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Abstract:  

The Thomas-Fermi equation describing the screening of the Coulomb potential inside heavy neutral atoms is 
reconsidered.  An accurate representation for its numerical solution was obtained by means of the variational principle. The 
proposed new solution has more precise asymptotic behaviour at large distances from the origin and allows us to obtain the 
exact value of the initial slope. The obtained new variational solution can also be developed in power series similar to the 
Baker’s ones but more precise even than some series solutions that have been recently obtained within the homotopy analysis 
method and a modified variational method. 
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I. Introduction. 
 

Due to its simplicity, the statistical model of Thomas-Fermi (TF) knew wide applications in physics [1]. It is 
considered as a suitable means to estimate the electric charge densities and the electric fields particularly in 
heavy atoms. This model also allows simplifying many physical problems whose treatment by the method of 
Hartree - Fock (HF) proves rather complicated. It was the first attempt to relate the energy of a system with its 
electronic density before the advent of the Density – Functional - Theory (DFT) which was a great success and 
which is regarded today as being an alternative to the more complicated method of HF. So The TF model has 
motivated the development of several versions of DFT. It has proved to be efficient in the study of molecules, 
crystals and Bose-Einstein condensates [2-4]. It has also been applied to atoms in external fields [5] and dense 
plasmas [6] and astrophysics [7]. But the principal question of this model still remains the solution of its 
fundamental equation, namely: the TF equation. This famous second order nonlinear differential equation has 
continued to attract interest of physicists and mathematicians. Several attempts were devoted to solve this 
problem [8-27] in the past. Recently there has been a renewed interest to solve it both numerically [28] and 
analytically [29-36]. From the analytical viewpoint various methods have been used to achieve this goal 
particularly the δ-expansion method [27], the power series development procedure  [25], the Pade approximant 
approach [23], the modified decomposition method [20], the homotopy analysis method [29-32], the variational 
principle [33-34], the modified variational iteration methods [35] and the Chebyshev pseudospectral approach 
[36].  

Generally, the proposed solutions so far have a bad asymptotic behaviour at long distances from the origin 
and didn’t allow reproducing the numerical value of the initial slope. While the recently obtained solutions have 
succeeded in reproducing the initial slope with good precision; most of them don’t have a precise asymptotic 
behaviour.  

In the present work, we propose a new simple variational solution of the TF equation which reproduces the 
numerical solution accurately in wide range with a correct asymptotic behaviour at long distances from the 
origin and which allows us to calculate with exactness the initial slope. The proposed solution will be developed 
in power series which have the same form as series solutions that have been obtained previously by Baker [23] 
and recently by Noor [35]. 
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II. Thomas-Fermi equation. 
 

The Thomas – Fermi non-linear differential equation is [1]: 
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where x is a dimensionless variable defined by � = 4�2�/9	
��
/���/���, where r is the distance from the 
origin, in units of the Bohr radius aB, and Z is the atomic number. The boundary and subsidiary conditions are 
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and 
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for a neutral atom, where ρ is the electron density which is related to � by: 
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The use of the variational principle to the lagrangian [33-34] 
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taking into account the constraint (3) is equivalent to the equation (1) [33-34]. 
  
III Results and discussion 
 

In a previous work [34], we proposed the following variational solution 
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which depends on  three parameters α, β and γ and gave an initial slope equal to - 1.61623647. The error is 
about 1.77% in comparison with the numerical solution [16]. In order to improve our result, we have to fix the 
parameter β. The choice of this parameter in the following form 
 

 αβ m−=                                                                                                                                                   (8) 
 

where 0.937 ≤ � ≤ 1 allows us to obtain more precise results for the initial slope  (table 1). 
In table 2, we compare our results for the initial slope with those obtained by Liao [ 29], Khan [30],         

Yao [ 31], Noor [35] and Kobayashi [16]. From this table, one can see that for m = 0.93799968, we reproduce 
exactly the Kobayashi’s result.  



In figure 1 we compare the behaviour of our solution given by 
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where m = 0.93799968 with  Khan’s solution [30] and the numerical one [24]. Also, we present in the same 
figure the function [26] 
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known as the Sommerfeld solution which defines the asymptotic behaviour of ���� at large distances from the 
origin [23]. It is clear that our results are better than those obtained by Khan [30]. The Khan’s solution (dashed 
line) has a bad asymptotic behaviour, while the solution in the present work (dot line) follows correctly the 
numerical result and asymptotically tends to Sommerfeld solution eq.(10).  

The expansion in power series for ���� (equ.(9)) is given by 
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where a0 = 1, a1 = 0, a2 = ���0� = B, a3 = 1.358492 and for n ≥ 4: 
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The coefficient an is a second order polynomial in B. 

The obtained eq.(11) is equivalent to  Baker’s  series as cited in Ref.[23] and the series solution recently 
obtained by Noor [35]  but with different coefficients. In table 3, we compare the first 15 power series 
coefficients in equ.(11) with   Baker’s [23] and Noor’s coefficients  [35]. 

In figure 2 and table 4, we compare the equ.(11) with Baker’s series [23], Noor’s [35] ones, Khan’s results 
[30] and the numerical solution [24] in the range 0 ≤ x ≤ 10.  

As seen in table 4 and figure 2, the power series of ���� given in equ.(11) are more precise than Khan’s 
series [30], Baker’s ones [23] and Noor’s solution [35]. Baker’s and Noor’s series are out of comparison for  
� ≥ 1.5 while Khan’s series start to diverge from the numerical solution for x = 4 and don’t give good results 
for � ≤ 0.5. 

 
 

Table 1 
The parameters of the function (7) and ���0� 

m           α γ  −���0� 

1 0.6057350049     0.3715194565              1.578384906 

0.938 0.6329598887     0.3687247046                 1.58807097 

0.93799968 0.6329600376 0.3687246935 1.588071034 

Kobayashi Result [16 ]: -1.588071 

 
Table 2 
Comparison of ���0� for m = 0.93799968 

   Liao[ 29]      Khan[30]         Yao [31]              Noor [35]                Present work 

-1.58606 -1.586495 -1.588005 -1.588077 -1.588071 

Kobayashi  result [ 16 ]: -1.588071 
 



Fig. 1: Comparison between Khan’s [30 ] (dashed line) , numerical [24] (solid line) and present work (dot line) results  for ����. 

 
Table 3 
Series coefficients of Baker [ 23], Noor [35 ] and the present work 

Coefficients Baker Noor Present work 

a0 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 

a9 

a10 

a11 

a12 

a13 

a14 

1 

0 

-1.588588 

1.333333 

0 

-0.635435 

0.333333 

0.108154 

-0.211811 

0.057627 

0.014420 

-0.027132 

-0.000305 

0.146644 

-0.016784 

1 

0 

-1.588077 

1.333333 

0 

-0.635231 

0.333333 

0.324256 

-0.211744 

0.164041 

0.014411 

0.006023 

-0.010172 

0.017344 

-0.016771 

1 

0 

-1.588071 

1.358492 

-0.005354 

- 0.873010 

0.915556 

-0.585138 

0.279368 

-0.107592 

0.034840 

-0.009742 

0.002397 

-0.000527 

0.000104 
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Fig. 2: Comparison of our 30th order series (dot line) with 60th order Khan’s series (dashed line) and the numerical solution (solid line).

 
Table 4 
Values of ���� for Baker’s [23], Noor’s [35], Khan’s [30] series and the present work  (eq.11) in the range 0 ≤ x ≤ 10 

X Num Baker Noor Khan Present work 

0.1 

0.2 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

6 

7 

8 

9 

10 

0.8818 

0.7931 

0.6070 

0.4240 

0.3148 

0.2430 

0.1930 

0.1566 

0.1294 

0.1084 

0.0919 

0.0788 

0.0594 

0.0461 

0.0366 

0.0296 

0.0243 

0.88164 

0.79293 

0.60526 

0.41391 

32.2068 

3541.06 

1.2 E5 

2.3 E6 

2.6 E7 

2.2 E7 

1.4 E9 

7.2 E9 

1.3 E11 

1.4 E12 

1.1 E13 

7.1 E13 

3.7 E14 

0.88177 

0.79389 

0.62992 

0.73414 

1.79283 

4.61703 

9.49049 

14.17561 

10.04827 

-24.4161 

-133.642 

-399.313 

- 

- 

- 

- 

- 

0.91358 

0.81809 

0.77619 

0.42377 

0.31449 

0.24272 

0.19279 

0.15672 

0.12994 

0.10963 

0.09395 

0.08163 

0.06382 

0.05180 

0.04327 

0.03700 

0.03221 

0.88209 

0.79367 

0.60693 

0.42131 

0.30973 

0.23645 

0.18567 

0.14913 

0.12205 

0.10152 

0.08564 

0.07315 

0.05513 

0.04309 

0.03472 

0.02869 

0.02421 

 
IV Conclusion 
 

A simple and more precise solution to the Thomas – Fermi equation is obtained by making use of the 
famous Ritz variational method. Through the comparison among the results of Liao [29],  Khan [30 ], Yao [31], 
Noor [35] and the present work, it has been shown our work has provided more precise data for the initial slope 
and the behaviour at large distances from the origin. It has also been shown that the present solution can be 
developed in power series analogue to the Baker’s [23] and Noor’s [35] ones but more precise than them. 
Because of its simple analytical form, the proposed solution in the present work could be used to solve different 
physical problems based on the Thomas – Fermi model.  
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