
ar
X

iv
:1

10
4.

48
78

v1
  [

m
at

h-
ph

] 
 2

6 
A

pr
 2

01
1

A note on the extension of the Dirac method
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In this note we extend the Dirac method to partial differential equations involving higher order
roots of differential operators.

I. INTRODUCTION

In deriving his celebrated equation, the Dirac stroke of genius was to use the anti-commuting nature of the Pauli
matrices

{σ̂j , σ̂k} = 2 δjk , (j, k = 1, 2, 3) (1.1)

to rewrite the Pythagorean theorem as follows

A =
√

B2 + C2 = B σ̂j + C σ̂k (j 6= k) (1.2)

where A,B,C can be either numbers or operators. Eq.1.2 allows to eliminate the square root from the relativistic
Schrödinger equation

ı ~ ∂t Ψ = c
√

p̂2 +m2 c2 Ψ , (1.3)

which, can accordingly be written as

ı ~ ∂tΨ = c (p̂ σ̂1 +mc σ̂3)Ψ . (1.4)

where Ψ is a 2-component vector. This equation resembles the Dirac equation, but it should not be confused with it
or with the Pauli equation. It does not involve, indeed, 4-component spinors and 4 × 4 matrices, and is interpreted
as the equation ruling the free evolution of a relativistic spinless particle. The underlying physical problems have
already been discussed in Refs. [2, 3], and will not be reconsidered here.
What we are concerned is whether it is possible to generalize eq. (1.2) as follows

A =
3

√

B3 + C3 = B τ̂j + C τ̂k (j 6= k) (1.5)

with the matrices τ̂j (j = 1, 2, 3) satisfying the conditions

τ̂3j = 1̂ τ̂2j τ̂k + τ̂j τ̂k τ̂j + τ̂k τ̂
2
j = 0 . (1.6)

If do exist, these matrices have to be associated with the cubic roots of unity

ǫ0 = 1 ǫ± = −1

2
± ı

√
3

2
(1.7)

∗Electronic address: danilo.babusci@lnf.infn.it
†Electronic address: giuseppe.dattoli@enea.it
‡Electronic address: quattromini@frascati.enea.it
§Electronic address: paoloemilioricci@gmail.com

http://arxiv.org/abs/1104.4878v1
mailto:danilo.babusci@lnf.infn.it
mailto:giuseppe.dattoli@enea.it
mailto:quattromini@frascati.enea.it
mailto:paoloemilioricci@gmail.com


2

that satisfy the conditions

ǫ3 = 1 , ǫ0 + ǫ+ + ǫ− = 0 , ǫ+ ǫ− = 1 . (1.8)

We construct two of the possible matrices as

τ̂1 =





0 1 0
0 0 1
1 0 0



 , τ̂2 =





0 ǫ+ 0
0 0 ǫ−
1 0 0



 , (1.9)

which are easily shown to satisfy the conditions (1.6). Accordingly the equation

∂t Φ = 3

√

∂3
x + kΦ (1.10)

with k being a constant, can be cast in the form

∂t Φ = (∂x τ̂1 + k τ̂2)Φ Φ(t = 0) = Φ0 , (1.11)

where Φ is a 3-component vector. This increase of dimensionality is the price to be paid if we want to use a Dirac-like
procedure to avoid the use of operators raised to a non integer number (further comments on this point can be found
in Ref. [3]).
The solution of eq. (1.11) can be written as

Φ = exp {t (∂x τ̂1 + k τ̂2)} Φ0 . (1.12)

The exponential operator in the last equation cannot be naively disentangled because the matrices τ̂ are not com-
muting. Indeed, one has

[τ̂1, τ̂2] = −ı
√
3 τ̂3 (1.13)

with

τ̂3 =





0 0 1
ǫ+ 0 0
0 ǫ− 0



 (1.14)

Also this matrix satisfies the conditions (1.6).
The explicit solution of our problem can be found using operator ordering methods [4]. However, just to provide a

feeling on the possibilities offered by the present method, we use the Trotter formula [5]

exp
(

Â+ B̂
)

= lim
n→∞

[

exp

(

Â

n

)

exp

(

B̂

n

)]n

(1.15)

to write eq. (1.12) as follows

Φ = lim
n→∞

[

exp

(

t k

n
τ̂2

)

exp

(

t ∂x
n

τ̂1

)]n

Φ0 . (1.16)

By considering small time intervals δ = t/n, and evaluating the effect of the exponentials step by step, we get an
iterative solution in the form

Φn = exp (δ k τ̂2) exp (δ ∂x τ̂1) Φn−1 . (1.17)

The action of the evolution operator on the function on its right can be easily obtained by noting that the exponentials
can be expanded in finite terms, as a consequence of the cyclical properties of the matrices τ̂ , namely τ̂3m = 1, thus
getting [6]

exp (α τ̂j) = C0(α) 1̂ + C1(α) τ̂j + C2(α) τ̂
2
j , (1.18)

with

Cm(α) =

∞
∑

l=0

α 3 l+m

(3 l+m)!
(m = 0, 1, 2) . (1.19)
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These functions are recognized as the pseudo-hyperbolic functions introduced in [7], or, in more general terms, as the
generalized trigonometric functions discussed recently in Refs. [8, 9].
According to the previous relations, at the first iteration we get (Φ0 = (ϕ1(x), ϕ2(x), ϕ3(x))

T )

Φ1 = exp (δ k τ̂2) exp (δ ∂x τ̂1) Φ0

=





C0(δ k) ǫ+C1(δ k) C2(δ k)
ǫ− C2(δ k) C0(δ k) ǫ− C1(δ k)
C1(δ k) ǫ+C2(δ k) C0(δ k)









C0(δ ∂x)ϕ1(x) + C1(δ ∂x)ϕ2(x) + C2(δ ∂x)ϕ3(x)
C2(δ ∂x)ϕ1(x) + C0(δ ∂x)ϕ2(x) + C1(δ ∂x)ϕ3(x)
C1(δ ∂x)ϕ1(x) + C2(δ ∂x)ϕ2(x) + C0(δ ∂x)ϕ3(x)



 . (1.20)

The successive iterations are straightforwardly obtained along the same lines.
It is evident that the method we have outlined open new perspectives and is amenable for further implementations

which will carefully be discussed in a forthcoming investigation where the case of higher order roots of unity will be
discussed.
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