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Abstract

It is well known that the Camassa-Holm equation possesses numerous remarkable
properties characteristic for KdV type equations. In this paper we show that it
shares one more property with the KdV equation. Namely, it is shown in [1, 2] that
the KdV and the modified KdV equations are self-adjoint. Starting from the gen-
eralization [3] of the Camassa-Holm equation [4], we prove that the Camassa-Holm
equation is self-adjoint. This property is important, e.g. for constructing conser-
vation laws associated with symmetries of the equation in question. Accordingly,
we construct conservation laws for the generalized Camassa-Holm equation using its
symmetries.
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1 Introduction

The Camassa-Holm equation

F ≡ ut − utxx − u uxxx − 2 uxuxx + 3 u ux + κ ux = 0 (1)

has appeared in [4], [5] as a shallow water wave equation. Here u(t, x) is the
fluid velocity in the x direction and κ is an arbitrary constant. Eq. (1) was
studied also by Fokas [6] and Fuchsstainer [7].

Clarkson, Mansfield and Priestley [3] studied the third-order nonlinear
equation of the form

F ≡ ut − ǫ utxx − u uxxx − β uxuxx − αu ux + κ ux = 0 (2)

with arbitrary parameters ǫ, α, β. It contains not only the Camassa-Holm
equation (1) as a particular case, but also other interesting nonlinear equations
such as:
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• the Fornberg-Whitham equation [8]

ut − utxx − u uxxx − 3 uxuxx + u ux + ux = 0,

• the Rosenau-Hyman equation [9]

ut − u uxxx − 3 uxuxx − u ux = 0.

Eq. (1), as any evolution type equation, does not have a usual Lagrangian1.
Therefore the classical Noether theorem cannot be employed for constructing
conservation laws using symmetries of Eq. (1). On the other hand, a new
procedure was developed in [2] for constructing conservations laws associated
with symmetries. The new procedure allows one to construct a conservation
law using any (Lie point, Lie-Bäcklund, nonlocal, etc.) symmetry of any differ-
ential equation. However, the resulting conservation laws involve, in general,
not only the solutions of the original equation, but also so-called nonlocal vari-

ables, namely solutions of the adjoint equation. The nonlocal variables can
be eliminated if the equation under consideration is quasi self-adjoint (or, in
particular, self-adjoint) in the sense defined in [11]. Therefore the quasi self-
adjointness is important for constructing conservation laws. Accordingly, we
start our paper with investigating the quasi self-adjointness of the generalized
Camassa-Holm equation (2). Our construction require the concepts of the
formal Lagrangian and the adjoint equation for Eq. (2).

2 Formal Lagrangian and adjoint equation

According to the procedure suggested in [2], we introduce the formal La-

grangian

L ≡ vF = v [ut − ǫ utxx − uuxxx − β uxuxx − αuux + κ ux] (3)

and define the adjoint equation F ∗ = 0 by

F ∗ ≡
δL

δu
= 0. (4)

1By this we mean that there is no function L(x, t, u, ux, ut, uxx, utx, . . .) such that Eq.
(1) is identical with the Euler-Lagrange equation

δL

δu
≡

∂L

∂u
−Dx

∂L

∂ux

−Dt

∂L

∂ut

+D2

x

∂L

∂uxx

+DtDx

∂L

∂utx

+ · · · = 0.

However it is shown in [10] that the CH equation can be written as the Euler-Poincaré
equation. It also admits two canonical Hamiltonian representations, namely in terms of the
Clebsch variables and the so-called peakon variables, obtained by using different momentum
maps.
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Here v = v(t, x) is a new dependent variable,

δ

δu
=

∂

∂u
−Di

∂

∂ui

+DiDj

∂

∂uij

−DiDjDk

∂

∂uijk

+ ... (i, j, k = 1, 2),

is the variational derivative and

Di =
∂

∂xi
+ ui

∂

∂u
+ vi

∂

∂v
+ uij

∂

∂uj

+ vij
∂

∂vj
+ uijk

∂

∂ujk

+ vijk
∂

∂vjk
+ ...

is the operator of total differentiation with respect to xi (x1 = t, x2 = x). The
usual convention of summation over repeated indices is used.

We have

F ∗ ≡
∂L

∂u
−Dt

∂L

∂ut

−Dx

∂L

∂ux

+D2
x

∂L

∂uxx

−D3
x

∂L

∂uxxx

−DtD
2
x

∂L

∂utxx

= 0 (5)

and, taking into account the relation (3), we obtain

F ∗ = − vuxxx − α vux −Dt(v)−Dx(−β vuxx − α vu+ κ v)

+ D2
x(−β vux)−D3

x(−vu) + ǫDtD
2
x(v).

Performing here the differentiations, we arrive at the following adjoint Eq. (4):

F ∗ ≡ −vt + ǫ vtxx + uvxxx + (3− β)(uxvxx − vxuxx) + αuvx − κ vx = 0. (6)

Definition 1. An equation F = 0 is said to be quasi self-adjoint [11] if there
exists a function

v = ϕ(u), ϕ′(u) 6= 0, (7)

such that

F ∗ |v=ϕ(u)= λF (8)

with an undetermined coefficient λ. If in (7) ϕ(u) = u, we say that the equation
F = 0 is self-adjoint.

Taking into account the expression (6) of F ∗ and using Eq. (7) together
with its consequences

vt = ϕ′ut, vx = ϕ′ux,

vtx = ϕ′utx + ϕ′′utux, vxx = ϕ′uxx + ϕ′′u2
x,

vtxx = ϕ′utxx + 2ϕ′′uxutx + ϕ′′utuxx + ϕ′′′utu
2
x,

vxxx = ϕ′uxxx + 3ϕ′′uxuxx + ϕ′′′u3
x,
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we rewrite Eq. (8) in the following form:

−ϕ′ut + αϕ′u ux − κϕ′ux + [ϕ′′′u− (β − 3)ϕ′′)] u3
x + ϕ′u uxxx

+ ǫ ϕ′utxx + [3ϕ′′u− 2 (β − 3)ϕ′)] ux uxx + 2 ǫ ϕ′′ux utx + ǫ ϕ′′′ut u
2
x

+ ǫ ϕ′′ut uxx = λ (ut − ǫ utxx − uuxxx − αuux − β uxuxx + κ ux). (9)

Eq. (9) should be satisfied identically in all variables ut, ux, uxx, . . . . Com-
paring the coefficients of ut in both sides of Eq. (9), we obtain λ = −ϕ′. Then
we equate the coefficients of uxutx and get:

ǫ ϕ′′ = 0. (10)

According to Eq. (10), the procedure splits into two cases:

ǫ = 0, (11)

ǫ 6= 0, ϕ′′ = 0. (12)

In the case (11) we compare the coefficients of ux uxx and arrive at the
equation

ϕ′′ u+ (β − 2)ϕ′ = 0. (13)

Integrating Eq. (13) we obtain

ϕ(u) =

{

a+ b uβ−1, β 6= 1,
a+ b ln u, β = 1,

(14)

where a and b are arbitrary constants. The coefficients of the other terms in
both sides of Eq. (9) are equal due to Eq. (13). Hence we have proved that
the equation

ut − u uxxx − β uxuxx − αu ux + κ ux = 0 (15)

is quasi self-adjoint and that the substitution (7) has the form

v =

{

a + b uβ−1, β 6= 1,
a + b ln u, β = 1.

(16)

Now we consider the case (12). In this case the comparison of the coeffi-
cients for uxuxx yields that β = 2. The coefficients of the other terms in both
sides of Eq. (9) are equal. Thus we have proved that the equation

ut − ǫ utxx − u uxxx − 2 uxuxx − αu ux + κ ux = 0 (17)

is quasi self-adjoint for any parameters ǫ, α, κ and that the substitution (7)
has the following form:

v = a+ b u. (18)
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We can take, in particular, a = 0 and b = 1. Hence Eq. (17) coincides with its
adjoint equation after the substitution v = u. According to [1], it means that
the generalized Camassa-Holm equation (17) is self-adjoint.

In conclusion of this section we note that the Fornberg-Whitham equation

ut − utxx − u uxxx − 3 uxuxx + u ux + ux = 0 (19)

is not quasi self-adjoint in the sense of Definition 1.

3 Conservation laws

3.1 General form

We rewrite the formal Lagrangian (3) in the symmetric form

L = v
[

ut −
ǫ

3
(utxx + uxtx + uxxt)− u uxxx − αuxuxx − β u ux + κ ux

]

. (20)

Eq. (2) is said to have a nonlocal conservation law if there exits a vector
C = (C1, C2) satisfying the equation

Dt(C
1) +Dx(C

2) = 0 (21)

on any solution of the system (2), (6). Eq. (2) has a local conservation law if
(21) is satisfied on any solution of Eq. (2).

The conserved vector corresponding to an operator

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(22)

admitted by Eq. (2) is obtained by the following formula [2]:

C i = ξiL+W

[

∂L

∂ui

−Dj

(

∂L

∂uij

)

+DjDk

(

∂L

∂uijk

)]

+Dj(W )

[

∂L

∂uij

−Dk

(

∂L

∂uijk

)]

+DjDk(W )
∂L

∂uijk

, (23)

where i, j, k = 1, 2 and

W = η − ξiui.

We will construct the conserved vectors (23) using the Lie point symmetries
(22) of Eq. (2) found in [3].
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3.2 Rosenau-Hyman equation

Letting in Eq. (15) α = 1, β = 3, κ = 0, we obtain the Rosenau-Hyman
equation

ut − u uxxx − 3 uxuxx − u ux = 0. (24)

In this case, the formal Lagrangian (20) and the substitution (14) assume the
forms

L = v [ut − uuxxx − 3 uxuxx − uux] (25)

and
v = a + bu2, (26)

respectively. We construct the conservation law associated with the scaling
symmetry

X = u
∂

∂u
− t

∂

∂t
· (27)

For this symmetry we have W = u+ t ut. Writing the quantities (23) without
the term ξiL since the Lagrangian L is equal to zero on solutions of Eq. (24)
and taking into account the structure of the formal Lagrangian (25), we obtain

C1 = W
∂L

∂ut

, (28)

C2 = W

[

∂L

∂ux

−Dx

(

∂L

∂uxx

)

+D2
x

(

∂L

∂uxxx

)]

+Dx(W )

[

∂L

∂uxx

−Dx

(

∂L

∂uxxx

)]

+D2
x(W )

∂L

∂uxxx

. (29)

Substituting in (28) and (29) the expression (25) for L, we get

C1 = vW, (30)

C2 = (−u v + uxvx − v uxx − u vxx)W

+ (u vx − 2 v ux)Dx(W )− u vD2
x(W ). (31)

Now we substitute in Eq. (30) the expression W = u + t ut, eliminate ut by
using Eq. (24) and obtain:

C1 = u v + t v (u uxxx + u ux + 3 uxuxx)

= u v + t u v ux −
3

2
t vxu

2
x − tDx (u v)uxx

+Dx

(

t u v uxx +
3

2
t v u2

x

)

. (32)

6



We can shift the last term in Eq. (32) into C2 by using the identity

Dt(C̃
1 +Dx(A)) +Dx(C

2) = Dt(C̃
1) +Dx(C

2 +Dt(A))

and obtain

C1 = u v + t u v ux −
3

2
t vxu

2
x − tDx (u v)uxx. (33)

Now we substitute in Eq. (33) the expression (26) for v, shift the terms of
the form Dx(· · · ) into C2 and finally arrive at the conserved vector with the
following components:

C1 = a u+ b u3,

C2 = −a

(

1

2
u2 + u2

x + u uxx

)

− b

(

3

4
u4 + 3 u3 uxx

)

.
(34)

The vector (34) is a linear combination with constant coefficients a and b of
the following two linearly independent conserved vectors:

C1 = u, C2 = −
1

2
u2 − u2

x − u uxx (35)

and

C1 = u3, C2 = −
3

4
u4 − 3 u3 uxx. (36)

The conservation equation (21) for the vector (35) coincides with Eq. (24),
whereas the vector (36) provides a new conservation law for the Rosenau-
Hyman equation.

3.3 Camassa-Holm equation

For the Camassa-Holm equation (1) the formal Lagrangian (20) is written

L = v

[

ut −
1

3
(utxx + uxtx + uxxt)− uuxxx − 2 uxuxx + 3 uux + κ ux

]

. (37)

We will construct the conservation law by taking the substitution (18) of the
particular form v = u. We use the following symmetry of Eq. (1):

X = −2 t
∂

∂t
+ κ t

∂

∂x
+ (κ+ 2 u)

∂

∂u
· (38)
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Proceeding as in Section 3.2, we obtain the following conserved vector associ-
ated with the symmetry (38):

C1 = 2(u2 + u2
x) + κ u,

C2 = 4(u3 − u2 uxx − u utx) + κ

(

7

2
u2 −

1

2
u2
x − u uxx − utx + κ u

)

.
(39)

When κ = 0 in Eq. (1) the symmetry (38) takes the form (27), and the
conserved vector (39) becomes

C1 = u2 + u2
x, C2 = 2

(

u3 − u2uxx − u utx

)

. (40)

It is shown in [1] that the well known infinite series of conservation laws
of the KdV equation can be obtained by applying the formulae (23) to the
infinite set of Lie-Bäcklund and non-local symmetries of the KdV equation.
The similar procedure can be applied to the Camassa-Holm and Rosenau-
Hyman equations. This is a topic for further research.
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