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Recent studies suggest that, for disease transmission models with latent and infectious
periods, the use of gamma distribution assumption seems to provide a better fit for the
associated epidemiological data in comparison to the use of exponential distribution
assumption. The objective of this study is to carry out a rigorous mathematical analysis
of a communicable disease transmission model with quarantine (of latent cases) and
isolation (of symptomatic cases), in which the waiting periods in the infected classes are
assumed to have gamma distributions. Rigorous analysis of the model reveals that it has
a globally-asymptotically stable disease-free equilibrium whenever its associated repro-
duction number is less than unity. The model has a unique endemic equilibrium when
the threshold quantity exceeds unity. The endemic equilibrium is shown to be locally
and globally-asymptotically stable for special cases. Numerical simulations, using data
related to the 2003 SARS outbreaks, show that the cumulative number of disease-related
mortality increases with increasing number of disease stages. Furthermore, the cumulative
number of new cases is higher if the asymptomatic period is distributed such that most of
the period is spent in the early stages of the asymptomatic compartments in comparison to
the cases where the average time period is equally distributed among the associated stages
or if most of the time period is spent in the later (final) stages of the asymptomatic
compartments. Finally, it is shown that distributing the average sojourn time in the infec-
tious (asymptomatic) classes equally or unequally does not effect the cumulative number
of new cases.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Since the pioneering works of Sir Ronald Ross, Kermack and McKendrick (see, for instance, [15,16,23]), numerous math-
ematical models have been designed and used to gain insight into transmission dynamics of emerging and re-emerging dis-
eases of public health interest. The models, typically of the forms of deterministic or stochastic systems of non-linear
differential equations, are used to evaluate various control strategies such as: vaccination, the use of antibiotics or antivirals,
quarantine, isolation, etc. Of the aforementioned control strategies, the use of quarantine (of individuals suspected of being
exposed to the disease) and isolation (of those with clinical symptoms of the disease) are the most commonly used (since the
beginning of recorded human history). These measures have been used in the control of numerous diseases such as leprosy,
plague, cholera, typhus, yellow fever, smallpox, diphtheria, tuberculosis, measles, ebola, pandemic influenza and, more re-
cently, severe acute respiratory syndrome (SARS) [3,11,18–20,22,29,31,32]. Furthermore, quarantine and isolation are pop-
ularly applied to combat the spread of animal diseases such as bovine tuberculosis, rinderpest, foot-and-mouth, psittacosis,
. All rights reserved.
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Newcastle disease and rabies [11,14]. It is known, however, that quarantine and isolation measures, especially in the context
of a new emerging disease, are initially not administered effectively, but are gradually refined (as more data and knowledge
of the disease transmission process becomes available (see, for instance, [8])).

Numerous mathematical modeling work have been carried out to assess the impact of quarantine and isolation in com-
batting the spread of the diseases (such as some of the aforementioned modeling studies for SARS). However, many of the
models used for assessing the impact of the quarantine and isolation measures tend to be built based on the assumption that
the disease stages are exponentially distributed. However, some recent studies [7,30] show that it is more realistic to use
gamma distribution assumption for the waiting time in the disease stages (rather than exponential distribution assumption).
Furthermore, Feng et al. [7] showed that quarantine and isolation models that assume exponential distribution (for the dis-
ease stages) may not be suitable for diseases with relatively long latent and/or infectious periods for the case when isolation
is not completely effective (i.e., isolated individuals can transmit infection).

The purpose of the current study is to provide a rigorous qualitative analysis of a new deterministic model for transmis-
sion dynamics of a communicable disease, subject to the use of quarantine and isolation, where the waiting time in the asso-
ciated infected classes are assumed to have gamma distribution. The model to be designed extends the SEIQHR model given
in [24] by considering multiple stages of the exposed, infectious, quarantined and hospitalized individuals (unlike in [24], it
is assumed here that hospitalized individuals do not transmit the infection). Diseases like HIV [25] and influenza [6] are
known to have multiple disease (infection) stages.

The paper is organized as follows. The model is formulated in Section 2. The global asymptotic stability of the disease-free
equilibrium (DFE) is established in Section 3. The existence of the endemic equilibrium is analyzed in Section 4. Local and
global stability proofs for the endemic equilibrium, for special cases, are also provided using a Krasnoselskii sub-linearity
trick and a non-linear Lyapunov function of Goh–Voltera type, respectively.

2. Model formulation

The total population at time t, denoted by N(t), is sub-divided into six disjoint classes of susceptible (S(t)), exposed (E(t);
with m exposed stages), quarantined (Q(t); with m quarantined stages), infectious (I(t); with n infectious stages), hospitalized
(H(t); with n hospitalized stages) and recovered (R(t)) individuals, so that
NðtÞ ¼ SðtÞ þ
Xm

i¼1

EiðtÞ þ
Xn

j¼1

IjðtÞ þ
Xm

i¼1

Q iðtÞ þ
Xn

j¼1

HjðtÞ þ RðtÞ:
In this paper, unlike in [18], it is assumed that the fraction of infected contacts that can be traced and quarantined at the
time of infection is very small. Furthermore, it is assumed that the total population is large in comparison to the size of
the infected individuals (N� E + I + Q + H + R). Consequently, the quarantine of susceptible individuals (feared exposed to
the disease) is unlikely to have a significant impact on the disease transmission dynamics. Hence, the quarantine of
susceptible individuals is not considered in this study (see also [7]). In other words, in this study, quarantine refers to the
isolation of exposed (latently-infected) individuals only.

The susceptible population is increased by the recruitment of individuals into the community (assumed susceptible), at a
rate P. Susceptible individuals may acquire infection, following effective contact with infectious individuals (in any of the n
infectious stages) at a rate k, where
k ¼
b
Pn
j¼1

Ij

N
: ð1Þ
It is assumed that infected individuals in the classes Ei, Qi (with i = 1,2, . . . ,m) and Hj (with j = 1,2, . . . ,n) do not transmit
infection (i.e., it is assumed that exposed individuals do not transmit infection, and that quarantine and isolation measures
are implemented in a perfect manner). Although some of these assumptions may not be entirely realistic in some epidemi-
ological settings, such as in the transmission dynamics of influenza (where transmission by infected individuals without dis-
ease symptoms occurs), they help in making the mathematical analysis of the resulting large system of non-linear
differential equations more tractable. Further, in (1), b is the effective contact rate (contact capable of leading to infection).
The population of susceptible individuals is further decreased by natural death (at a rate l), and increased when recovered
individuals lose their infection-acquired immunity (at a rate w). Thus, the rate of change of the susceptible population is gi-
ven by
dS
dt
¼ Pþ wR� kS� lS:
The population of exposed individuals in stage 1 (E1) is generated by the infection of susceptible individuals (at the rate k).
This population is decreased by progression to the next exposed stage (E2; at a rate a1a), quarantine (at a rate r1) and natural
death (at the rate l), so that
dE1

dt
¼ kS� ða1aþ r1 þ lÞE1:
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The population of exposed individuals in stage i (with 2 6 i 6 m) is generated by the progression of individuals in stage
Ei�1 into the stage i (at a rate ai�1a). It is decreased by progression to the next exposed stage (at a rate aia), quarantine (at a
rate ri) and natural death (at the rate l), so that
dEi

dt
¼ ai�1aEi�1 � ðaiaþ ri þ lÞEi; i ¼ 2; . . . ;m:
The population of infectious individuals in stage 1 is generated when exposed individuals in the final (m) stage develop
symptoms (at the rate ama). It is decreased by progression to the next infectious stage (I2; at a rate d1j), hospitalization (at a
rate /1), natural death (at the rate l) and disease-induced death (at a rate d1). This gives
dI1

dt
¼ amaEm � ðd1jþ /1 þ lþ d1ÞI1:
The population of infectious individuals in stage j (with 2 6 j 6 n) is generated by progression of individuals in stage j � 1
(at a rate dj�1j). It is decreased by progression to the next infectious stage (at a rate djj), hospitalization (at a rate /j), natural
death (at the rate l) and disease-induced death (at a rate dj). Individuals in the final (n) stage of infectiousness recover (at a
rate c1 = dnj). Thus,
dIj

dt
¼ dj�1jIj�1 � ðdjjþ /j þ lþ djÞIj; j ¼ 2; . . . ; n� 1;
and,
dIn

dt
¼ dn�1jIn�1 � ð/n þ c1 þ lþ dnÞIn:
Exposed individuals in stage 1 are quarantined at the rate r1. The population of quarantined individuals in stage 1 is de-
creased by progression to the next quarantined stage (at a rate b1a) and natural death (at the rate l). Thus,
dQ1

dt
¼ r1E1 � ðb1aþ lÞQ 1:
Similarly, the population of quarantined individuals in stage i (with 2 6 i 6m � 1) is generated by the quarantine of ex-
posed individuals in stage Ei (at the rate ri) and the progression of quarantined individuals in stage Qi�1 into the stage Qi (at a
rate bi�1a). It is decreased by progression to the next quarantined stage (at a rate bia) and natural death (at the rate l). Thus,
dQi

dt
¼ riEi þ bi�1aQ i�1 � ðbiaþ lÞQ i; i ¼ 2; . . . ;m:
It should be mentioned that the parameters ri (i = 1,2, . . . ,m) can be used to model progressive refinement of quarantine
measures in the population, by assuming smaller values of ri at the beginning and higher rates for later stages (e.g., for
m = 3, we can assume smaller values for r1 and r2, but a higher value for r3; i.e., r1 < r2 < r3).

The population of hospitalized individuals in stage 1 is generated by the hospitalization of quarantined individuals in the
final stage (m; at the rate bma) and infectious individuals in stage 1 (at the rate /1). It is decreased by progression to the next
hospitalized stage (at a rate c1j), natural death (at the rate l), and disease-induced death (at a rate dn+1). Thus,
dH1

dt
¼ bmaQ m þ /1I1 � ðc1jþ lþ dnþ1ÞH1:
The population of hospitalized individuals in stage j (with 2 6 j 6 n) is generated by the hospitalization of infectious indi-
viduals in stage j (Ij) (at the rate /j) and the progression of hospitalized individuals in stage j � 1 (Hj�1) into the Hj class (at a
rate cj�1j). It is decreased by the progression to the next hospitalized stage (at a rate cjj), natural death (at the rate l) and
disease-induced death (at a rate dn+j). Individuals in the final n stage of hospitalized recover (at a rate c2 = cnj). Thus,
dHj

dt
¼ /jIj þ cj�1jHj�1 � ðcjjþ lþ dnþjÞHj; j ¼ 2; . . . ;n� 1;
and,
dHn

dt
¼ /nIn þ cn�1jHn�1 � ðc2 þ lþ d2nÞHn:
As in the case for the of quarantine measures discussed above, the parameters /i (i = 1, . . . ,n) can also be used to model the
progressive refinement of isolation (in hospital; so that, for n = 3, we can have /1 < /2 < /3). Finally, the population of recov-
ered individuals is generated by the recovery of non-hospitalized and hospitalized infectious individuals in the final n stage
(at the rates c1 and c2, respectively). It is decreased by the loss of natural immunity (at the rate w) and natural death (at the
rate l), so that
dR
dt
¼ c1In þ c2Hn � ðwþ lÞR:



Fig. 1. Flow diagram of the model (6).
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It should be stated that, in the above formulation, ai, bi, cj, dj (i = 1,2, . . . ,m; j = 1,2, . . . ,n) are constants. Furthermore, it is as-
sumed that the distributions of exposed, quarantined, infectious and hospitalized periods are exponential, given by
pEi
ðsÞ ¼ aiae�aias;

pIj
ðsÞ ¼ dije�dijs;

pQi
ðsÞ ¼ biae�bias;

pHj
ðsÞ ¼ cjje�cjjs for i ¼ 1; . . . ;m j ¼ 1; . . . ; n:

ð2Þ
In (2), TEi
¼ 1=aia, TIj

¼ 1=djj, TQ i
¼ 1=bia and THj

¼ 1=cjj are the mean exposed, quarantined, infectious and hospitalized
periods, respectively. The relations in (2) are such that:
Xm

i¼1

1
aia
¼
Xm

i¼1

1
bia
¼ 1

a
and

Xn

j¼1

1
cjj
¼
Xn

j¼1

1
djj
¼ 1

j
: ð3Þ
That is, the respective mean time spent in a given infected compartment (e.g., 1/j for the hospitalized compartment, H) is
shared among the various stages in that compartment. In other words, the time period 1/j is distributed equally (if
c1 = c2 = � � � = cn = n) or unequally (if c1 – c2 – � � �– cn – n) between all the Hj (j = 1,2, . . . ,n) stages. Hence, this formulation
extends the formulation in [7], where these periods are equally distributed among the relevant stages (for all the infected
compartments, E, Q, I, H), by allowing for equal or unequal distribution of the sojourn times in asymptomatic (1/a) and symp-
tomatic (1/j) compartments. In line with [7], it is assumed that the mean exposed and quarantined periods are the same (1/
a) and the mean infectious and hospitalized periods are the same (1/j).



Table 1
Description of variables and parameters of the model (6).

Variable Description

S(t) Population of susceptible individuals
Ei(t) Population of exposed individuals in ith exposed stage (i = 1, . . . ,m)
Ij(t) Population of infected individuals in jth infectious stage (j = 1, . . . ,n)
Qi(t) Population of quarantined individuals in ith quarantined stage (i = 1, . . . ,m)
Hj(t) Population of hospitalized individuals in jth hospitalized stage (j = 1, . . . ,n)
R(t) Population of recovered individuals

Parameter Description

P Recruitment rate
b Effective contact rate
djj Progression rate from infectious stage j to stage j + 1 (j = 1, . . . ,n)
cjj Progression rate from hospitalized stage j to stage j + 1 (j = 1, . . . ,n)
ri Quarantine rate of exposed individuals in stage i
aia Progression rate from exposed stage i to stage i + 1 (i = 1, . . . ,m � 1)
ama Progression rate of exposed individuals in stage m to first infectious stage
bia Progression rate from quarantined stage i to stage i + 1 (i = 1, . . . ,m � 1)
bma Hospitalization rate of quarantined individuals in stage m
/j Hospitalization rate of infectious individuals in jth infectious stage (j = 1, . . . ,n)
w Rate of loss of infection-acquired immunity
c1 Recovery rate of infectious individuals in stage n
c2 Recovery rate of hospitalized individuals in stage n
dj (1 6 j 6 n) Disease-induced death rate of individuals in jth infectious stage
dj (n + 1 6 j 6 2n) Disease-induced death rate of individuals in (n � j)th hospitalized stage
l Natural death rate
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Let,
E ¼
Xm

i¼1

aiEi

m
; I ¼

Xn

j¼1

djIj

n
; Q ¼

Xm

i¼1

biQi

m
and H ¼

Xn

j¼1

cjHj

n
: ð4Þ
It follows from (2) and (4), using the properties of gamma distribution ([12]; see also Appendix A for a brief description), that
the compartments E, I, Q and H indeed have gamma distributions, given, respectively, by
pEðsÞ ¼ ðmaÞme�massm�1

CðmÞ ; m P 1;

pIðsÞ ¼ ðnjÞne�njssn�1

CðnÞ ; n P 1;

pQ ðsÞ ¼ ðmaÞme�massm�1

CðmÞ ; m P 1;

pHðsÞ ¼ ðnjÞne�njssn�1

CðnÞ ; n P 1;
where the associated exposed, infectious, quarantined and hospitalized periods are given, respectively, by (see also [7,33])
TE ¼ 1
a ;

TI ¼ 1
j ;

TQ ¼ 1
a ;

TH ¼ 1
j :
The above formulation ((3) and (4)) reduces to that in [7] by setting ai = bi = m (for i = 1, . . . ,m) and cj = dj = n (for j = 1, . . . ,n).
In other words, it should be emphasized that the main distinction between the formulation in the current study and that in
[7] is that, here, it is assumed that the sojourn periods in each of the four compartments, E, I, Q, and H, given by 1/a, 1/j, 1/a
and 1/j, respectively, are distributed (not necessarily equally) among the various sub stages (whereas, these periods are dis-
tributed equally at each related stage in [7]). Eichner et al. [6] considered 9 latent and 19 infectious stages to model the trans-
mission dynamics of pandemic influenza.

It is worth stating that although the sums defined in (4) are gamma distributed, the actual (true) total number of infected
individuals, Etrue, Itrue, Qtrue and Htrue, given, respectively, by
Etrue ¼
Xm

i¼1

Ei; Itrue ¼
Xn

j¼1

Ij; Q true ¼
Xm

i¼1

Qi and Htrue ¼
Xn

j¼1

Hj; ð5Þ
are not necessarily gamma distributed. However, the different sums in (4) have the same means, with their respective sums
given in (5), but different variances.

Thus, putting all these formulations and assumptions together, it follows that the model for the transmission dynamics of
an infectious disease in the presence of exposed, quarantine, infectious and isolation periods, subject to gamma distributed



1946 M.A. Safi, A.B. Gumel / Applied Mathematics and Computation 218 (2011) 1941–1961
sojourn periods, is given by the following non-linear system of differential equations (a flow diagram of the model is given in
Fig. 1; and the associated variables and parameters are described in Table 1):
dS
dt
¼ Pþ wR� kS� lS;

dE1

dt
¼ kS� ðr1 þ a1aþ lÞE1;

dE2

dt
¼ a1aE1 � ðr2 þ a2aþ lÞE2;

dEj

dt
¼ aj�1aEj�1 � ðrj þ ajaþ lÞEj; j ¼ 3; . . . ;m;

dI1

dt
¼ amaEm � ð/1 þ d1jþ lþ d1ÞI1;

dI2

dt
¼ d1jI1 � ð/2 þ d2jþ lþ d2ÞI2;

dIj

dt
¼ dj�1jIj�1 � ð/j þ djjþ lþ djÞIj; j ¼ 3; . . . ; n� 1;

dIn

dt
¼ dn�1jIn�1 � ð/n þ dnjþ lþ dnÞIn;

dQ1

dt
¼ r1E1 � ðb1aþ lÞQ 1;

dQ2

dt
¼ r2E2 þ b1aQ 1 � ðb2aþ lÞQ 2;

dQj

dt
¼ rjEj þ bj�1aQ j�1 � ðbjaþ lÞQ j; j ¼ 3; . . . ;m;

dH1

dt
¼ bmaQ m þ /1I1 � ðc1jþ lþ dnþ1ÞH1;

dH2

dt
¼ /2I2 þ c1jH1 � ðc2jþ lþ dnþ2ÞH2;

dHj

dt
¼ /jIj þ cj�1jHj�1 � ðcjjþ lþ dnþjÞHj; j ¼ 3; . . . ;n� 1;

dHn

dt
¼ /nIn þ cn�1jHn�1 � ðcnjþ lþ d2nÞHn;

dR
dt
¼ c1In þ c2Hn � ðwþ lÞR:

ð6Þ
The model (6) extends the multi-stage model given in [7] by

(i) including a term for the loss of infection-acquired immunity (at the rate w). Although the numerical simulations to be
carried out in this study are largely based on the 2003 SARS outbreaks (which was a single season epidemic), the
model (6) is robust enough to enable the assessment of the transmission dynamics of any arbitrary disease where
the infection-acquired immunity is lost either during a single season or in multiple seasons (such as the case of influ-
enza, malaria, and some childhood diseases);

(ii) including disease-induced death (at rates di; i = 1,2, . . . ,2n). Most diseases, such as HIV, malaria, influenza, TB, etc.,
have significant disease-induced mortality. Hence, it is crucial that this feature be incorporated in modeling studies;

(iii) assuming the average sojourn periods in the exposed, quarantined, infectious and hospitalized classes are distributed
(not necessarily equally) among the various stages (these periods are assumed to be equally distributed among each of
the aforementioned four infected compartments in [7]). Although, to our knowledge, there is no definitive epidemio-
logical data to suggest that these periods are equally or unequally distributed, the model (6) is general enough to allow
for the assessment of each of the two cases;

(iv) assuming varied rates of quarantine and isolation in each quarantine and isolation stage (same rates are used in [7] in
all quarantine and isolation stages). This assumption allows for the assessment of progressive refinement of quaran-
tine and isolation measures (this was evident during 2003 SARS outbreaks [8,17]).

The model (6) is denoted by GD1 for comparison purposes. It is worth emphasizing that the model (6) reduces to the
model in [7] by setting w = d1 = d2 = � � � = d2n = 0, a1 = a2 = � � � = am = b1 = b2 = � � � = bm = m, c1 = c2 = � � � = cn = d1 = d2 = � � � =
dn = n, /1 = � � � = /n = / and r1 = � � � = r. Also, the model (6) is an extension of the model given in [24] by considering m stages
for the exposed (Ei; i = 1,2, . . . ,m) and quarantined (Qi; i = 1,2, . . . ,m) individuals and n stages for the infectious (Ij;
j = 1,2, . . . ,n) and the hospitalized (Hj; j = 1,2, . . . ,n) individuals (i.e., the model (6) reduces to the model in [24] by setting
n = m = 1, taking into account the assumption that hospitalized individuals do not transmit infection; this assumption is
relaxed in [24]).
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In addition to formulating the model in terms of gamma-distributed waiting times for the associated disease stages, this
study contributes by way of carrying out a detailed rigorous mathematical analysis of the model (6). In particular, global
asymptotic stability results for the equilibria of the model will be proven (under certain conditions). Furthermore, the model
(6) is used to evaluate the impact of the use of quarantine and isolation in combatting the spread of a given communicable
disease (such as SARS). This study offers not only important extensions to the model presented in [7], it also contributes by
extending some of the mathematical results presented in [7] (particularly global stability proof of the associated endemic
equilibrium of the extended model (6)).

2.1. Basic properties

Since the model (6) monitors human populations, all its associated parameters are non-negative. Further, the following
basic results can be easily established (see, for instance, [24,27]):

Theorem 1. The state variables of the model (6) are non-negative for all time. In other words, solutions of the model system (6)
with positive initial data will remain positive for all time t > 0.
Lemma 1. The closed set
D ¼ ðS; E1; . . . ; Em; I1; . . . ; In;Q 1; . . . ;Q m;H1; . . . ;Hn;RÞ 2 R2ðmþnþ1Þ
þ : Sþ

Xm

i¼1

Ei þ Q i þ
Xn

j¼1

Ij þ Hj þ R 6
P
l

( )
is positively-invariant: ð7Þ
3. Local stability of disease-free equilibrium (DFE)

The model (6) has a DFE, obtained by setting the right-hand sides of the equations to zero, given by is given by
X0 ¼ ðS�; E�1; . . . ; E�m; I
�
1; . . . ; I�n;Q

�
1; . . . ;Q �m;H

�
1; . . . ;H�n;R

�Þ ¼ ðP=l;0; . . . ;0Þ: ð8Þ
The next generation operator method [4,28] will be used to explore the local stability of X0. Using the notation in [28], the
non-negative matrix, F, of the new infection terms, and the M-matrix, V, of the transition terms associated with the model
(6), are given, respectively, by
F ¼ AF BF CFð Þ;
and,
V ¼
AV BV

CV DV

� �
;

where, AF is 2(m + n) �m zero matrix, CF, BV are 2(m + n) � (m + n), (m + n) � (m + n) zero matrices, respectively. Further-
more, BF is a 2(m + n) � n matrix, given by
BF ¼

b b � � � b

0 0 � � � 0
..
. ..

. ..
.

0 0 � � � 0

0BBBB@
1CCCCA:
The matrices, AV, CV and DV are (m + n) � (m + n) are given by
AV ¼

k1

�a1a k2

�a2a k3

. .
. . .

.

�ama kmþ1

�d1j kmþ2

�d2j kmþ3

. .
. . .

.

�dn�1j kmþn

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

;
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CV ¼

�r1

�r2

. .
.

�rm

�/1

�/2

. .
.

�/n

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
;

and,
DV ¼

kmþnþ1

�b1a kmþnþ2

�b2a kmþnþ3

. .
. . .

.

�bma k2mþnþ1

�c1j k2mþnþ2

�c2j k2mþnþ3

. .
. . .

.

�cn�1j k2ðmþnÞ

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

;

with,
kj ¼

rj þ ajaþ l; 1 6 j 6 m;

/j�m þ dj�mjþ lþ dj�m; mþ 1 6 j 6 mþ n;

bj�ðmþnÞaþ l; nþmþ 1 6 j 6 2mþ n;

cj�ð2mþnÞjþ lþ dj�2m; 2mþ nþ 1 6 j 6 2ðmþ nÞ:

8>>><>>>:

Let,
Al ¼ am�lþ1
Ym
i¼l

ai; l ¼ 1;2; . . . ;m;

Bl ¼
Ymþn�1

i¼l

ki; l ¼ 1;2; . . . ;mþ n� 1; Bmþn ¼ 1;

Dl ¼
Al

Bl
; l ¼ 1;2; . . . ;m; Dmþ1 ¼

1
Bmþ1

;

ð9Þ

Cp;q ¼ jp�1
Yp�1

i¼1

diþq�1 þ
Yp

s¼2

kmþsþq�1 þ
Xp�2

t¼1

jt
Yt

i¼1

diþq�1

Yp

s¼2þt

kmþsþq�1; p ¼ 3; . . . ;n; q ¼ nþ 1� p;

C1;n ¼ 1 and C2;n�1 ¼ jdn�1 þ kmþn:
It follows that the control reproduction number [1,10], denoted by Rc ¼ qðFV�1Þ, where q is the spectral radius, is given by
Rc ¼
bD1Cn;1

kmþn
:

Using Theorem 2 in [28], the following result is established.

Lemma 2. The DFE of the model (6), given by (8), is locally-asymptotically stable (LAS) if Rc < 1, and unstable if Rc > 1.
The epidemiological implication of Lemma 2 is that the disease can be eliminated from the community (whenRc < 1) if the

initial sizes of the sub-populations of the model are in the basin of attraction of the DFE (X0). For disease elimination to be inde-
pendent of the initial sizes of sub-populations, the global asymptotic stability of the DFE must be established for Rc < 1.

3.1. Global stability of DFE

Theorem 2. The DFE of the model (6), given by (8), is globally-asymptotically stable (GAS) in D whenever Rc 6 1.
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Proof. Consider the following Lyapunov function (with the coefficients B, C and D as defined in (9)):
F ¼ kmþnRc

b

� �
E1 þ Cn;1D2E2 þ

Xm

j¼3

Cn;1DjEj þ
Xn�1

j¼1

Cn�jþ1;j

Bmþj

� �
Ij þ In
with Lyapunov derivative (where a dot represents differentiation with respect to time) given by
_F ¼ kmþnRc

b

� �
_E1 þ Cn;1D2

_E2 þ
Xm

j¼3

Cn;1Dj
_Ej þ

Xn�1

j¼1

Cn�jþ1;j

Bmþj

� �
_Ij þ _In

¼ kmþnRc

b

� �
bS
Pn

j¼1Ij

N
� k1E1

 !
þ Cn;1D2ða1aE1 � k2E2Þ

þ
Xm�1

j¼3

Cn;1Djðaj�1aEj�1 � kjEjÞ þ Cn;1Dmðam�1aEm�1 � kmEmÞ

þ Cn;1

Bmþ1
ðamaEm � kmþ1I1Þ þ

Xn�1

j¼2

Cn�jþ1;j

Bmþj
ðdj�1jIj�1 � kmþjIjÞ þ dn�1jIn�1 � kmþnIn

6 kmþnRc

Xn

j¼1

Ij �
k1kmþnRc

b

� �
E1 þ Cn;1D2ða1aE1 � k2E2Þ

þ
Xm�1

j¼3

Cn;1Djðaj�1aEj�1 � kjEjÞ þ Cn;1Dmðam�1aEm�1 � kmEmÞ

þ Cn;1

Bmþ1
ðamaEm � kmþ1I1Þ þ

Xn�1

j¼2

Cn�jþ1;j

Bmþj
ðdj�1jIj�1 � kmþjIjÞ

þ dn�1jIn�1 � kmþnIn; since S 6 N in D;

¼ kmþnRc

Xn

j¼1

Ij þ � k1kmþnRc

b
þ Cn;1D2a1a

� �
E1 þ

Xmþ1

j¼3

Cn;1Djaj�1aEj�1

�
Xm

j¼2

Cn;1DjkjEj þ
Xn

j¼2

Cn�jþ1;j

Bmþj
dj�1jIj�1 �

Xn�1

j¼1

Cn�jþ1;j

Bmþj
kmþjIj � kmþnIn;

¼ kmþnRc

Xn

j¼1

Ij þ
Xm

j¼2

Cn;1ðDjþ1aja� DjkjÞEj þ
Xn�1

j¼1

djjCn�j;jþ1

Bmþjþ1
� kmþjCn�jþ1;j

Bmþj

� �
Ij � kmþnIn:
It can be shown, after some lengthy algebraic manipulations, that
Djþ1aja� Djkj ¼ 0;
and,
djjCn�j;jþ1

Bmþjþ1
� kmþjCn�jþ1;j

Bmþj
¼ �kmþn:
Hence,
_F 6 kmþnðRc � 1Þ
Xn

j¼1

Ij 6 0 for Rc 6 1:
Since all the parameters of the model (6) and variables are non-negative, it follows that _F 6 0 for Rc 6 1 with _F ¼ 0 if and
only if I1 = I2 = � � � = In = 0. Hence, F is a Lyapunov function on D. Therefore, by the LaSalle’s Invariance Principle [9],
lim
t!1

EiðtÞ ¼ 0; for all i ¼ 1; . . . ;m;

lim
t!1

IjðtÞ ¼ 0; for all j ¼ 1; . . . ; n:
ð10Þ
It is clear from (10) that lim supt?1E1 = 0. Thus, for sufficiently small -1 > 0, there exists a constant N1 > 0 such that lim
supt?1E1 6-1 for all t > N1. It follows from the (m + n + 2)th equation of the model (6) that, for t > N1,
_Q 1 6 r1-1 � kmþnþ1Q 1:
Thus, by comparison theorem [26],
Q11 ¼ lim sup
t!1

Q 1 6
r1-1

kmþnþ1
;
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Fig. 2. Simulation of the model (6) showing the total number of infected individuals as a function of time forRc < 1. Parameter values used are as in Tables
2 and 4 with b = 0.2, m = 2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 (so that, Rc ¼ 0:4610).

Table 2
Estimated values of the parameters of the model (6).

Parameters Values (per day) Sources

b [0.1,0.5] [8,21]
l 0.0000351 [13]
j 0.042553 [2]
di; i = 1, . . . ,n 0.04227 [17]
di; i = n + 1, . . . ,2n 0.027855 [2]
a 0.156986 [5]
/n 0.20619 [2]
P 136 [8]
rm 0.1 [8]
w 0.005 Assumed
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so that, by letting -1 ? 0,
Q11 ¼ lim sup
t!1

Q1 6 0: ð11Þ
Similarly (by using lim inft?1E1 = 0), it can be shown that
Q11 ¼ lim inf
t!1

Q1 P 0: ð12Þ
Thus, it follows from (11) and (12) that
Q11 P 0 P Q11 :
Hence,
lim
t!1

Q 1 ¼ 0: ð13Þ
Similarly, it can be shown that
lim
t!1

Q iðtÞ ¼ 0; for all i ¼ 2; . . . ;m;

lim
t!1

HjðtÞ ¼ 0; for all j ¼ 1; . . . ; n;

lim
t!1

RðtÞ ¼ 0; lim
t!1

SðtÞ ¼ P=l:

ð14Þ
Thus, by combining (10), (13) and (14), it follows that every solution of the equations in the model (6), with initial conditions
in D, approaches the DFE, X0, as t ?1 when Rc 6 1. h



Table 3
Values of ai, bi, ci and di (i = 1,2,3) for various number of disease stages (m and n).

Number of stages Values of ai, bi, ci, di

m = n = 1 a1 = b1 = 1, c1 = d1 = 1
m = n = 2 a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = 1.5, c2 = d2 = 3
m = n = 3 a1 = b1 = 2, a2 = b2 = 3, a3 = b3 = 6, c1 = d1 = 2, c2 = d2 = 3, c3 = d3 = 6

Table 4
Quarantine and hospitalization rates for various number of disease stages (m and n).

Number of stages Quarantine rates Hospitalization rates

m = n = 1 r1 = 0.1 /1 = 0.20619
m = n = 2 r1 = 0.05, r2 = 0.1 /1 = 0.1, /2 = 0.20619
m = n = 3 r1 = 0.03333, r2 = 0.05, r3 = 0.1 /1 = 0.0666, /2 = 0.1, /3 = 0.20619
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Theorem 2 shows that if the use of quarantine and isolation can bring (and keep) the threshold quantity, Rc , to a value
less than unity, then the disease will be eliminated from the community (i.e., the conditionRc < 1 is necessary and sufficient
for disease elimination). Fig. 2 depicts numerical results obtained by simulating the model (6), with m = 2 and n = 3, using
various initial conditions for the case Rc < 1. All solutions converged to the DFE, X0, (in line with Theorem 2). It should
be mentioned that, unless otherwise stated, simulations of the model (6) are carried out using the parameter values in Tables
2 and 4. These parameter values are consistent with those associated with the 2003 SARS outbreaks [2,5,8,17]. It is worth
mentioning that the progressive refinement of quarantine and isolation measures is incorporated in all numerical simula-
tions in this study (unless otherwise stated) by using smaller values of r1 and r2, in comparison to r3; and also smaller val-
ues of /1 and /2, in relation to /3 (see Table 4).

4. Existence and stability of endemic equilibria

In this section, the possible existence and stability of endemic (positive) equilibria of the model (6) (i.e., equilibria where
at least one of the infected components of the model is non-zero) will be explored.

4.1. Existence of endemic equilibrium point (EEP)

Define
X1 ¼ ðS��; E��1 ; E
��
2 ; . . . ; E��m ; I

��
1 ; I

��
2 ; � � � ; I

��
n ;Q

��
1 ;Q

��
2 ; . . . ;Q ��m ;H

��
1 ;H

��
2 ; � � � ;H

��
n ;R

��Þ
to be any arbitrary endemic equilibrium of the model (6). Solving the equations of the model at endemic steady-state gives
S�� ¼ Pþ wR��

k�� þ l
; E��1 ¼

k��S��

k1
; E��j ¼

aj�1aE��j�1

kj
for j ¼ 2; . . . ;m;

I��1 ¼
amaE��m
kmþ1

; I��2 ¼
d1jI��1
kmþ2

; I��j ¼
dj�1jI��j�1

kmþj
for j ¼ 3; . . . ;n;

Q ��1 ¼
r1E��1

kmþnþ1
; Q ��j ¼

rjE
��
j þ bj�1aQ ��j�1

kmþnþj
for j ¼ 2; . . . ;m;

H��1 ¼
/1I��1 þ bnaQ ��n

k2mþnþ1
; H��j ¼

/jI
��
j þ cj�1jH��j�1

k2mþnþj
for j ¼ 2; . . . ;n;

R�� ¼ c1I��n þ c2H��n
wþ l

:

ð15Þ
The force of infection k, given by (1), can be expressed at endemic steady-state as
k�� ¼
b
Pn
j¼1

I��j

N��
: ð16Þ
As in [24], the expressions in (15) are re-written in terms of k⁄⁄S⁄⁄, for computational convenience, as below:
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E��1 ¼
k��S��

k1
; E��j ¼

aj�1

k1

Yj

l¼2

al�1

kl

 !
k��S�� for j ¼ 2; . . . ;m;

I��1 ¼
am

k1

Ymþ1

l¼2

al�1

kl

 !
k��S��; I��j ¼

amjj�1

k1

Ymþ1

l¼2

al�1

kl

Yj

l¼2

dl�1

kmþj

 !
k��S�� for j ¼ 2; . . . ;n;

Q ��1 ¼
r1k

��S��

k1kmþnþ1
¼ p1k

��S��; Q ��j ¼ pjk
��S�� for j ¼ 2; . . . ;m;

H��1 ¼
am/1

k1k2mþnþ1

Ymþ1

l¼2

al�1

kl
þ bmapm

k2mþnþ1

 !
k��S�� ¼ q1k

��S��; H��j ¼ qjk
��S�� for j ¼ 2; . . . ;n;

R�� ¼ amjn�1c1

k1ðwþ lÞ
Ymþ1

l¼2

al�1

kl

Yn

l¼2

dl�1

kmþn
þ qnc2

wþ l

 !
k��S��;

ð17Þ
where,
p1 ¼
r1

k1kmþnþ1
; q1 ¼

am/1

k1k2mþnþ1

Ymþ1

l¼2

al�1

kl
þ bmapm

k2mþnþ1
;

pj ¼
bj�1apj�1

kmþnþj
þ riaj�1

kmþnþjk1

Yj

l¼2

al�1

kl
for j ¼ 2; . . . ;m;
and,
qj ¼
cj�1jqj�1

k2mþnþj
þ

/jamjj�1

k1k2mþnþj

Ymþ1

l¼2

al�1

kl

Yj

l¼2

dl�1

kmþj
for j ¼ 2; . . . ;n:
Substituting the expressions in (17) into (16) gives
k��S�� þ k��S��k��

k1
þ
Xm

i¼2

aj�1

k1

Yj

l¼2

al�1

kl

 !
k��S��k�� þ am

k1

Ymþ1

l¼2

al�1

kl

 !
k��S��k��

þ
Xn

j¼2

amjj�1

k1

Ymþ1

l¼2

al�1

kl

Yj

l¼2

dl�1

kmþj

 !
k��S��k�� þ

Xm

i¼1

qik
��S��k�� þ

Xn

j¼1

pjk
��S��k��

þ amjn�1c1

k1ðwþ lÞ
Ymþ1

l¼2

al�1

kl

Yn

l¼2

dl�1

kmþn
þ qnc2

wþ l

 !
k��S��k��

¼ b
am

k1

Ymþ1

l¼2

al�1

kl
þ
Xn

j¼2

amjj�1

k1

Ymþ1

l¼2

al�1

kl

Yj

l¼2

dl�1

kmþj

 !" #
k��S��: ð18Þ
Dividing each term in (18) by k⁄⁄S⁄⁄ (and noting that k⁄⁄S⁄⁄– 0 at the endemic steady-state) gives
1þWk�� ¼ Rc;
where,
W ¼ 1
k1
þ
Xmþ1

i¼2

aj�1

k1

Yj

l¼2

al�1

kl
þ
Xn

j¼2

amjj�1

k1

Ymþ1

l¼2

al�1

kl

Yj

l¼2

dl�1

kmþj
þ
Xm

i¼1

qi þ
Xn

j¼1

pj þ
amjn�1c1

k1ðwþ lÞ
Ymþ1

l¼2

al�1

kl

Yn

l¼2

dl�1

kmþn
þ qnc2

wþ l
P 0:
Hence,
k�� ¼ Rc � 1
W

> 0; whenever Rc > 1: ð19Þ
The components of the unique endemic equilibrium X1 can then be obtained by substituting the unique value of k⁄⁄, given in
(19), into the expressions in (17). This result is summarized below.

Lemma 3. The model (6) has a unique endemic (positive) equilibrium, given by X1, whenever Rc > 1.
4.2. Global stability of endemic equilibrium for special case

Here, the global stability of the endemic equilibrium of the model (6) is given for the special case where the recovered
individuals do not lose their infection-acquired immunity (i.e., w = 0) and the associated disease-induced mortality in all
classes is negligible (so that, d1 = d2 = � � � d2n = 0). The model (6), with w = d1 = d2 = � � � = d2n = 0, then reduces to:
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dS
dt
¼ P� kS� lS;

dE1

dt
¼ kS� f1E1;

dE2

dt
¼ a1aE1 � f2E2;

dEj

dt
¼ aj�1aEj�1 � fjEj; j ¼ 3; . . . ;m;

dI1

dt
¼ amaEm � fmþ1I1;

dIj

dt
¼ dj�1jIj�1 � fmþjIj; j ¼ 2; . . . ;n;

dQ1

dt
¼ r1E1 � fmþnþ1Q1;

dQj

dt
¼ rjEj þ bj�1aQ j�1 � fmþnþjQ j; j ¼ 2; . . . ;m;

dH1

dt
¼ bmaQ m þ /1I1 � f2mþnþ1H1;

dHj

dt
¼ /jIj þ cj�1jHj�1 � f2mþnþjHj; j ¼ 2; . . . ; n;

dR
dt
¼ c1In þ c2Hn � lR:

ð20Þ
Adding the equations of the reduced model (20) gives dN/dt = P � lN. Hence, N ? P/l as t ?1. Thus, P/l is an upper
bound of N(t) provided that N(0) 6P/l. Further, if N(0) > P/l, then N(t) will decrease to this level. Using N = P/l in (1) gives
a limiting (mass action) system given by (20) with
k ¼ b1

Xn

j¼1

Ij; where b1 ¼
bl
P
: ð21Þ
It can be shown that the associated reproduction number of the reduced model, (20) with (21), is given by
Rcr ¼
bfD1

gCn;1

fmþn
;

where,
fD1 ¼
amQm

i¼laiQmþn�1
i¼l fi

and gCn;1 ¼ jn�1
Yp�1

i¼1

di þ
Yn

s¼2

fmþs þ
Xn�2

t¼1

jt
Yt

i¼1

di

Yn

s¼2þt

fmþs:
It is easy to show, using the technique in Section 4.1, that the reduced model, given by (20) with (21), has a unique EEP
whenever Rcr > 1.

Lemma 4. The reduced model, given by (20) with (21), has a unique positive endemic equilibrium whenever Rcr > 1.
Furthermore, we claim the following result (see Appendix B for the proof).

Theorem 3. The unique endemic equilibrium of the reduced model, given by (20) with (21), is GAS in D n D0 if Rcr > 1.
Simulations for the case when Rc > 1 are depicted in Fig. 3, showing convergence of the solutions to the endemic equi-

librium (in line with Theorem 3). Fig. 4 depicts the cumulative number of new infections as a function of quarantine rates,
from which it is evident that the cumulative number of new infections decreases with increasing quarantine rate. Similar
result is obtained by increasing the isolation rate (Fig. 5). It should be mentioned that the simulation results in Figs. 4
and 5 are consistent with those reported in [7]. Although the global asymptotic stability result given in Appendix B is for
a special case (with w = d1 = d2 = � � � = d2n = 0), further extensive numerical simulations suggest that the endemic equilibrium
X1, of the full model (6), is GAS in D n D0 whenever Rc > 1, suggesting the following conjecture.

Conjecture. The unique endemic equilibrium of the model (6), denoted by X1, is GAS in D n D0 if Rc > 1.
The effect of the number of disease stages for the exposed (m) and infectious (n) classes is monitored by simulating the

model (6) with various values of m = n. The results obtained, depicted in Fig. 6, show an increase in the cumulative number of
disease-related mortality with increasing values of m = n. Simulations for the cumulative number of probable SARS cases ob-
served during the 2003 outbreaks in the Greater Toronto Area (GTA) of Canada are also carried out. The results obtained, for
the case m = n = 3, are compared with those obtained using the exponentially-distributed (ED) equivalent of the model (6)
(i.e., model (6) with m = n = 1) and another gamma-distributed version of the model (6) with m = n = 3, denoted by GD2,
where the average sojourn time in each of the exposed, quarantined, hospitalized and infectious stages is shared equally
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Fig. 3. Simulation of the model (6) showing the total number of infected individuals as a function of time forRc > 1. Parameter values used are as in Tables
2 and 4 with b = 0.5, m = 2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 (so that, Rc ¼ 1:1526).
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Fig. 4. Numerical simulations of the model (6) showing the cumulative number of new infections for various values of the quarantine parameters (r1 and
r2). Parameter values used are as in Table 2, with b = 0.15, m = 2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 and isolation rates as given in
Table 4.
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among each associated disease stage (this is similar to the model given in [7]). It should be mentioned that, in such a setting,
the standard ED model has the associated reproduction number given by Rc ¼ 0:6506. Similarly, the GD2 and GD1 models
have Rc ¼ 0:6962 and Rc ¼ 0:9858, respectively. Furthermore, about 250 probable SARS cases were reported for the GTA
(see Fig. 2 in [8]). The simulation results obtained, depicted in Fig. 7, show that while the ED and GD2 models under-
estimated the observed number of probable cases, the GD1 model (6) gave a very good estimate of the observed data. It
should be mentioned that the GD2 model is also competitive if the quarantine and isolation rates are distributed (unequally)
to incorporate their progressive refinement (as in the case of the model GD1).

Similar comparison are made for the cumulative number of cases recorded for the Hong Kong SARS outbreaks (approx-
imately 1750 cases were recorded in Hong Kong [8]). Here, too, the GD1 model is more competitive (Fig. 8). For these sim-
ulations, the ED, GD1 and GD2 models have Rc given by 0.7345, 0.9710 and 0.7861, respectively. It should be emphasized,
however, that the reason why the GD1 model gives different results, compared to the GD2 model (for instance), is that the
values of r1 and r2, and also /1 and /2, used in the simulations of the GD1 model are different from the quarantine (r) and
isolation (/) rates used in the simulations of the GD2 model. While the values r1 = 0.0333, r2 = 0.05, r3 = 0.1 and /1 = 0.0666,
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Fig. 5. Numerical simulations of the model (6) showing the cumulative number of new infections for various values of the isolation parameters (/1,/2 and
/3). Parameter values used are as in Table 2, with b = 0.15, m = 2, n = 3, a1 = b1 = 1.5, a2 = b2 = 3, c1 = d1 = c2 = d2 = c3 = d3 = 3 and quarantine rates as given in
Table 4.
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Fig. 6. Numerical simulations of the model (6) showing the cumulative number of disease-induced mortality for various disease stages (m = n). Parameter
values used are as in Tables 2–4, with b = 0.15.
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/2 = 0.1, /3 = 0.20619 were used in the simulations of the GD1 model (to account for the gradual refinement of quarantine
and isolation), the values r1 = r2 = r3 = 0.1 and /1 = /2 = /3 = 0.20619 were used in the simulations of the GD2 model (that is
why the Rc value for the GD1 model is 0.9710, while that of the GD2 model is 0.7861 for this setting).

The effect of the distribution of sojourn times for the symptomatic period (1/j) is monitored by simulating the GD1 model
(6) with the parameters in Table 2 for the case where the periods are either same or varied in each stage (i.e., the case where
dj = n = cj versus the case where dj – n – cj). In both cases, the same numerical simulation results were obtained (Fig. 9). In
other words, distributing the average sojourn times equally or unequally between the sub stages of the symptomatic classes
(I and H) does not alter the numerical simulation results obtained. The effect of the distribution of sojourn times in the
asymptomatic classes (E and Q; given by 1/a) is also monitored by simulating the model with the parameters in Table 2
for three different scenarios. An asymptomatic period 1/a = 6 days is chosen, and distributed as follows:

(I) 2.5 days in E1 and Q1 classes (i.e., 1/a1a = 1/b1a = 2.5 days), 2 days in E2 and Q2 classes (i.e., 1/a2a = 1/b2a = 2 days) and
1.5 days in E3 and Q3 classes (i.e., 1/a3a = 1/b3a = 1.5 days);
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Fig. 7. Numerical simulations of the model (6) showing the cumulative number of probable SARS for the GTA generated using the GD1, GD2 and ED models.
Parameter values used are as in Tables 2–4, with b = 0.2, w = 0. GD1 model: m = n = 3, GD2 model: m = n = 3; r1 = r2 = r3 = 0.1 and /1 = /2 = /3 = 0.20619; ED
model: m = n = 1.
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Fig. 8. Numerical simulations of the model (6) showing the cumulative number of probable SARS for the Hong Kong generated using the GD1, GD2 and ED
models. Parameter values used are as in Tables 2–4, with b = 0.2, w = 0 and P = 122. GD1 model: m = n = 3, GD2 model: m = n = 3; r1 = r2 = r3 = 0.1 and
/1 = /2 = /3 = 0.20619; ED model: m = n = 1.
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(II) 2 days in E1 and Q1 classes (i.e., 1/a1a = 1/b1a = 2 days), 2 days in E2 and Q2 classes (i.e., 1/a2a = 1/b2a = 2 days) and
2 days in E3 and Q3 classes (i.e., 1/a3a = 1/b3a = 2 days);

(III) 1.5 days in E1 and Q1 classes (i.e., 1/a1a = 1/b1a = 1.5 days), 2 days in E2 and Q2 classes (i.e., 1/a2a = 1/b2a = 2 days) and
2.5 days in E3 and Q3 classes (i.e., 1/a3a = 1/b3a = 2.5 days).

The simulation results obtained (Fig. 10) clearly show that if the asymptomatic period is distributed such that more time
is spent in the early stages of the asymptomatic (latent and quarantine) classes (i.e., more time is spent in E1, E2, Q1, Q2 classes
in comparison to in E3 and Q3 classes), the cumulative number of new cases is higher than for the cases where the asymp-
tomatic period is distributed equally among the stages or if more time is spent in the later asymptomatic stages. In other
words, unlike for the case of the sojourn time spent in the symptomatic classes (I and H), the way the sojourn time is dis-
tributed in the asymptomatic compartments (E and Q) affects the cumulative number of new cases.
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Fig. 10. Numerical simulations of the model (6) showing the cumulative number of new cases for various distributions of the asymptomatic period (1/a)
using different values of a1 = b1, a2 = b2, and a3 = b3. Parameter values used are as in Table 2, with b = 0.2, w = 0, r1 = r2 = r3 = 0.1 and /1 = /2 = /3 = 0.20619.
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Fig. 9. Numerical simulations of the model (6) showing the cumulative number of new cases for various distributions of the symptomatic period (1/j)
using different values of c1 = d1, c2 = d2, and c3 = d3. Parameter values used are as in Table 2, with b = 0.2, w = 0, r1 = r2 = r3 = 0.1 and /1 = /2 = /3 = 0.20619.
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5. Conclusions

A new deterministic model for disease transmission, subject to the use of quarantine (of asymptomatic cases) and isola-
tion (of individuals with disease symptoms), is presented and rigorously analyzed. The model, which is based on the assump-
tion that the mean waiting periods in all infected classes obey a gamma distribution, adopts a standard incidence
formulation for the infection rate. An important feature of this model is that it allows for equal or unequal distribution of
the sojourn time in each of the associated infected compartment. Furthermore, it allows for the gradual refinement of quar-
antine and isolation measures (this was the case during the 2003 SARS outbreaks). The main theoretical findings of the study
are given below:

(i) The model (6) has a globally-asymptotically stable disease-free equilibrium whenever the associated reproduction
number ðRcÞ is less than unity.

(ii) The model has a unique endemic equilibrium whenever the reproduction number exceeds unity.
(iii) The unique endemic equilibrium of the model is shown to be globally-asymptotically stable for a special case.
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Numerical simulations of the model (6), using data related to the 2003 SARS outbreaks, show the following:

(a) the cumulative number of new cases of infection decreases with increasing quarantine or isolation rate;
(b) the cumulative number of disease-related mortality increases with increasing number of disease stages (m and n);
(c) unlike the ED and GD2 models, the model (6) gives numerical results that are consistent with the 2003 SARS outbreaks

data for the GTA and Hong Kong;
(d) distributing the average sojourn time equally or unequally between the respective symptomatic classes does not alter

the numerical simulation result obtained (i.e., the cumulative number of new cases);
(e) if the asymptomatic period is distributed such that more time is spent in the early asymptomatic (latent and quaran-

tine) stages, the cumulative number of new cases is higher than for the cases where the period is distributed equally
among the asymptomatic stages or if more time is spent in the later asymptomatic stages.
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Appendix A. Properties of gamma distribution [12]

A random variable X that is gamma-distributed with scale h and shape k is denoted by
X � Cðk; hÞ or X � Gammaðk; hÞ:
Properties:

(i) Summation: if Xi has a C(ki,h) distribution for i = 1,2, . . . ,N, then
PN

i¼1Xi � C
PN

i¼1ki; h
� �

provided all Xi are
independent.

(ii) Scaling: if X � C(k,h) then for any a > 0;aX � C k; h
a

� �
.

For example, we have Ei � C(1,aia) for i = 1,2, . . . ,m. It follows, from (ii), that aiEi � C(1,a). Similarly, aiEi
m � Cð1;maÞ. Final-

ly, by (i), we have
Pm

i¼1
aiEi
m � Cðm;maÞ.

Appendix B. Proof of Theorem 4
Proof. Consider the reduced model, given by (20) with (21). Let Rcr > 1, so that the associated unique endemic equilibrium
exists. Further, consider the following non-linear Lyapunov function:
F ¼ S� S�� � S�� ln
S

S��

� �
þ E1 � E��1 � E��1 ln

E1

E��1

� �
þ
Xm

i¼2

xi Ei � E��i � E��i ln
Ei

E��i

� �� 	
þ
Xn

j¼1

yi Ij � I��j � I��j ln
Ij

I��j

 !" #
;

where the coefficients xi (i = 1, . . . ,m) and yj (j = 1, . . . ,n) are positive constants to be determined. Thus,
_F ¼ _S� S��

S
_Sþ _E1 �

E��1
E1

_E1 þ
Xm

i¼2

xi
_Ei �

E��i
Ei

_Ei

� �
þ
Xn

j¼1

yj
_Ij �

I��j
Ij

_Ij

� �
:

Substituting the expressions of the derivatives from the system (20), using (21), gives (note that the relation
P ¼ b1S��

Pn
j¼1I��j þ lS��, at endemic steady-state, has been used)
_F ¼ b1S��
Xn

j¼1

I��j þ lS�� � b1S
Xn

j¼1

Ij � lS� b1
S��

S

Xn

j¼1

I��j � l ðS
��Þ2

S
þ b1S��

Xn

j¼1

I��j þ lS�� þ b1S
Xn

j¼1

Ij � f1E1 � b1S
Xn

j¼1

IjE
��
1

E1

þ f1E��1 þ
Xm

i¼2

xiai�1aEi�1 � xifiEi � xiai�1a
Ei�1E��i

Ei
þ xifiE

��
i þ y1amaEm � y1fmþ1I1 � y1am

EmI��1
Em
þ y1fmþ1I��1

þ
Xn

j¼2

yjdj�1jIj�1 � yjfmþjIj � yjdj�1j
Ij�1I��j

Ij
þ yjfmþjI

��
j ;
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which can simplified to
_F ¼ lS�� 2� S��

S
� S

S��

� �
þ b1S��

Xn

j¼1

I��j � b1
S��

S

Xn

j¼1

I��j þ b1S��
Xn

j¼1

I��j � b1S
Xn

j¼1

IjE
��
1

E1
þ ðx2a1a� k1ÞE1 þ

Xm�1

i¼2

ðxiþ1aia

� xifiÞEi þ ðy1ama� xmfmÞEm þ
Xn�1

j¼1

ðb1S�� þ yjþ1djj� yjfmþjÞIj þ ðb1S�� � ynfmþnÞIn

þ
Xm

i¼2

xifiE
��
i � xiai�1a

Ei�1E��i
Ei

� �
� y1am

EmI��1
I1
þ y1fmþ1I��1 þ

Xn

j¼2

yjfmþjI
��
j � yjdj�1j

Ij�1I��j
Ij

� �
: ð22Þ
The coefficients xi (i = 2, . . . ,m) and yj (j = 1, . . . ,n) are chosen such that
x2a1a� k1 ¼ 0;

xiþ1aia� xifi ¼ 0; for i ¼ 3; . . . ;m� 1;

y1ama� xmfm ¼ 0;

b1S�� þ yjþ1djj� yjfmþj ¼ 0;

b1S�� � ynfmþn ¼ 0;

ð23Þ
so that, from (23),
xi ¼
Yi�1

l¼1

fl

ala
; i ¼ 2; . . . ;m;

y1 ¼
Ym
l¼1

fl

ala
;

yn ¼
b1S��

fmþn
;

ð24Þ
and,
yn�j ¼
b1S��

fmþn�j
þ b1S��

Xj

s¼1

Qj
l¼sdn�ljQj

l¼s�1fnþm�l

; j ¼ 1; . . . ; n� 2:
Using the relations (24) in Eq. (22) gives
_F ¼ lS�� 2� S��

S
� S

S��

� �
þ 2b1S��

Xn

j¼1

I��j � b1
S��

S

Xn

j¼1

I��j � b1S
Xn

j¼1

IjE
��
1

E1
� f1

E1E��2
E2
þ f1f2

a1a
E��2 þ

Xm

i¼3

�
Qi�1

l¼1flQi�2
l¼1ala

Ei�1E��i
Ei

þ
Qi

l¼1flQi�1
l¼1ala

E��i �
Qm

l¼1flQm�1
l¼1 ala

EmI��1
I1
þ
Qmþ1

l¼1 flQm
l¼1ala

I��1 þ
Xn�1

j¼2

�dj�1j
b1S��

fmþj
þ b1S��

Xn�j

s¼1

Qn�j
l¼s dn�ljQn�j

l¼s�1fnþm�l

 !
Ij�1I��j

Ij

þ
Xn�1

j¼2

fmþj
b1S��

fmþj
þ b1S��

Xn�j

s¼1

Qn�j
l¼s dn�ljQn�j

l¼s�1fnþm�l

 !
I��j �

b1S��dn�1j
fmþn

In�1I��n
In
þ b1S��I��n : ð25Þ
It can be shown from (20) that, at endemic steady-state,
f1 ¼
b1S��

Pn
j¼1I��j

E��1
;Qi

l¼1flQi�1
l¼1ala

¼
b1S��

Pn
j¼1I��j

E��i
i ¼ 2; . . . ;m;

Qmþ1
l¼1 flQm

l¼1ala
¼

b1S��
Pn

j¼1I��j
I��1

ð26Þ
and,
djj
fmþjþ1

¼
I��jþ1

I��j
j ¼ 1; . . . ;n� 1: ð27Þ
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Using the relations in (26) and (27) in Eq. (25) gives
_F ¼ lS�� 2� S��

S
� S

S��

� �
þ ðmþ 2Þb1S��

Xn

j¼1

I��j � b1
S��

S

Xn

j¼1

I��j � b1S
Xn

j¼1

IjE
��
1

E1
� b1S��

Xn

j¼1

I��j
Xm�1

i¼1

EiE
��
iþ1

E��iþ1Ei

 !
� b1S��

EmI��1
I��1 Em

�
Xn

j¼1

I��j � b��1 S��
Xn�1

j¼1

IjI
��
jþ1

Ijþ1

Xn

l¼jþ1

I��l
I��j

 !
þ b1S��

Xn

j¼2

Xn

l¼j

I��l

 !
;

which can be re-written as
_F ¼ lS�� 2� S��

S
� S

S��

� �
þ b1S�� ðmþ 2Þ � S��

S
�
Xm�1

i¼1

EiE
��
iþ1

E��iþ1Ei
� EmI��1

E��m I1

" #
þ b1S��

�
Xn

j¼2

I��j ðmþ jþ 1Þ � S��

S
�
Xm�1

i¼1

EiE
��
iþ1

E��iþ1Ei
� EmI��1

E��m I1
�
Xj�1

l¼1

IlI
��
lþ1

Ilþ1I��l
� SIjE

��
1

S��I��j E1

" #
: ð28Þ
Finally, since the arithmetic mean exceeds the geometric mean, it follows that
2� S��

S
� S

S��
6 0;

ðmþ 2Þ � S��

S
�
Xm�1

i¼1

EiE
��
iþ1

E��iþ1Ei
� EmI��1

E��m I1
6 0;

ð29Þ
and,
ðmþ jþ 1Þ � S��

S
�
Xm�1

i¼1

EiE
��
iþ1

E��iþ1Ei
� EmI��1

E��m I1
�
Xj�1

l¼1

IlI
��
lþ1

Ilþ1I��l
� SIjE

��
1

S��I��j E1
6 0 for j ¼ 2; . . . ;n: ð30Þ
Further, since all parameters of the model (6) are non-negative, it follows from (29) and (30), using (28), that _F 6 0 for
Rcr > 1. Hence, F is a Lyapunov function for the sub-system of the model (20) consisting of the equations for S, Ei

(i = 1, . . . ,m), Ij (j = 1, . . . ,n) of the model (20) on D n D0. Therefore, by the LaSalle’s Invariance Principle [9],
lim
t!1

SðtÞ ¼ S��; lim
t!1

EiðtÞ ¼ E��i ; for all i ¼ 1; . . . ;m;

lim
t!1

IjðtÞ ¼ I��j ; for all j ¼ 1; . . . ;n:
ð31Þ
It is clear from (31) that lim supt!1E1 ¼ E��1 . Thus, for sufficiently small - > 0, there exists a constant n1 > 0 such that
lim supt!1E1 6 E��1 þ- for all t > n1. It follows from the (m + n + 2)th equation of the model (20) that, for t > n1,
_Q1 6 r1ðE��1 þ-Þ � fmþnþ1Q 1:
Thus, by comparison theorem [26],
Q11 ¼ lim sup
t!1

Q1 6
r1ðE��1 þ-Þ

fmþnþ1
;

so that, by letting - ? 0,
Q11 ¼ lim sup
t!1

Q1 6
r1E��1
fmþnþ1

: ð32Þ
Similarly (by using lim inf t!1E1 ¼ E��1 ), it can be shown that
Q11 ¼ lim inf
t!1

Q1 P
r1E��1
fmþnþ1

: ð33Þ
Thus, it follows from (32) and (33) that
Q11 P
rE��1

fmþnþ1
P Q11 :
Hence,
lim
t!1

Q 1 ¼
r1E��1
fmþnþ1

¼ Q ��1 : ð34Þ
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Similarly, it can be shown that
lim
t!1

Q iðtÞ ¼ Q��i ; for all i ¼ 2; . . . ;m;

lim
t!1

HjðtÞ ¼ H��j ; for all j ¼ 1; . . . ; n;

lim
t!1

RðtÞ ¼ R��:

ð35Þ
Thus, by combining (31), (34) and (35), it follows that every solution to the equations of the reduced model, with initial con-
dition in D n D0, approaches the unique endemic equilibrium of the reduced model (20) with (21) as t ?1 for Rcr > 1 and
w = 0. h
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