerfeld solution which definesasgmptotic behaviour ap(x) at large distances from the
origin [23]. It is clear that our results are bettean those obtained by Khan [30]. The Khan's sotu(dashed
line) has a bad asymptotic behaviour, while thautsmh in the present work (dot line) follows cortigcthe
numerical result and asymptotically tends to Sonfiehetisolution eq.(10).

The expansion in power series thfx) (equ.(9)) is given by

- 3 g.xk/2
A= (1)

whereg=1,a=0,3=¢'(0) =B, & = 1.358492 and for n 4:
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; (12)
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The coefficient gis a second order polynomial in B.

The obtained eq.(11) is equivalent to Baker'sieseas cited in Ref.[23] and the series solutiaendy
obtained by Noor [35] but with different coeffigis. In table 3, we compare the first 15 powereseri
coefficients in equ.(11) with Baker’s [23] and &t coefficients [35].

In figure 2 and table 4, we compare the equ.(11f Baker’s series [23], Noor's [35] ones, Khan’'suks
[30] and the numerical solution [24] in the range < 10.

As seen in table 4 and figure 2, the power serfeg(a) given in equ.(11) are more precise than Khan's
series [30], Baker’s ones [23] and Noor’s solutj8B]. Baker’s and Noor’s series are out of comparigor
x = 1.5 while Khan'’s series start to diverge from the ntioa solution for x = 4 and don't give good result
forx < 0.5.

Table 1
The parameters of the function (7) apid0)
m a Y —-¢'(0)
1 0.6057350049 0.3715194565 1.84866
0.938 0.6329598887 0.3687247046 1.58807097
0.93799968 0.6329600376 0.3687246935 1.588071034
Kobayashi Result [16 ]: -1.588071
Table 2
Comparison of’(0) for m = 0.93799968
Liao[ 29] Khan[30] Yao [31] Noor[35] Present work
-1.58606 -1.586495 -1.588005 -1.588077 -1.588071

Kobayashi result[ 16 ]: -1.588071




Fig. 1: Comparison between Khan's [30 ] (dashe€)limumerical [24] (solid line) and present wadbt(line) results fogp (x).

Table 3

Series coefficients of Baker [ 23], Noor [35 ] &hé present work

0,1

0,01
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1E-4

1 ¢

Coefficients Baker Noor Present work

& 1 1 1

& 0 0 0

& -1.588588 -1.588077 -1.588071
& 1.333333 1.333333 1.358492
N 0 0 -0.005354
3 -0.635435 -0.635231 - 0.873010
3 0.333333 0.333333 0.915556
& 0.108154 0.324256 -0.585138
S -0.211811 -0.211744 0.279368
3 0.057627 0.164041 -0.107592
&0 0.014420 0.014411 0.034840
a1 -0.027132 0.006023 -0.009742
a2 -0.000305 -0.010172 0.002397
a3 0.146644 0.017344 -0.000527
) -0.016784 -0.016771 0.000104




Fig. 2: Comparison of our 30th order series (du)liwith 60" order Khan's series (dashed line) and the numesaation (solid line).

Table 4

=

Values of¢g(x) for Baker's [23], Noor’s [35], Khan's [30] seriesid the present work (eq.11) in the rangexd< 10

X Num Baker Noor Khan Present work
0.1 0.8818 0.88164 0.88177 0.91358 0.88209
0.2 0.7931 0.79293 0.79389 0.81809 0.79367
0.5 0.6070 0.60526 0.62992 0.77619 0.60693
1 0.4240 0.41391 0.73414 0.42377 0.42131
15 0.3148 32.2068 1.79283 0.31449 0.30973
2 0.2430 3541.06 4.61703 0.24272 0.23645
25 0.1930 1.2 E5 9.49049 0.19279 0.18567
3 0.1566 2.3 E6 14.17561 0.15672 0.14913
35 0.1294 26 E7 10.04827 0.12994 0.12205
4 0.1084 22E7 -24.4161 0.10963 0.10152
45 0.0919 1.4 E9 -133.642 0.09395 0.08564
5 0.0788 7.2E9 -399.313 0.08163 0.07315
6 0.0594 1.3E11 - 0.06382 0.05513
7 0.0461 1.4 E12 - 0.05180 0.04309
8 0.0366 1.1E13 - 0.04327 0.03472
9 0.0296 7.1 E13 - 0.03700 0.02869
10 0.0243 3.7E14 - 0.03221 0.02421

IV Conclusion

A simple and more precise solution to the ThomaSermi equation is obtained by making use of the
famous Ritz variational method. Through the congmriamong the results of Liao [29], Khan [30 JoYa1],
Noor [35] and the present work, it has been shownwerk has provided more precise data for théainiiope
and the behaviour at large distances from the rarigihas also been shown that the present solutionbe

developed in power series analogue to the Bak@3$ &nd Noor’'s [35] ones but more precise than them
Because of its simple analytical form, the proposedtion in the present work could be used toesalifferent
physical problems based on the Thomas — Fermi model
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