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Abstract

This paper analyses the reliability of a cold standby system consisting of two re-
pairable units, a switch and a repairman. At any time, one of the two units is
operating while the other is on cold standby. The repairman may not always at the
job site, or take vacation. We assume that shocks can attack the operating unit. The
arrival times of the shocks follow a homogeneous Poisson process and their magni-
tude is a random variable following a known distribution. Time on repairing a failed
unit and the length of repairman’s vacation follow general continuous probability
distributions, respectively. The paper derives a number of reliability indices: sys-
tem reliability, mean time to first failure, steady-state availability, and steady-state

failure frequency.
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1 Introduction

The shock model, one of the important models in the reliability theory, has been extensively stud-
ied in the last decades and results are summarized in [1]. The main interest of existing research
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focuses on one-unit systems with Poisson shocks under the assumption that the damage to the
system resulted from a single shock can be neglected, and the system fails once the damage has
accumulated to a certain level. For example, Shamthikumar and Sumita studied the earthquake
and inventory problems and introduced a shock model, in which the system fails when the magni-
tude of a shock exceeds a pre-specified threshold [2,3]. Li et al. studied complex systems consisting

of n i.i.d. units with a J-shock model [4].

Standby systems have attracted the attention of many researchers. There are three main types
of redundant standby systems: cold, warm and hot. Cold standby systems have been studied
extensively in the past. For example, [5,6] have investigated two-unit standby system models
and assumed that the standby unit is immediately switched on once the operating unit fails,
whereas Gupta and Kishan [7] assume that the standby unit is not immediately switched before
a fixed preparation time is took to put standby into service. Recently, the reliability indices of
cold standby repairable systems have been derived when the times between repairs are assumed
to follow the geometric process [8,9]. Meanwhile, Mahmoud and Moshrefa [10] deal with the study
of the stochastic analysis of a two-unit cold standby system considering hardware failure, human

error failure and preventive maintenance.

In the research mentioned above, a unit is repaired immediately after it fails, which might not be
the case in practice: in most real scenarios, a failed unit might not be repaired immediately due to
various reasons. One of the problems often occurred, for example, is the absence of maintenance
staff. This happens in median or small firms as they might not be able to afford to recruit a
full-time repairman looking after their equipment. Instead, a repairman might need to care many
types of equipments and he might not be able to repair a failed unit immediately once it fails.
We say that the repairman is on vacation if he is absent when an unit fails, although he might

actually be repairing other equipment.

Doshi [11] provides a comprehensive survey on vacation system models, and Ke and Wang [12]

investigated a machine repair problem with two vacation policies (single vacation and multiple



vacations), both of which were based on a queuing theory viewpoint. Su and Shi [13] discussed
the reliability of a m-unit series system in which the repairman takes multiple vacations. Jia and
Wu [14] studied a replacement policy for a repairable system with its repairman taking multiple
vacations. Jia and Wu [15] develop replacement policy for a cold standby system composed of two

identical units with perfect switching.

The reliability indices of a two-unit cold standby repairable systems are important to industries.
Analysing and deriving such indices for the systems impacted by shocks can be more interesting
as shocks occur from time to time in the real world. This motivates us to analyse the reliability
of a two-unit cold standby repairable system. We assume the system might be attacked by shocks
following a Poisson process. It should be noted such analysis is not an easy task when the survivor

distribution and the distribution of the vacation period of the repairman are general distributions.

In this paper, we introduce a supplementary variable when solving the partial differential equations
used to describe the dynamics between state transitions. With the help of the ergodicity of the
investigated process and the theory of the first-order, linear, ordinary differential equations, we
obtain explicit expressions of reliability indices such as steady-state availabilities and steady state

failure frequency.

The paper is structured as follows. Section 2 describes the system and lists assumptions. Section 3
derives integro-differential equations. In section 4, we transform the integro-differential equations
into the first-order, linear, ordinary differential equations, and obtain the explicit solution of the
equations. Explicit expressions for reliability indices for the system are derived. Section 5 presents
a special case (model) without vacation. Section 6 offers numerical examples. Concluding remarks

are offered in the last section.



2 Model assumptions

Assume that the system under discussion is a cold standby repairable system. A part-time re-
pairman looks after the system that might be attacked by shocks. The following assumptions
hold.

A1. The system consists of two different units (ie, unit 1 and unit 2), a switch and a repairman.
The two units are operating alternatively: one unit is operating while the other is on cold
standby or is being repaired if it has failed. The standby unit will be switched to the operating
state once the operating unit fails, the switch is perfect.

A2. The system subjects to shocks. The arrivals of the shocks follow a Poisson process { N (t),t>0}
with the intensity A > 0. The magnitude of each shock, X , is an independent random variable
with distribution function F'

A3. When a shock arrives, it only affects the operating unit. The operating unit will fail when
the magnitude of a shock exceeds a threshold. The threshold of unit ¢ is a non-negative random
variable 7; with a distribution function ®;, (i = 1,2).

A4. When a unit fails with the presence of the repairman, it will be repaired immediately. Once
the failed unit is repaired, the repairman leaves for a time period (maybe for other tasks), or
is said to take a vacation. The repair rule is ”first-in-first-out”. If a unit fails when the other is
being repaired, the newly failed unit must wait for repair and the system is down. If two units
are waiting for repair when the repairman returns from a vacation, unit 1 has the priority to be
repaired ® . If there are no failed unit when the repairman returns from a vacation, he does not
take a vacation again and remains idle until the first failed unit appears.

Denote Y; (i=1, 2) as unit i’s repair time, and Z as the vacation length of the repairman

denoted. Their distributions are: H;(t) = [y hi(z)dz = 1 — e~ fc:“i(x)dx, V(t) = [yv(r)dr =

3 This is a realistic assumption as the repairman, upon his return from vacation, might pick up one of
the failed units to repair and it is not important for him to select which unit — it can be either unit 1

or unit 2.



1—e o @)z respectively. We also denote E(Z) = LVE)=1-V(@),EY;) = i,
1—H;(t)(i=1,2).

A5. Shocks are assumed to be the only cause of unit failure, and the system fails only if both the
units fail.

A6. All random variables are independent. At the beginning, the two units are new, unit 1 starts

to work, unit 2 is on cold standby, and the repairman takes vacation. The units can be repaired

"as good as new”.

3 Model development

With the model assumptions given in the preceding section, the failure probability of unit ¢, given
the shock value Z, is ®;(Z) = P(; < ). Since the magnitude of a shock is a random variable X,
the conditional failure probability of unit 7 is a random variable @Z(X\ ) with ¢ = 1, 2, respectively,
and their probability distribution can be written by: P;(z) = P(®;(X) < z) = P(X < ®;(z)) =
F(®;(r)),0 <z <1,(i = 1,2).From assumptions A2 and A3, we can see that, the probability

7

that one shock causes unit 7 to fail is:

r=P(X > 1) = /°° P(r < 7| X = 7)dP(X < 7) = /m ®,(7)dF(2), (i = 1,2).
0 0

Let S(t) be the system state at time ¢, then

state 0: at time ¢, unit 1 is operating, unit 2 is on cold standby, and the repairman is taking a
vacation.

state 1: at time ¢, unit 2 is operating, unit 1 is on cold standby, and the repairman is taking a
vacation.

state 2: at time ¢, unit 2 is operating, unit 1 is waiting for repair, and the repairman is taking
a vacation.

state 3: at time ¢, unit 1 is operating, unit 2 is waiting for repair, and the repairman is taking



a vacation.
state 4: at time ¢, two units are waiting for repair, and the repairman is taking a vacation.
state 5: at time ¢, unit 1 is operating, unit 2 is on cold standby, and the repairman is idle.
state 6: at time ¢, unit 2 is operating, unit 1 is on cold standby, and the repairman is idle.
state 7: at time ¢, unit 2 is operating, unit 1 is being repaired.
state 8: at time ¢, unit 1 is operating, unit 2 is being repaired.
state 9: at time ¢, unit 1 is being repaired, unit 2 is waiting for being repaired.

state 10: at time ¢, unit 2 is being repaired, unit 1 is waiting for being repaired.

The state spaceis 2 = {0,1,2,3,4,5,6,7,8,9,10}, where the operating state set is W = {0, 1, 2, 3, 5,
6,7,8} and the failure state set is F' = {4,9,10}. As the repair time has a general continuous distri-
bution, {S(t),t > 0} is not a Markov process. Therefore we introduce the following supplementary

variables:

o X(t):if S(t) =0,1,2,3,4. Then X(¢) is the elapsed vacation time when the repairman is taking
a vacation at time ¢.
o Yi(t):if S(t) =7,9. Then Yi(t) is the elapsed repair time of unit 1 being repaired at time ¢.

o Y5(t): if S(t) = 8,10. Then Y;(t) is the elapsed repair time of unit 2 being repaired at time ¢.

Then {(S(t), X(t),Y1(t),Ya(t)),t > 0} is a continuous vector Markov process (see [16]) with the
fOHOWng state SpaCG:Q;’< = {[07 1’], [L IL’], [Qa ZE], [3a ZL‘], [47 ZL’], 5,0, [77 y]a [& Z], [9, y]a [10, Z]} where T,y

and z are the realisation values of X (t), Y1(t) and Y5(t), respectively. Denote:
Qi(t,y) = P(S(t) =i, Y1(t) <y), (0 =17,9),Qi(t, z) = P(S(t) = i, Ya(t) < 2), (i = 8,10)
where P(A) is probability of event A, and denote:

d
Pl(t? U) = @Ql(t7u)(l = 07 17 2a 3747 77 8a 97 10)



the following relations are valid:

Qi(t,oo):/ Py(t,u)du, (i = 0,1,2,3,4,7,8,9,10),
0

where p;(t) = P(S(t) =i)(i = 0,1,2,...,10).

Using the probability arguments and limiting transitions shown in Appendix, we have the following

integro-differential equations:

(2 + 2 +rimd+a(2) P(t,2) =0,(i=0,1)

(2 + 2 +r2d+ () Po(t, ) = APy (t, )
(2 + 2 +rA+a(2) Py(t,x) = APt 7)

(2 + 2 + a(2)) Pi(t.2) = 1APy(t,2) + raAPy(t, )
(% + 7”@')‘) Pita(t) = [o° Pici(t, z)a(x)de, (i = 1,2)
(& + 2+ A+ mly)) Pr(t,y) =0
(% + % + 1A+ ug(z)) B(t,z) =0
(242 +m) Polt,y) = ra\Pr(t,y)

(4 + & +1a(2)) Puft.2) = AR (2

Their boundary conditions are:

Po(t,0) = [~ Bs(t, 2)pa(2)dz +0(t),  Pi(t,0) = [5° Pr(t,y)p(y)dy

Pz(tu O) =0, (Z =23, 47 ]-0)7 P?(t7 0) = f6>0 P2<t’ [E)Oé([E)dI + fOOO PlO(t7 Z)MQ(Z)dZ + Tl)‘p5(t)

(10)

(11)

Py(t,0) = [° Py(t, 2)e(z)da + [2° Po(t, ) (y)dy + r2ps(t), Po(t,0) = [° Py(t, x)a(z)de (12)



According to the formula of the total probability, we have:
L Joo Fi(t,w)dz +ps() + po(t) + X Jo~ Pilt,y)dy =1

The initial conditions are:

P0(07l') = 5(ZE) = aPz(Ovu) = O,U 7é Oa (Z = 1727?”4’ 778797 10)7175(0) = pG(O) -
0, x # 0;

4 Model analysis
4.1 Solutions of the equations

We introduce the Laplace transform and a token as follows:
h*(s) = Lg[h(x)] = /OO h(z)e **dz,s >0
0

The ergodicity of the investigated process ensures the existence of the following steady-probability:
P = 1tlim pi(t) (i=0,1,---,10), g;(u) = tlim Pi(t,u) (i=0,1,2,3,4,7,8,9,10), which follows

the following relations: p; = [;° ¢;(u)du (i =0,1,2,3,4,7,8,9,10).

By taking the limit ¢ — oo in the equations (1) ~ (13), we can obtain the following equations:

(% + rip1 A+ oz(x)) gi(x) =0,(i =0,1) (14)
(i + 72\ + (@) ga(2) = 1 Ago (@) (15)
(£ + 1)+ a(2)) gs(2) = radgn (x) (16)

(% + a(x)) ga(x) = r1Ags(x) + raAge(x)



Ti\Dita = J5° gim1(x)a(z)dz, (i = 1,2) (18)

(L + 1)+ (v)) g:(y) = 0 (19)
(& + 71X+ 12(2)) g5(2) = 0 (20)
(i + () 90 (y) = r2Ag2 () (21)
(£ + p2(2)) g10(2) = riAgs(2) (22)
The boundary conditions are:
90(0) = J5° gs(2)pa(2)dz,  g1(0) = J5° gr(y)m(y)dy (23)

i(0) = 0, (i = 2,3,4,10), g7(0) = Ji° go(@)a(@)de + [° gro(2)ua(z)dz + ridps  (24)
95(0) = J2° g(@)a(@)dz + [5° go(y)m (y)dy + raApe,  99(0) = Ji° ga(w)a(w)dz  (29)

4 . 10 oo (26)
gh%wm+m+m+;kw@®=l
We can obtain the solutions g¢;(x), (¢ = 0,1,3,4,7,8,9,10), ps, ps of the above equations (14) ~

(25) .Follow equation(26), we can find co:

-1_ 1 v* (1) 1 h*(ra)) i (raA)v* (r2 ) 1 _ ri(I=v*(r2A)) —ra(1—v* (1))
G = « + rli\ + p2hd(riX) + ( : a + = ro ) (h;(ﬁ)\) - r1—T2 )
_{_L 1 + (ri(1—v*(raA)) —r2(1—v*(r1A))h] (r2A) (r1(l—v*(rg/\))—rz(l—v*(rl)\)))Qh’{(7’2>\)
p1 \ hi(riX) (ri—r2)h3(riX) (r1—7r2)?

From p;, = [Cgi(u)du (i = 0,1,2,3,4,7,8,9,10), We can obtain the following steady-state

probability:

Py = V*(’r’l)\)co, p1 = (hS(iM) _ r1(1—y*(7"2/\))—7“2(1—v*(T1)\)) hT(TQA)V*(TQ)QCO

ri—r2

(VA (ra )=V *(r1\) . 1 Hy(r1)\)
pr =T G, o= (uzh;(m)\) B h§<rfx>)‘/’0



_ (r2(V*(raA)=V*(r1 ) ro(V* (raXN)—V* (r1\) (r1 (1=v* (r2A)) =12 (1—v* (11 0))) .

_ (Wi (r2X)+h3 (r1A)) (r2V* (r1A) —r1V* (12 ) . [r1(1=v*(r2X))—r2(1=v*(r1A))]h] (r2))

P4 = (ri—r2)h3(r1X) o a(ri—rs2) Co
+ h’l‘(m)\)-i—h;(rl)\)c . (7"2V*(7’1)\)—7’1V*(7"2)\))(7“1(l—v*(rz)\))—rg(l—v*(Tl)\)))h“f(rg)\)C
ahl(ri)) 0 (r1—rg)? 0
_v*(r1A) (v (raX)hi(r2 ) (r1(1—=v*(r2 X)) —ra(1—v*(r1\)))hT (r2X)v* (r2A)
bs = Tli €0, Pe = ( TgihS(;‘l)\Z) - : ig)x(rl—rlg) . : ) 0

I (HI(TQA) (rl(1—u*(rzx))—rz(1—v*(r1A)))H“{(r2A)) o, ps = Hy(r1))

h5(rix) r1—T2 h(rix) €0

1 1 (r1(1=v*(raX))—r2(1—v*(r1A)))h3 (r2N) (r1(17v*(r2)\))77‘2(17v*(rlx\)))zh*(rg)\)
Po =1 (h; riv (1 —r2)h5(riN) . - (ri—r2)? . ) o
[ Hi(r2))  (ri(1=v*(ra))—ra(1—v* (r1\))H] (r2\) c
h3(riN) pp— 0

4.2 Reliability indices

Hence, the following results are obtained. The steady-state availability of the system (see[13], for

example) is

A=po+p1+p2+ps+p5+ D6+ pr+0s

:(nwv@fzwwmy+wgygcm++<Hw%ﬁg$u>_oﬂkmwmwﬁq;wumHmcho
r1iV*(ra\)—r2V* (11 \) v*(rol) hi(reA)  (ri(1—v*(reA))—r2(1—v*(r1A)))h] (r2)
+ ( T1—T2 + ro ) (h’zl‘(rl)\) r1—T2 : ) Co

The steady state probability that the repairman is on vacation is

h¥(roX)+h5(r1 A r1(1—=v*(reA))—ra(1—v*(r1 X)) h% (r2 A
PV:po+p1+p2+p3+p4:( 1(02[]%4(;12)\()1 ) _ (m(1—v'(r2 ))a(fl(irg)(l )R (ra ))Co

The probability that the system is waiting for repair, namely, the probability that the system
is in failure but the repairman is on vacation is P,(t). From assumptions of the system, we have
P,(t) = [5° Pu(t,z)dz, and the steady state probability that the system is waiting for being

repaired is P, = p4
Following the result of [13], the steady-state failure frequency of the system is given by

10



M =19 Aps + 11 Ap3 + 12 Ap7 + 11 Aps
_ e AV o)V (1) B2 +h3 (1) rara AV (r2A) =V () (11 (1= (raA) —ra(1=v* (1)) A (r2)) c

r1—r2 h3(r1X) 0 T1—T2 r1—T2
+ rgAH;(rgA)+r1)\ﬁ;(r1)\) . (7’1(l—v*(7"2)\))—7’2(1—11*(7’1)\)))7’2)\?9{(7’2)\) c
h3(ri) r1—"ro 0

The mean up-time is expressed in terms of the steady-state probability of the system (see [16])
by MUT: MUT = 4.

In order to obtain system reliability, we let the above three failure states 4, 9 and 10 be the ab-
sorbing states, then we have {(S(t), X (1), Yi(t), Ya(t)),t > 0}. Let Q;(t,z) = LP(S(t) = i, X (t) <
), (i = 0,1,2,3),Qi(t) = P(S(t) = i), (i = 5,6) Qs(t,y) = £ P(S(t) = T,Yi(t) < y), Qs(t,2) =
4 P(S(1) = 8, Talt) < 2).

Using the method similar to that in section 3, we have the following partial-differential equations:

(2 + 2 +rimA+a(@) Qlt.x) =0, (i =0,1) (27)
(Z+ 2+ +a(x)) Qult,x) = rAQy(t, 2) (28)
(2 + 2 +rid+a(@) Qs(t.2) = rAQ (¢ 7) (29)
(4 + 7)) Qialt) = J5° Qica(t, 2)a(w)d, (i = 1,2) (30)
(2 + 2 + A+ m(y) Qrlt,y) =0 (31)

(& + 2% + A+ pa(2)) Os(t,2) =0 (32)

The boundary conditions are:

Qu(t,0) = J3° Qs(t, 2)pa(2)dz + 6(1), Qi (£,0) = [5° Qr(t, y)p (y)dy, Qu(1,0) = 0, (i = 2,3) (33)

Q:(t,0) = [2° Qy(t, x)a(x)dz + 1 AQ5(t), Qs(t,0) = [ Qs(t, x)a(x)dr + 122 Q4(t) (3

11



The initial conditions are:

0, x # 0;
otherwise is 0.

Theorem 1 The Laplace transformation formula of the reliability of the system is given by

C1(s)H (s+7r20)+C1(5)C2(s)Ha (s+r1 \)h* (s+72X)

R*( )_ (7‘1‘/*(s+7‘2)\)—7‘2v*(S—I—T’1/\))(1+01(s)h{(s—i—rz/\)) 4
§)= (r1—r2)(1-C1(s)C2(s)h; (s+r2X)hi(s+r1))) 1-C1(s)Ca(s)hi (s+raA)hs(s+r1))
v*(s+r1 ) C1(s)h7 (s+raX)v* (s+raX) 1
+ ( s+r1§\ + . S+raA ) 1-C1(s)Ca(s)h} (s+raX)hd(s+r1 )

X vt (s+re ) —riv* (s+ri ) riAV* (841 \) .
where: Cj(s) == g + = (=12

The Proof of Theorem 1 is given in the Appendix

Corollary 1 The mean time to the first failure of the system is:

(1 V*(ra ) —raV*(r1N) (r1 —ra+(r1v* (raX) —rav* (ri X)) R (r2 X))
MTTFF = (r1—7r2)2—(r1v* (raA)—rav* (r1X))2h3 (r2a A) b3 (r1 /\))1
ro(r1—r2)2v* (r1 \)+r1 (r1—r2)v* (reA) Ry (r2X) (riv* (raX)—rav* (r1))
r1r2/\((r1—r2)2—(7’1v*(T2>\)—T2v*(m/\))%i‘(m)\)hé(ﬁ/\))
i (r1—r2)Hy (r2X) (r10* (raX) —r20* (11 \) 4+ Ho (11 N RE (12 N) (r10* (12 ) —r20* (11.0)) 2
(r1=r2)2=(r1v*(r2A) —r2v* (r10))2h7 (raA)h3 (r1\)

_I_

Proof Calculating MTTFF = [5° R(t)dt = lirél+ R*(s) implies the result.

5 Special case

In this section, we discuss the following special cases, which verify the results of the preceding

section.

Case 1. If r{ =1, =r = 0, then it implies that shocks do no harm on the working unit and the
units will never fail;
Case 2. If r; = ro =r = 1, then each shock will cause the working unit to fail and the repairman

will take vacations;

12



Case 3. If ry =ry =r =1, and P(Z = 0) = 1, then each shock will cause the working unit to

fail and the repairman will repair once the unit fails.

Corresponding results can be easily obtained for the above special cases.

6 Numerical examples

To validate the above derivation, we conduct the following numerical experiment. Here, we assume

1—e™™ x> 0; 1—6_%x7$>0; 1—6_3x,:p>0;

Then we have

ry = P(jf\ >T) = /OOO P(r < f|§(\: i)dP(j(\ < 7) /000(1 B e*%\)d(l — ) =

)

=~ — ot =

ro = P(jﬁ'\ > Ty) = / P(r < §|)/(\: @)dp(j(\ < 7) / (1— e’gg)d(l _ e’";) _
0 0
We assume the repair time distribution of the unit i(i=1,2) and the vacation time distribution

of the repairman are exponential distributions, i.e. h;(t) = p;exp(—p;t) (i = 1,2) and v(t) =

aexp(—at).

We first present numerical examples comparing the reliability indices for the situations when the
repairman is assumed to have single vacation and no vacation. Figures 1, 2 and 3 shows the
steady-state probability of the repairman vacation and the steady-state probability of wait-for-
repair time when a single vacation of the repairman is assumed. From the curves of Figs. 1, 2,
and 3, we conclude that the steady-state availability A, mean up-time MUT, and mean time to
the first failure for the model with single vacation increase uniformly. They increase rapidly at an
early stage and then stable as o becomes larger. The curves of Fig. 4 and Fig. 5 shows that, when
the repairman only takes single vacation, both the steady-state probability P, of the length of

the vacation and the steady-state probability P, of system’s waiting-for-repair time decrease as

13



the rate a increases. The decrease is rapid initially and then becomes stable as a becomes larger.
Fig. 6 shows the steady-state availability increases as « increases. It can also be observed from

Fig. 6 that the intensity values X\ affect the steady-state availability significantly, the steady-state

availability decreases as intensity A increases.

The mean up-time MUT and the mean time to the first failure MTTFF are investigated, when
A and « change, as shown in Table 1 and Table 2. We change the values of A and « and observe
their cross effects on the mean up-time MUT and the mean time. It shows that increasing A can

significantly decrease the MUT and the MTTFF, however, increasing « rarely affects the values

of MUT and MTTFF.
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Figure 1. Steady-state availability versus rate a when A = 3.0, 1 = 0.8, u2 = 1.0.
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Figure 2. Mean up-time versus rate o when A\ = 3.0, u; = 0.8, uz = 1.0.
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Figure 5. Steady-state probability that the system is waiting for repair versus rate o when

A=3.0,pu1 =08, o = 1.0,

-

== A=1.0
‘=1 A=3.0
— A=6.0

Steady-state availability of the system

Figure 6. Steady-state availability versus rate a for different intensity values of the Poisson shock

process when p; = 0.8, uz = 1.0.

Table 1. Mean up-time for different o and intensity values of the Poisson shock process when

w1 = 0.8, uo = 1.0.

Ala=1]a=5la=9 |a=13|a=17T|a=21 |a=25|a=29

2.0 | 6.0465 | 6.6581 | 6.6947 | 6.7040 | 6.7077 | 6.7095 | 6.7106 | 6.7112

2.2 | 5.5123 | 5.7027 | 5.7243 | 5.7308 | 5.7335 | 5.7349 | 5.7358 | 5.7363

2.4 | 4.4960 | 4.9368 | 4.9658 | 4.9733 | 4.9763 | 4.9778 | 4.9787 | 4.9792

2.6 | 3.9599 | 4.3398 | 4.3659 | 4.3728 | 4.3755 | 4.3769 | 4.3777 | 4.3781

2.8 | 3.5267 | 3.8569 | 3.8806 | 3.8868 | 3.8893 | 3.8906 | 3.8913 | 3.8918

3.0 | 3.1709 | 3.4599 | 3.4814 | 3.4872 | 3.4895 | 3.4907 | 3.4913 | 3.4917

3.2 | 2.8743 | 3.1288 | 3.1486 | 3.1539 | 3.1560 | 3.1571 | 3.1577 | 3.1581

Table 2. Mean time to the first failure for different o and intensity values of the Poisson shock process
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2.0 | 7.7984 | 8.7297 | 8.7855 | 8.7998 | 8.8054 | 8.8082 | 8.8098 | 8.8108

2.2 6.7594 | 7.5735 | 7.6248 | 7.6380 | 7.6432 | 7.6459 | 7.6473 | 7.6483

2.4 | 5.9465 | 6.6654 | 6.7129 | 6.7252 | 6.7301 | 6.7326 | 6.7340 | 6.7349

2.6 | 5.2961 | 5.9364 | 5.9806 | 5.9922 | 5.9968 | 5.9991 | 6.0005 | 6.0013

2.8 | 4.7658 | 5.3402 | 5.3816 | 5.3926 | 5.3970 | 5.3992 | 5.4004 | 5.4012

3.0 | 4.3263 | 4.8450 | 4.8840 | 4.8943 | 4.8985 | 4.9006 | 4.9018 | 4.9025

3.2 3.9570 | 4.4280 | 4.4648 | 4.4747 | 4.4786 | 4.4807 | 4.4818 | 4.4825

7 Conclusions and future work

In this paper, we derived the reliability indices of a system consisting of two different units,
a switch and a repairman. The repairman might take vacation and the operating unit might
be attacked by shocks. Such a system can be seen as an extension of a general cold standby
repairable system, which is one of important repaired systems in the reliability engineering and is
also difficult to analyse as there are many random variables with general distributions involved.
The numerical data experiments show the relationship between the derived reliability indices and

relevant parameters.

In this paper, it is also assumed that if there is no failed unit when the repairman returns from
a vacation, he does not take a vacation again and remain idle until the first failed unit appears.

This assumption will be relaxed in our future work.
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Appendix

The derivation of Egs. (1) ~ (12)

Since the process{(S(t), X (¢),Y1(t),Ya(t)),t > 0} is a continuous vector Markov process, we can
express the process in a way considering the transitions occurring in ¢ and ¢ + At. Relating the
state of the system at ¢ and ¢t + At, we readily set up the following partial differential equations
(see [17]):

Py(t + At,x + At) = Py(t, z)(1 — (r A + a(x))At) + o(At),

Pi(t+ At,x + At) = Pi(t,z)(1 — (ro\ + ax))At) + o(At),

Py(t+ At,x + At) = Py(t,z)(1 — (12X + ax))At) + ri APy (t, x) At + o(At)

Pyt + Atz + At) = Psy(t,2)(1 — (A + a(z))At) + roAPL(t, 1) At + o(At)

Pyt + At,x + At) = Py(t,2)(1 — a(x)At) + riAPs(t, ) At + 1o APy(t, ) At + o( At),

ps(t 4+ At) = ps(t, ) (1 — riAAL) + [§° Po(t, x)o(x)dzAt + o( At),
pe(t + At) = pe(t, ) (1 — rodAL) + [7° Pi(t, x)o(x)dzAt + o( At),
Pr(t+ Aty + At) = Pr(t,y)(1 — (reX + p1(y))At) + o(At),

Ps(t 4+ At,z + At) = Py(t, 2)(1 — (1A + pa(2))At) + o(At),

Py(t + Aty + At) = Py(t,y) (1 — pr(y)At) + moAPr(t, y) At + o( At),

Pio(t + At, 2z 4+ At) = Pio(t, 2)(1 — pa(2) At) + 1 \Pgs(t, 2) At + o(At),

Po(t + At,0)At = [2 Py(t + At, 2)dz + o( At) =[5 Ps(t, z) pa(2)dzAt + 6(t) At + o( At),

Pi(t+ At 0)At = [2Py(t+ At, 2)dz + o( At) = J57 Pr(t, y)pua(y)dzAt + o(At),

Py(t + At,0)At = Pg(t + At,0)At = Py(t + At,0)At = Pio(t + At,0)At = o(At)

Pr(t+At0)AL = [2 Pr(t+At, 2)dz+o(At) = 57 Po(t, 2)a(w)daAt+ [ Pro(t, z)pe(z)dzAt+r1 Aps (t) At+
o(At),

Ps(t+At, 0)At = OAt Ps(t+At, z)dz+o(At) = [ Ps(t, z)a(z)deAt+ [° Py(t, y)p (y) dyAt+raAps(£) At+
o(At),

Po(t + At,0)At = [ Py(t + At, 2)dz + o( At) = [° Pu(t, )e(z)dz At + o(At),

The proof of Theorem 1 is as follows.
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Proof Taking the Laplace transform with respect to ¢ to equations (27) ~ (34), we have

%Qf(syﬁf) + (s +ripiA+a(x)) Qi (s,x) =0,(: =0,1)

d
@Q;(S’ z)+ (s +red + ax))Q5(s, ) = riAQ;(s, x)

%Q}i(s,x) + (s+mA+ a(x))Q5(s, ) = r2AQ] (s, x)

(5 + 1N Q143 /Q (2)de, (i = 1,2)

d
3y Q15 9) (s At i(y))Qr(s,y) = 0

LQ4(s,2) 4 (s mid+4ma(2)Q8(s.2) = 0
QS(Sa 0) = A Q;(& Z)MZ(’Z)dz + 17 QT(&O) = /0 Q;(Sv y),ul(y)dyv Q;k(s,()) = 07 (Z = 27 3)
03(s,0) = / 03 (s, x)a(x)dz + mAQE(s), Q5. 0) = / Q3 (s, x)a(z)dz + rAQY(s)
0 0

According to the initial conditions, we have: Q%(0) = Q§(0) =

The solutions can be written as

Q:(va) = Q:(Svo)ei(yﬂ”l)\)wv(‘r% (Z = 1’2)7 Q;(‘S?l‘)

Qi (s,0)V (x) (e*(errz)\)x _ ef(errl)\)x)

1 — T2
* * —(s+raN\)z —(s+ri Nz * (s + iA * .
03(5,) = 2 Qi(s, )V (&) (e — e orn) g = TEE I g (600, = 1,2)
Q% (s, y) = Q%(s,0)e"T2H (y), Qi(s,z) = Q(s,0)e” TN, (2)
Qo(s,0) = 1 — C1(s)Co(s)ht(s + roA)hi(s +rN)’ Qr(s,0) = 1 —C1(s)Ca(s)hi (s + raA)hi(s +1r1A)
0% (5,0) = C1(s)hi(s + r2A) 03 (s,0) = C1(s)Ca(s)hi(s + r2A)

1= C1(s)Ca(s)hi(s + reA)h5(s + 11A) 1 — C1(s)Ca(s)hi(s + r2A)h3(s + 1)

The reliability of the system is

Z/ Qi(t,z)dx + Qs(t) + Qp(t) /Q7tydy+/ Os(t,z)d

The Laplace transformation formula of the reliability of the system is
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3
R¥(s) = Z‘; Jo© Qi(s,z)dw + Q5(s) + Qi(s) + [y~ Qils,y)dy + [~ Qk(s, 2)dz

(M V*(sHraN) =12V (5471 A)) (14C1 ()bt (s+72))) | Ci(s)H] (s+72A)+C1(s)Ca(s) Ha(s+r1 A)RE (s+7r2X)

- (r1—r2)(1—C1(s)Ca(s)h} (s+raA)h3(s+r1 X)) + 1-C1(s)Ca(s)hf (s+raX)hi(s+r1))
v*(s+r1 ) C1(s)h7 (s+raX)v* (s+raX) 1
+( s+7"1;\ + . s5+raA )l—Cl(s)Cg(s)h{(s—i—rg)\)h;(s—l-'rl)\)
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