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Abstract

We investigate the dependence on parameters for the discrete bound-

ary value problem connected with the Emden-Fowler equation. A vari-

ational method is used in order to obtain a general scheme allowing

for investigation the dependence on paramaters of discrete boundary

value problems.
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1 Introduction

The discrete version of the Emden-Fowler equation received some consider-
able interest lately by the use of critical point theory, see for example [7], [8],
[9], [11]. Various variational approaches towards the existence of solutions
for this problem can be applied as being the finite dimensional counterparts
of the methods used in the continuous variational case. However, due to the
finite dimensionality of the space in which solutions are obtained, we have
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much more tools at our disposal. In finite dimensional space the weak solu-
tion - which is a key notion in the variational approach - is always a strong
one. Also weak convergence, and thus weak lower semicontinuity coincides
with strong convergence and classical lower semicontinuity which can in turn
be obtained with no additional convexity assumption. Moreover, the coer-
civity of the action functional can be very often investigated together with
its anti-coercivity which of course involves different growth conditions on the
nonlinear term. Thus we have a lot of tools at our disposal as far as the
existence is concerned, compare with [1], [6]. Although the application of
variational methods to the discrete problems is rather a new topic, started
apparently by [3], [6] the list of our references is by no means complete since
research in this area has been very active.

In the boundary value problems for differential equations it is also im-
portant to know whether the solution, once its existence is proved, depends
continuously on a functional parameter. This question has a great impact
on future applications of any model. As it is well known difference equations
serve as mathematical models in diverse areas, such as economy, biology,
computer science, finance, see for example [2], [4], [10]. Thus it is desirable
to know whether the solution to the small deviation from the model would
return, in a continuous way, to the solution of the original model. This is
known in differential equation as stability or continuous dependence on pa-
rameter, see [12], but it has not been investigated in the area of boundary
value problems for difference equations, apart from some work done in [5].
In this paper we are going to get some general scheme for investigating the
dependence on parameter in difference equations which we illustrate with the
Emden-Fowler equation as a model example. Thus our interest lies not in the
existence of solutions, which in fact has been vastly researched, but in their
dependence on parameters. We mention that the approach of [5] required
that each boundary value problem should be treated separately, while in this
submission we provide some general result which could be further applied
for any discrete boundary value problem for which the action functional is
either coercive or anti-coercive.
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2 Problem formulation and main results

In what follows T is a fixed natural number, T ≥ 3; [a, b], where a ≤ b

are integers, stands for the discrete interval {a, a+ 1, ..., b− 1, b}; M > 0 is
fixed, LM = {v ∈ C ([1, T ] , R) : ‖v‖C ≤ M}; ‖v‖C = maxk∈[1,T ] |v (k)|. We
consider the discrete equation

∆ (p (k − 1)∆x (k − 1)) + q (k)x (k) + f (k, x (k) , u (k)) = g (k) (1)

subject to a parameter u ∈ LM and with boundary conditions

x (0) = x (T ) , p (0)∆x (0) = p (T )∆x (T ) (2)

known as the discrete version of the Emden-Fowler equation. We assume
that

A1 f ∈ C ([1, T ]× R× [−M,M ] , R), p ∈ C ([0, T + 1] , R) , q, g ∈ C ([1, T ] , R);
g (k1) 6= 0 for certain k1 ∈ [1, T ].

The growth conditions on f will be given later on. Solutions to (1)-(2)
are such functions v : [0, T + 1] → R that satisfy (1) as identity and further
v (0) = v (T ), p (0)∆v (0) = p (T )∆v (T ). Hence solutions to (1)-(2) are
investigated on a finite dimensional space

E = {v : [0, T + 1] → R : v (0) = v (T ) , p (0)∆v (0) = p (T )∆v (T )} .

Any function from E can be identified with a vector from RT and therefore
solutions to (1)-(2) can be investigated in RT with classical Euclidean norm.
By |·| we denote the Euclidean norm, and by 〈·, ·〉 the scalar product. We
note that with A1 any solution to (1)-(2) is in fact nontrivial in the sense
that no function v : [0, T + 1] → R such that v (k) = 0 for all k ∈ [1, T ] would
satisfy (1)-(2). To reach this conclusion suppose that v : [0, T + 1] → R such
that v (k) = 0 for all k ∈ [1, T ] satisfies (1)-(2). We see that at least for k1 it
follows 0 = g (k1) 6= 0.

Variational approach towards (1)-(2) relays on investigation of critical
points to a suitable action functional. Thus problem (1)-(2), but without
parameter u and a forcing term g, can be considered either as it stands, as
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it is done in [13], or else one may write it in a matrix form in which form we
will further investigate it. Let us denote as in [9]

M =



















p (0) + p (1) −p (1) 0 . . . 0 −p (0)
−p (1) p (1) + p (2) −p (2) . . . 0 0

0 −p (2) p (2) + p (3) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . p (T − 2) + p (T − 1) −p (T − 1)

−p (0) 0 0 . . . −p (T − 1) p (T − 1) + p (0)



















and

Q =



















−q (1) 0 0 . . . 0 0
0 −q (2) 0 . . . 0 0
0 0 −q (3) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −q (T − 1) 0
0 0 0 . . . 0 −q (T )



















.

For a fixed u ∈ LM we introduce the action functional J : RT → R for (1)-(2)
by the formula

J (x, u) =
1

2
〈(M +Q) x, x〉 −

T
∑

k=1

F (k, x (k) , u (k)) +

T
∑

k=1

g (k)x (k) . (3)

Calculating the Gâteaux derivative of J (x, u) with respect to x we relate
critical points to (3) with solutions to (1)-(2) as in [8]. In fact any critical
point to the action functional (3) is a solution to (1)-(2) and any solution
to (1)-(2) provides a critical point to J . Hence, in order to find at least one
solution (1)-(2) it suffice to find at least one critical point to (3). We denote

Vu =

{

x ∈ RT : J (x, u) = inf
v∈RT

J (v, u) ,
d

dx
J (x, u) = 0

}

for any fixed u ∈ LM . We will employ the following assumptions concerning
the growth of the nonlinear term f .

A2 there exist constants ε1 > 0, ε2 ∈ R and r ∈ (1, 2) such that

f (k, y, u) ≤ ε1 |y|r−1 + ε2 (4)
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uniformly for u ∈ [−M,M ], k ∈ [1, T ] and |y| ≥ B, where B > 0 is certain
(possibly large) constant.

A3 there exist constants ε1 > 0, ε2 ∈ R and r > 2 such that

f (k, y, u) ≥ ε1 |y|r−1 + ε2 (5)

uniformly for u ∈ [−M,M ], k ∈ [1, T ] and |y| ≥ B, where B > 0 is certain
(possibly large) constant.

Our main results are as follows.

Theorem 1 (sublinear case) Assume A1, A2 and further that M +Q is
either positive or negative definite matrix. For any fixed u ∈ LM there exists
at least one non trivial solution x ∈ Vu to problem (1)-(2). Let {un}∞n=1 ⊂
LM be a sequence of parameters. For any sequence {xn}∞n=1 of solutions
xn ∈ Vun to the problem (1)-(2) corresponding to un, there exist subsequences
{xni

}∞i=1 ⊂ RT , {uni
}∞i=1 ⊂ LM and elements x ∈ RT , u ∈ LM such that

limi→∞ xni
= x, limn→∞ uni

= u. Moreover, x ∈ Vu (which means that x

satisfies (1)-(2) with u), i.e.

∆(p (k − 1)∆x (k − 1)) + q (k)x (k) + f (k, x (k) , u (k)) = g (k) ,

x (0) = x (T ) , p (0)∆x (0) = p (T )∆x (T ) .

Theorem 2 (superlinear case) Assume A1, A3. Then the assertion of
Theorem 1 is valid.

We note that in Theorem 2 matrix M + Q could be singular and its
definiteness is not important.

In order to consider the case when r = 2 we first introduce some necessary
notation. In case when M + Q is positive definite there exists a number
aM+Q > 0 such that for all y ∈ RT

〈(M +Q) y, y〉 ≥ aM+Q |y|2 , (6)

while in case when M+Q is negative definite there exists a number bM+Q > 0
such that for all y ∈ RT

〈(M +Q) y, y〉 ≤ −bM+Q |y|2 (7)
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Now we may formulate the assumptions in case r = 2.

A4 let M + Q be positive definite and let there exist constants ε1 ∈
(0, 2aM+Q), ε2 ∈ R such that

f (k, y, u) ≤ ε1 |y|+ ε2 (8)

uniformly for u ∈ [−M,M ], k ∈ [1, T ] and |y| ≥ B, where B > 0 is certain
(possibly large) constant.

A5 let M + Q be negative definite and let there exist constants ε1 ∈
(0, 2bM+Q), ε2 ∈ R such that (8) holds uniformly for u ∈ [−M,M ], k ∈ [1, T ]
and |y| ≥ B, where B > 0 is certain (possibly large) constant.

Theorem 3 (r = 2) Assume either A1, A4 or A1, A5. Then the asser-
tion of Theorem 1 is valid.

3 Auxiliary results

We will prove the following lemmas concerning the existence (1)-(2) with
fixed u ∈ LM . These lemmas improve certain existence results from [9].
In contrast to the boundary values for ODE, compare with [14], it is the
superlinear case which is easier to be dealt with, while the sublinear one
involves more restrictive assumptions.

Lemma 4 Assume A1, A2 and that M + Q is either positive or negative
definite matrix. Then for any fixed u ∈ LM there exists at least one non
trivial solution x ∈ Vu to problem (1)-(2).

Proof. Let us fix u ∈ LM . We see that x → J (x, u) is continuous and
differentiable the sense of Gâteaux on RT in either case. Thus we would
have the assertion provided that x → J (x, u) is coercive or anti-coercive
since functional x → J (x, u) would have either an argument of a minimum
or an argument of a maximum which must be its critical point in turn.

Let M + Q be a positive definite matrix. Let us take sufficiently large

B > 0 as in A2. We denote |g| =
√

∑T
k=1 g

2 (k) and observe that for
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c1 = T 1/(1− 2

r) it follows by Hölder’s inequality

∑T
k=1 y (k) ≤

√

∑T
k=1 |y (k)|

2
√

∑T
k=1 1 =

√
T |y| ,

∑T
k=1 y (k) g (k) ≤ |g| |y|

∑T
k=1 |y (k)|

r ≤ 2/r

√

∑T
k=1 |y (k)|

r· 2
r (1− 2

r )
√

∑T
k=1 1 = c1 |y|r .

(9)

Now by (6), (4), (9) we have for all |y| ≥ B

J (x, u) ≥ aM+Q |y|2 − ε1
r

∑T
k=1 |y (k)|

r − ε2
∑T

k=1 |y (k)| − |y| |g| ≥

aM+Q |y|2 − ε1
r
c1 |y|r − ε2

√
T |y| − |y| |g| →

|y|→∞
∞.

(10)

Now letM+Q be a negative definite matrix. Again, let us take sufficiently
large B > 0 as in A2. By (7), (4), (9) we have for all |y| ≥ B

J (x, u) ≤ −bM+Q |y|2 + ε1

r
c1 |y|r + ε2

√
T |y|+ |y| |g| →

|y|→∞
−∞. (11)

Lemma 5 Assume A1, A3. Then for any fixed u ∈ LM there exists at least
one non trivial solution x ∈ Vu to problem (1)-(2).

Proof. Fix u ∈ LM . We see that for all y ∈ RT

〈(M +Q) y, y〉 ≤ ‖M +Q‖ |y|2 , (12)

where ‖M +Q‖ denotes the norm of a matrix M + Q. Further by (5) we
have for all |y| ≥ B, where B is as in A3

J (x, u) ≤ ‖M +Q‖ |y|2 − ε1

r
c1 |y|r − ε2

√
T |y| − |y| |g| →

|y|→∞
−∞.

Hence the assertion follows with the same arguments as in Lemma 4.

Lemma 6 AssumeA1 and either A4 or A5. Then for any fixed u ∈ LM

there exists at least one non trivial solution x ∈ Vu to problem (1)-(2).

Proof. Fix u ∈ LM . With A4 we see by (10) that x → J (x, u) is
coercive while with A5 we see by (11) it is anti-coercive. Hence the assertion
follows with the same arguments as in the above lemmas.
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4 Dependence on parameters

In order to derive the results concerning the dependence on parameters for
problem (1)-(2), we employ the following general principle which we could
further apply in a finite dimensional setting.

Let E be finite dimensional Euclidean space with inner product 〈·, ·〉 and
with norm ‖·‖ . Let C be a finite dimensional complete normed space with
norm ‖·‖C . Let us consider a family of action functionals x → J (x, u), where
x ∈ E and where u ∈ C is a parameter.

Theorem 7 Assume that there exist constants µ, a, β > 0, b ∈ R such that

J (x, u) ≥ a ‖x‖µ + b for all x ∈ E with ‖x‖ ≥ β and all u ∈ C. (13)

Assume also that x → J (x, u) continuous and differentiable in the sense of
Gâteaux in the first variable for any u ∈ C. Then for any u ∈ C there exists
at least one solution xu to problem

d

dx
J (x, u) = 0. (14)

Assume further that there exists a constant α > 0 such that

J (0, u) ≤ α for all u ∈ E. (15)

Let {un}∞n=1 ⊂ C be a convergent sequence of parameters, where limn→∞ un =
u ∈ C and let us assume that either J is continuous on E×C or the Gâteaux
derivative of J with respect to x, d

dx
J (x, u), is bounded on bounded sets in

E × C and J is continuous with respect to u on C for any x ∈ E. Then for
any sequence {xn}∞n=1 of solutions xn ∈ E to the problem (14) corresponding
to un for n = 1, 2, ... there exist a subsequence {xni

}∞i=1 ⊂ E and an element
x ∈ E such that limi→∞ xni

= x and

J (x, u) = inf
y∈E

J (y, u) .

Moreover, x satisfies (14) with u = u, i.e.

d

dx
J (x, u) = 0. (16)
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Proof. Let us fix u ∈ C. Assumption (13) leads to the coercivity of
x → J (x, u). Since x → J (x, u) is also continuous and since E is finite
dimensional it follows that J has an argument of a minimum xu which satisfies
(14). Next, let us take a sequence {un}∞n=1 ⊂ X converging to some u ∈ X

and let {xn}∞n=1 be a sequence of solutions to (14) corresponding to the
relevant elements of the sequence {un}∞n=1. By (13) and by (15) we see that
for all n ∈ N we have

a ‖xn‖µ + b ≤ J (xn, un) ≤ α.

Hence a sequence {xn}∞n=1 is norm bounded, say by some c > 0, and again
since E is finite dimensional, it contains the convergent subsequence, {xni

}∞i=1,
such that limi→∞ xni

= x, where x ∈ E.

We will prove that (16) holds. We observe that there exists x0 ∈ E such
that d

dx
J (x0, u) = 0 and J (x0, u) = infy∈E J (y, u). We see that there are

two possibilities: either J (x0, u) < J (x, u) or J (x0, u) = J (x, u). If we have
J (x0, u) = J (x, u), then by the Fermat’s rule we have (16). Let us suppose
that J (x0, u) < J (x, u), so there exists δ > 0 such that

J (x, u)− J (x0, u) > δ > 0. (17)

We investigate the inequality

δ < (J (xni
, uni

)− J (x0, u))− (J (xni
, uni

)− J (x, uni
))

− (J (x, uni
)− J (x, u))

(18)

which is equivalent to (17). In case J is jointly continuous we have

− (J (xni
, uni

)− J (x, uni
))− (J (x, uni

)− J (x, u)) =

−J (xni
, uni

) + J (x, u) →
i→∞

0.
(19)

In case the Gâteaux derivative is bounded on bounded sets recalling that
‖xni

‖ ≤ c for all i ∈ N we have

|J (xni
, uni

)− J (x, uni
)| ≤ sup

‖v‖≤c

∥

∥

∥

∥

d

dx
J (v, uni

)

∥

∥

∥

∥

‖xni
− x‖ →

i→∞
0. (20)
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Indeed, we fix ni and introduce the auxiliary function g : [0, 1] → R

gni
(t) = J (txni

+ (1− t) x, uni
) = J (x+ t (xni

− x) , uni
)

(see that gni
(0) = J (x, uni

), gni
(1) = J (xni

x, uni
)) and we have by the

Mean Value Theorem that there exists some ξ ∈ (0, 1) such that

|gni
(0)− gni

(1)| =
∣

∣

∣

∣

d

dt
gni

(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

d

dx
J (ξxni

+ (1− ξ) x, uni
) , xni

− x

〉
∣

∣

∣

∣

since ‖txni
+ (1− t)x‖ ≤ c and thus (20) holds. By (20) and by continuity

of J with respect to u for any x ∈ E we see that

lim
i→∞

(J (x, uni
)− J (x, u)) = 0 and limi→∞ (J (xni

, uni
)− J (x, uni

)) = 0.

(21)
Finally, since xni

minimizes x → J (x, uni
) over E we get J (xni

, uni
) ≤

J (x0, uni
) and next

lim
i→∞

(J (xni
, uni

)− J (x0, u)) ≤ lim
i→∞

(J (x0, uni
)− J (x0, u)) = 0. (22)

So putting (19), (22) into (18) in case J is jointly continuous and (21),
(22) in the other case, we see that δ ≤ 0, which is a contradiction. Thus
J (x, u) = infy∈E J (y, u) and thus (16) holds.

5 Proofs of main results and some corollaries

Proof of Theorem 1. In order to prove Theorem 1 we need to demonstrate
that all assumptions of Theorem 7 are satisfied. Firstly, let M+Q be positive
definite. We see that (13) is satisfied by (10). We see that F (k, 0, u (y)) = 0

so that J (0, u) =
T
∑

k=1

∫ 0

0
f (k, t, u (k)) dt = 0 and (15) holds. By A1 we

see that J is jointly continuous in (x, u). Next, we chose a subsequence
{uni

}∞i=1 ⊂ LM from a sequence {un}∞n=1 ⊂ LM such that limi→∞ uni
= u.

Such a subsequence necessarily exists since C ([1, T ] , R) is a finite dimen-
sional space. Next, we chose a corresponding sequence {xni

}∞i=1 ⊂ E and
rename both sequences as {un}∞n=1 and {xn}∞n=1. Thus all assumptions of
Theorem 7 are satisfied.
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Secondly, when M +Q is negative definite we multiply functional (3) by
−1 and apply the above reasoning.

In order to prove Theorem 2 we proceed as in the second part of the proof
of Theorem 1. Exactly in the same manner as in the proof of Theorem 1, we
prove Theorem 3.

Theorem 7 suggests that f need not be jointly continuous in its all vari-
ables. While in case of a discrete variable k it is equivalent to assume that
either f ∈ C ([1, T ]× R× [−M,M ] , R) or f ∈ C (R× [−M,M ] , R) for all
k ∈ [1, T ] this is not the case with respect to other variables. Hence in order
to get results concerning the dependence on a parameter, we may assume
that A1 is replaced with the following one:

A1a f : [1, T ] × R × [−M,M ] → R; for all k ∈ [1, T ] and all u ∈
[−M,M ] function x → f (k, x, u) is continuous; for all k ∈ [1, T ] and all
x ∈ R function u → f (k, x, u) is continuous; p ∈ C ([0, T + 1] , R) , q, g ∈
C ([1, T ] , R); g (k1) 6= 0 for certain k1 ∈ [1, T ]; for any d > 0 there exists a
function h ∈ C ([1, T ] , R) such that

|f (k, x, u)| ≤ h (k) for all k ∈ [1, T ] , x ∈ [−d, d] , u ∈ [−M,M ] . (23)

All Theorems 1, 2, 3 are valid with A1 replaced by A1a. What must be
shown is the boundedness of the Gâteaux derivative of the action functional
on bounded subsets of RT . Such a property follows by (23). Indeed, we have
the following

Lemma 8 Assume A1a. The Gâteaux derivative of a functional x → J (x, u)
given by (3) is bounded on a set [1, T + 1]× [−d, d]× [−M,M ], where d > 0
is a arbitrarily fixed constant.

6 Further applications

The discrete Emden-Fowler equation can also be considered with other type
of general boundary conditions, compare with [7]. In this section we consider
the discrete equation

∆ (p (k − 1)∆x (k − 1)) + q (k)x (k) = f (k, x (k) , u (k)) + g (k) (24)
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subject to a parameter u ∈ LM and with boundary conditions

x (0) + α1x (1) = A1, x (T + 1) + β1x (T ) = B1, (25)

where α1, β1, A1, B1 are fixed constants. We assume A1. Solutions to
(24)-(25) being elements of a finite dimensional space

E1 = {v : [0, T + 1] → R : v (0) + α1v (1) = A1, v (T + 1) + β1v (T ) = B1}

are identified with vectors from RT . The action functional J1 : R
T → R for

problem (24)-(25) for a fixed u ∈ LM reads

J1 (x, u) =
1

2
〈Mx, x〉 + 〈q, x〉 −

T
∑

k=1

F (k, x (k) , u (k)) +
T
∑

k=1

g (k)x (k) ,

where c (k) = q (k)− p (k)− p (k + 1) and

P =



















c (1)− α1p (1) p (1) 0 . . . 0 0
p (2) c (2) p (3) . . . 0 0
0 p (3) c (3) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . c (T − 1) p (T )
0 0 0 . . . p (T ) c (T )− β1x (T + 1)



















,

q =















p (1)A1

0
...
0

p (T + 1)B1















.

Theorems 1, 2 and 3 remain valid with the understanding that now matrix
M + Q is replaced by P . In what follows aP , bP have the same meaning
as aQ+M , bQ+M . The term 〈q, x〉 has no impact on the coercivity or anti-
coercivity of J2. As an example, we formulate the version of Theorem 3
assuming what follows.

A6 let M + Q be positive definite and let there exist constants ε1 ∈
(0, 2aP ), ε2 ∈ R such that

f (k, y, u) ≤ ε1 |y|+ ε2
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uniformly for u ∈ [−M,M ], k ∈ [1, T ] and |y| ≥ B, where B > 0 is certain
(possibly large) constant.

A7 let M + Q be negative definite and let there exist constants ε1 ∈
(0, 2bP ), ε2 ∈ R such that

f (k, y, u) ≤ ε1 |y|+ ε2

uniformly for u ∈ [−M,M ], k ∈ [1, T ] and |y| ≥ B, where B > 0 is certain
(possibly large) constant.

Theorem 9 (r = 2) Assume either A1 and A6 or A1 and A7. For any
fixed u ∈ LM there exists at least one non trivial solution x ∈ Vu to problem
(24)-(25). Let {un}∞n=1 ⊂ LM a sequence of parameters. For any sequence
{xn}∞n=1 of solutions xn to the problem (24)-(25) corresponding to un and
such that

xn ∈
{

x ∈ RT : J1 (x, u) = inf
v∈RT

J1 (v, u) ,
d

dx
J1 (x, u) = 0

}

there exist subsequences {xni
}∞i=1 ⊂ RT , {uni

}∞i=1 ⊂ LM and elements x ∈ RT ,
u ∈ LM such that limi→∞ xni

= x, limn→∞ uni
= u. Moreover, x satisfies

(24)-(25) with u, i.e.

∆(p (k − 1)∆x (k − 1)) + q (k)x (k) = f (k, x (k) , u (k)) + g (k) ,

x (0) + αx (1) = A, x (T + 1) + βx (T ) = B

and J1 (x, u) = infv∈RT J1 (v, u) ,
d
dx
J1 (x, u) = 0.
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[14] J. Mawhin, Problèmes de Dirichlet Variationnels non Linéaires, Les
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