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MULTIOBJECTIVE FRACTIONAL VARIATIONAL CALCULUS

IN TERMS OF A COMBINED CAPUTO DERIVATIVE∗
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Abstract. The study of fractional variational problems in terms of a combined fractional Caputo
derivative is introduced. Necessary optimality conditions of Euler–Lagrange type for the basic,
isoperimetric, and Lagrange variational problems are proved, as well as transversality and sufficient
optimality conditions. This allows to obtain necessary and sufficient Pareto optimality conditions
for multiobjective fractional variational problems.
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1. Introduction. There is an increasing interest in the study of dynamic sys-
tems of fractional (where “fractional” actually means “non-integer”) order. Extending
derivatives and integrals from integer to non-integer order has a firm and longstand-
ing theoretical foundation. Leibniz mentioned this concept in a letter to L’Hopital
over three hundred years ago. Following L’Hopital’s and Leibniz’s first inquisition,
fractional calculus was primarily a study reserved to the best minds in mathematics.
Fourier, Euler, and Laplace are among the many that contributed to the development
of fractional calculus. Along the history, many found, using their own notation and
methodology, definitions that fit the concept of a non-integer order integral or deriva-
tive. The most famous of these definitions among mathematicians, that have been
popularized in the literature of fractional calculus, are the ones of Riemann–Liouville
and Grunwald–Letnikov. On the other hand, the most intriguing and useful applica-
tions of fractional derivatives and integrals in engineering and science have been found
in the past one hundred years. In some cases, the mathematical notions evolved in or-
der to better meet the requirements of physical reality. The best example of this is the
Caputo fractional derivative, nowadays the most popular fractional operator among
engineers and applied scientists, obtained by reformulating the “classical” definition
of Riemann–Liouville fractional derivative in order to be possible to solve fractional
initial value problems with standard initial conditions [34]. Particularly in the last
decade of the XX century, numerous applications and physical manifestations of frac-
tional calculus have been found. Fractional differentiation is nowadays recognized
as a good tool in various different fields: physics, signal processing, fluid mechanics,
viscoelasticity, mathematical biology, electrochemistry, chemistry, economics, engi-
neering, and control theory (see, e.g., [9, 10, 14, 19, 20, 23, 25, 30, 37, 44, 47]).

The fractional calculus of variations was born in 1996 with the work of Riewe
[39,40], and is nowadays a subject under strong current research (see [2,3,7,8,11,12,
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15–17, 35] and references therein). The fractional calculus of variations extends the
classical variational calculus by considering fractional derivatives into the variational
integrals to be extremized. This occurs naturally in many problems of physics and
mechanics, in order to provide more accurate models of physical phenomena (see,
e.g., [1, 5]). The aims of this paper are twofold. Firstly, we extend the notion of

Caputo fractional derivative to the fractional derivative CD
α,β

γ , which is a convex
combination of the left Caputo fractional derivative of order α and the right Caputo
fractional derivative of order β. This idea goes back at least as far as [22], where based
on the Riemann–Liouville fractional derivatives, the symmetric fractional derivative
was introduced. Klimek’s approach [22] is obtained in our framework as a particular
case, by choosing parameter γ to be 1/2. Although the symmetric fractional deriva-
tive of Riemann–Liouville introduced by Klimek is a useful tool in the description
of some nonconservative models, this type of differentiation does not seems suitable
for all kinds of variational problems. Indeed, the hypothesis that admissible trajecto-
ries y have continuous symmetric fractional derivatives implies that y(a) = y(b) = 0

(cf. [41]). Therefore, the advantage of the fractional Caputo-type derivative CD
α,β

γ

here introduced lies in the fact that using this derivative we can describe a more
general class of variational problems. It is also worth pointing out that the fractional

derivative CD
α,β

γ allows to generalize the results presented in [4]. Our second aim
is to introduce the subject of multiobjective fractional variational problems. This
seems to be a completely open area of research, never considered before in the lit-
erature. Knowing the importance and relevance of multiobjective problems of the
calculus of variations in physics, engineering, and economics (see [13,26,27,33,43,46]
and the references given there), and the usefulness of fractional variational problems,
we trust that the results now obtained will open interesting possibilities for future
research. Main results of the the paper provide methods for identifying Pareto op-
timal solutions. Necessary and sufficient Pareto optimality conditions are obtained
by converting a multiobjective fractional variational problem into a single or a family
of single fractional variational problems with an auxiliary scalar functional, possibly
depending on some parameters.

The paper is organized as follows. Section 2 presents some preliminaries on frac-
tional calculus, essentially to fix notations. In Section 3 we introduce the fractional

derivative CD
α,β

γ and provide the necessary concepts and results needed in the sequel.
Our main results are stated and proved in Section 4 and Section 5. The fractional
variational problems under our consideration are formulated in terms of the fractional

derivative CD
α,β

γ . We discuss the fundamental concepts of a variational calculus such
as the the Euler–Lagrange equations for the elementary (Subsection 4.1), isoperimetric
(Subsection 4.3), and Lagrange (Subsection 4.4) problems, as well as sufficient opti-
mality (Subsection 4.5) and transversality (Subsection 4.2) conditions. Section 5 deals
with the multiobjective fractional variational calculus. We present Pareto optimality
conditions (Subsection 5.1) and examples illustrating our results (Subsection 5.2).

2. Fractional calculus. In this section we review the necessary definitions and
facts from fractional calculus. For more on the subject we refer the reader to the
books [21, 36, 38, 42]. Let f ∈ L1([a, b]) and 0 < α < 1. We begin by defining the left
and the right Riemann–Liouville Fractional Integrals (RLFI) of order α of a function
f . The left RLFI is given by

aI
α
x f(x) :=

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x ∈ [a, b], (2.1)
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and the right RLFI by

xI
α
b f(x) :=

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x ∈ [a, b], (2.2)

where Γ(·) represents the Gamma function, i.e.,

Γ(z) :=

∫ ∞

0

tz−1e−t dt.

Moreover, aI
0
xf = xI

0
b f = f if f is a continuous function. The left and the right

Riemann–Liouville derivatives are defined with the help of the respective fractional
integrals. The left Riemann–Liouville Fractional Derivative (RLFD) is given by

aD
α
xf(x) :=

1

Γ(1− α)

d

dx

∫ x

a

(x− t)−αf(t)dt =
d

dx
aI

1−α
x f(x), x ∈ [a, b], (2.3)

and the right RLFD by

xD
α
b f(x) :=

−1

Γ(1− α)

d

dx

∫ b

x

(t−x)−αf(t)dt =

(

−
d

dx

)

xI
1−α
b f(x), x ∈ [a, b]. (2.4)

Let f ∈ AC([a, b]), where AC([a, b]) represents the space of absolutely continuous
functions on [a, b]. Then the Caputo fractional derivatives are defined as follows: the
left Caputo Fractional Derivative (CFD) by

C
a D

α
xf(x) :=

1

Γ(1− α)

∫ x

a

(x− t)−α d

dt
f(t)dt = aI

1−α
x

d

dx
f(x), x ∈ [a, b], (2.5)

and the right CFD by

C
xD

α
b f(x) :=

−1

Γ(1− α)

∫ b

x

(t−x)−α d

dt
f(t)dt = xI

1−α
b

(

−
d

dx

)

f(x), x ∈ [a, b], (2.6)

where α is the order of the derivative. The operators (2.1)–(2.6) are obviously linear.
We now present the rule of fractional integration by parts for RLFI (see, e.g., [24]).
Let 0 < α < 1, p ≥ 1, q ≥ 1, and 1/p+1/q ≤ 1+α. If g ∈ Lp([a, b]) and f ∈ Lq([a, b]),
then

∫ b

a

g(x)aI
α
x f(x)dx =

∫ b

a

f(x)xI
α
b g(x)dx. (2.7)

In the discussion to follow, we will also need the following formulae for fractional
integrations by parts:

∫ b

a

g(x)Ca D
α
x f(x)dx = f(x)xI

1−α
b g(x)

∣

∣

x=b

x=a
+

∫ b

a

f(x)xD
α
b g(x)dx,

∫ b

a

g(x)CxD
α
b f(x)dx = −f(x)aI

1−α
x g(x)

∣

∣

x=b

x=a
+

∫ b

a

f(x)aD
α
xg(x)dx.

(2.8)

They can be derived using equations (2.3)–(2.6), the identity (2.7), and performing
integration by parts.
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3. The fractional operator CD
α,β

γ . Let α, β ∈ (0, 1) and γ ∈ [0, 1] . We define

the fractional derivative operator CD
α,β

γ by

CD
α,β

γ := γ C
a D

α
x + (1 − γ)Cx D

β
b , (3.1)

which acts on f ∈ AC([a, b]) in the expected way:

CD
α,β

γ f(x) = γC
a D

α
x f(x) + (1− γ)Cx D

β
b f(x).

Note that CDα,β
0 f(x) = C

x D
β
b f(x) and CDα,β

1 f(x) = C
a D

α
x f(x). The operator (3.1)

is obviously linear. Using equations (2.8) it is easy to derive the following rule of

fractional integration by parts for CD
α,β

γ :

∫ b

a

g(x)CD
α,β

γ f(x)dx = γ
[

f(x)xI
1−α
b g(x)

]x=b

x=a

+ (1− γ)
[

−f(x)aI
1−β
x g(x)

]x=b

x=a
+

∫ b

a

f(x)Dβ,α
1−γg(x)dx, (3.2)

where Dβ,α
1−γ := (1 − γ)aD

β
x + γxD

α
b . Let N ∈ N and f = [f1, . . . , fN ] : [a, b] → R

N

with fi ∈ AC([a, b]), i = 1, . . . , N ; α, β, γ ∈ R
N with αi, βi ∈ (0, 1) and γi ∈ [0, 1],

i = 1, . . . , N . Then,

CD
α,β

γ f(x) :=
[

CDα1,β1

γ1
f1(x), . . . ,

C DαN ,βN

γN
fN (x)

]

.

Let D denote the set of all functions y : [a, b] → R
N such that CD

α,β

γ y exists and is
continuous on the interval [a, b]. We endow D with the following norm:

‖y‖1,∞ := max
a≤x≤b

‖y(x)‖ + max
a≤x≤b

‖CD
α,β

γ y(x)‖,

where ‖·‖ is a norm in R
N . Along the work we denote by ∂iK, i = 1, . . . ,M (M ∈ N),

the partial derivative of function K : RM → R with respect to its ith argument. Let
λ ∈ R

r. For simplicity of notation we introduce the operators [y]α,βγ and λ{y}α,βγ by

[y]α,βγ (x) :=
(

x,y(x),CD
α,β

γ y(x)
)

,

λ{y}
α,β
γ (x) :=

(

x,y(x),CD
α,β

γ y(x), λ1, . . . , λr

)

.

4. Calculus of variations via CD
α,β

γ . We are concerned with the problem
of finding the minimum of a functional J : D → R, where D is a subset of D.
The formulation of a problem of the calculus of variations requires two steps: the
specification of a performance criterion, and the statement of physical constraints
that should be satisfied. The performance criterion J , also called cost functional
(or objective), must be specified for evaluating quantitatively the performance of the
system under study. We consider the following cost:

J (y) =

∫ b

a

L[y]α,βγ (x) dx,
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where x ∈ [a, b] is the independent variable; y(x) ∈ R
N is a real vector variable, the

functions y are generally called trajectories or curves; CD
α,β

γ y(x) ∈ R
N stands for

the fractional derivative of y(x); and L ∈ C1([a, b]× R
2N ;R) is the Lagrangian.

Enforcing constraints in the optimization problem reduces the set of candidate
functions and leads to the following definition.

Definition 4.1. A trajectory y ∈ D is said to be an admissible trajectory,
provided it satisfies all the constraints of the problem along the interval [a, b]. The set
of admissible trajectories is defined as D := {y ∈ D : y is admissible}.

We now define what is meant by a minimum of J on D.

Definition 4.2. A trajectory ȳ ∈ D is said to be a local minimizer for J on D,
if there exists δ > 0 such that J (ȳ) ≤ J (y) for all y ∈ D with ‖y− ȳ‖1,∞ < δ.

The concept of variation of a functional is central to the solution of problems of
the calculus of variations.

Definition 4.3. The first variation of J at y ∈ D in the direction h ∈ D is
defined as

δJ (y;h) := lim
ε→0

J (y + εh)− J (y)

ε
=

∂

∂ε
J (y + εh)

∣

∣

∣

∣

ε=0

,

provided the limit exists.
Definition 4.4. A direction h ∈ D, h 6= 0, is said to be an admissible variation

for J at y ∈ D if
(i) δJ (y;h) exists; and
(ii) y + εh ∈ D for all sufficiently small ε.

The following well known result offers a necessary optimality condition for the
problems of the calculus of variations, based on the concept of variations.

Theorem 4.5 (see, e.g., Proposition 5.5 of [45]). Let J be a functional defined
on D. Suppose that y is a local minimizer for J on D. Then, δJ (y;h) = 0 for each
admissible variation h at y.

4.1. Elementary problem of the CD
α,β

γ fractional calculus of variations.

Let us begin with the following fundamental problem:

J (y) =

∫ b

a

L[y]α,βγ (x) dx −→ min (4.1)

over all y ∈ D satisfying the boundary conditions

y(a) = ya, y(b) = yb, (4.2)

where ya,yb ∈ R
N are given. The next theorem gives the fractional Euler–Lagrange

equation for the problem (4.1)–(4.2).

Theorem 4.6. Let y = (y1, . . . , yN) be a local minimizer to problem (4.1)–(4.2).
Then, y satisfies the following system of N fractional Euler–Lagrange equations:

∂iL[y]
α,β
γ (x) +D

βi−1,αi−1

1−γi−1
∂N+iL[y]

α,β
γ (x) = 0, i = 2, . . . N + 1, (4.3)

for all x ∈ [a, b].
Proof. Suppose that y is a local minimizer for J . Let h be an arbitrary admissible

variation for problem (4.1)–(4.2), i.e., hi(a) = hi(b) = 0, i = 1, . . . , N . Based on the
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differentiability properties of L and Theorem 4.5, a necessary condition for y to be a
local minimizer is given by

∂

∂ε
J (y + εh)

∣

∣

∣

∣

ε=0

= 0 ,

that is,

∫ b

a

[

N+1
∑

i=2

∂iL[y]
α,β
γ (x)hi−1(x) +

N+1
∑

i=2

∂N+iL[y]
α,β
γ (x)CDαi−1,βi−1

γi−1
hi−1(x)

]

dx = 0.

(4.4)
Using formulae (3.2) of integration by parts in the second term of the integrand
function, we get

∫ b

a

[

N+1
∑

i=2

∂iL[y]
α,β
γ (x) +D

βi−1,αi−1

1−γi−1
∂N+iL[y]

α,β
γ (x)

]

hi−1(x)dx

+ γ

[

N+1
∑

i=2

hi−1(x)
(

xI
1−αi−1

b ∂N+iL[y]
α,β
γ (x)

)

]∣

∣

∣

∣

∣

x=b

x=a

− (1− γ)

[

N+1
∑

i=2

hi−1(x)
(

aI
1−βi−1

x ∂N+iL[y]
α,β
γ (x)

)

]∣

∣

∣

∣

∣

x=b

x=a

= 0. (4.5)

Since hi(a) = hi(b) = 0, i = 1, . . . , N , by the fundamental lemma of the calculus of
variations we deduce that

∂iL[y]
α,β
γ (x) +D

βi−1,αi−1

1−γi−1
∂N+iL[y]

α,β
γ (x) = 0, i = 2, . . . , N + 1,

for all x ∈ [a, b].

Observe that if α and β go to 1, then C
a D

α
x can be replaced with d

dx
and C

x D
β
b

with − d
dx

(see [38]). Thus, if γ = 1 or γ = 0, then for α, β → 1 we obtain a
corresponding result in the classical context of the calculus of variations (see, e.g., [45,
Proposition 6.1]).

4.2. Fractional transversality conditions. Let l ∈ {1, . . . , N}. Assume that
y(a) = ya, yi(b) = ybi , i = 1, . . . , N , i 6= l, but yl(b) is free. Then, hl(b) is free and
by equations (4.3) and (4.5) we obtain

[

γxI
1−αl

b ∂N+l+1L[y]
α,β
γ (x) −(1− γ)aI

1−βl
x ∂N+1+lL[y]

α,β
γ (x)

]∣

∣

∣

x=b
= 0,

where α, β, γ ∈ R. Let us consider now the case when y(a) = ya, yi(b) = ybi ,
i = 1, . . . , N , i 6= l, and yl(b) is free but restricted by a terminal condition yl(b) ≤ ybl .
Then, in the optimal solution y, we have two possible types of outcome: yl(b) < ybl or
yl(b) = ybl . If yl(b) < ybl , then there are admissible neighboring paths with terminal
value both above and below yl(b), so that hl(b) can take either sign. Therefore, the
transversality conditions is

[

γxI
1−αl

b ∂N+l+1L[y]
α,β
γ (x) −(1− γ)aI

1−βl
x ∂N+1+lL[y]

α,β
γ (x)

]∣

∣

∣

x=b
= 0 (4.6)

for yl(b) < ybl . The other outcome yl(b) = ybl only admits the neighboring paths with
terminal value ỹl(b) ≤ yl(b). Assuming, without loss of generality, that hl(b) ≥ 0, this
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means that ε ≤ 0. Hence, the transversality condition, which has it root in the first
order condition (4.4), must be changed to an inequality. For a minimization problem,
the ≤ type of inequality is called for, and we obtain

[

γxI
1−αl

b ∂N+l+1L[y]
α,β
γ (x) −(1− γ)aI

1−βl
x ∂N+1+lL[y]

α,β
γ (x)

]∣

∣

∣

x=b
≤ 0 (4.7)

for yl(b) = ybl . Combining (4.6) and (4.7), we may write the following transversality
condition for a minimization problem:

[

γxI
1−αl

b ∂N+l+1L[y]
α,β
γ (x) −(1− γ)aI

1−βl
x ∂N+1+lL[y]

α,β
γ (x)

]∣

∣

∣

x=b
≤ 0, yl(b) ≤ ybl ,

(yl(b)− ybl )
[

γxI
1−αl

b ∂N+l+1L[y]
α,β
γ (x) −(1− γ)aI

1−βl
x ∂N+1+lL[y]

α,β
γ (x)

]∣

∣

∣

x=b
= 0.

4.3. The CD
α,β

γ fractional isoperimetric problem. Let us consider now the
isoperimetric problem that consists of minimizing (4.1) over all y ∈ D satisfying r
isoperimetric constraints

Gj(y) =

∫ b

a

Gj [y]α,βγ (x)dx = lj, j = 1, . . . , r, (4.8)

where Gj ∈ C1([a, b]× R
2N ;R), j = 1, . . . , r, and boundary conditions (4.2).

Necessary optimality conditions for isoperimetric problems can be obtained by
the following general theorem.

Theorem 4.7 (see, e.g., Theorem 2 of [18] on p. 91). Let J ,G1, . . . ,Gr be func-
tionals defined in a neighborhood of y and having continuous first variations in this
neighborhood. Suppose that y is a local minimizer of (4.1) subject to the boundary
conditions (4.2) and the isoperimetric constrains (4.8). Assume that there are func-
tions h1, . . . ,hr ∈ D such that the matrix A = (akl), akl := δGk(y;hl), has maximal
rank r. Then there exist constants λ1, . . . , λr ∈ R such that the functional

F := J −
r
∑

j=1

λjG
j

satisfies

δF(y;h) = 0 (4.9)

for all h ∈ D

Suppose now that assumptions of Theorem 4.7 hold. Then, equation (4.9) is
fulfilled for every h ∈ D. Let us consider function h such that h(a) = h(b) = 0.
Then, we have

0 = δF(y;h) =
∂

∂ε
F(y + εh)|ε=0

=

∫ b

a

[

N+1
∑

i=2

∂iFλ{y}
α,β
γ (x)hi−1(x) +

N+1
∑

i=2

∂N+iFλ{y}
α,β
γ (x)CDαi−1,βi−1

γi−1
hi−1(x)

]

dx,

where the function F : [a, b]× R
2N × R

r → R is defined by

Fλ{y}
α,β
γ (x) := L[y]α,βγ (x) −

r
∑

j=1

λjG
j [y]α,βγ (x).
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On account of the above, and similarly in spirit to the proof of Theorem 4.6, we obtain

∂iλF{y}α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iλF{y}α,βγ (x) = 0, i = 2, . . .N + 1. (4.10)

Therefore, we have the following necessary optimality condition for the fractional
isoperimetric problems:

Theorem 4.8. Let assumptions of Theorem 4.7 hold. If y is a local minimizer
to the isoperimetric problem given by (4.1),(4.2) and (4.8), then y satisfies the system
of N fractional Euler–Lagrange equations (4.10) for all x ∈ [a, b].

Suppose now that constraints (4.8) are characterized by inequalities

Gj(y) =

∫ b

a

Gj [y]α,βγ (x)dx ≤ lj, j = 1, . . . , r.

In this case we can set
∫ b

a

(

Gj [y]α,βγ (x)−
lj

b − a

)

dx+

∫ b

a

(φj(x))
2dx = 0,

j = 1, . . . , r, where φj have the some continuity properties as yi. Therefore, we obtain
the following problem:

Ĵ (y) =

∫ b

a

L̂(x,y(x),CD
α,β

γ y(x), φ1(x), . . . , φr(x)) dx −→ min

subject to r isoperimetric constraints
∫ b

a

[

Gj [y]α,βγ (x) −
lj

b− a
+ (φj(x))

2

]

dx = 0, j = 1, . . . , r,

and boundary conditions (4.2). Assuming that assumptions of Theorem 4.8 are satis-
fied, we conclude that there exist constants λj ∈ R, j = 1, . . . , r, for which the system
of equations

D
βi−1,αi−1

1−γi−1
∂N+iF̂ (x,y(x),CD

α,β

γ y(x), λ1, . . . , λr, φ1(x), . . . , φr(x))

+ ∂iF̂ (x,y(x),CD
α,β

γ y(x), λ1, . . . , λr, φ1(x), . . . , φr(x)) = 0, (4.11)

i = 2, . . . , N + 1, F̂ = L̂+
∑r

j=1 λj(G
j −

lj
b−a

+ φ2
j ) and

λjφj(x) = 0, j = 1, . . . , r, (4.12)

hold for all x ∈ [a, b]. Note that it is enough to assume that the regularity condition
holds for the constraints which are active at the local minimizer y (constraint Gk is
active at y if Gk(y) = lk). Indeed, suppose that l < r constrains, say G1, . . . ,Gl for
simplicity, are active at the local minimizer y, and there are functions h1, . . . ,hl ∈ D

such that the matrix

B = (bkj), bkj := δGk(y;hj), k, j = 1, . . . , l < r

has maximal rank l. Since the inequality constraints Gl+1, . . . ,Gr are inactive, the
condition (4.12) is trivially satisfied by taking λl+1 = · · · = λr = 0. On the other
hand, since the inequality constraints G1, . . . ,Gl are active and satisfy a regularity
condition at y, the conclusion that there exist constants λj ∈ R, j = 1, . . . , r, such
that (4.11) holds follow from Theorem 4.8. Moreover, (4.12) is trivially satisfied for
j = 1, . . . , l.
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4.4. The CD
α,β

γ fractional Lagrange problem. Let us consider the following
Lagrange problem, which consists of minimizing (4.1) over all y ∈ D satisfying r
independent constraints (r < N)

Gj [y]α,βγ (x) = 0, j = 1, . . . , r, (4.13)

and boundary conditions (4.2). In mechanics, constraints of type (4.13) are called
nonholonomic. By the independence of the r constraints Gj ∈ C1([a, b] × R

2N ;R) it
is meant that it should exist a nonvanishing Jacobian determinant of order r, such as
∣

∣

∣

∂(G1,...,Gr)
∂(pN+2,...,pN+2+r)

∣

∣

∣ 6= 0. Of course, any r of pj , j = N +2, ..., 2N +1, can be used, not

necessarily the first r.
Theorem 4.9. A function y which is a solution to problem (4.1),(4.2) subject to

r independent constraints (r < N) (4.13) satisfies, for suitably chosen functions λj ,
j = 1, . . . , r, the system of N fractional Euler–Lagrange equations

∂iF [y, λ]α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iF [y, λ]α,βγ (x) = 0, x ∈ [a, b], i = 2, . . . , N + 1,

where F [y, λ]α,βγ (x) = L[y]α,βγ (x) +
∑r

j=1 λj(x)G
j [y]α,βγ (x).

Proof. Suppose that y = (y1, . . . , yN ) is the solution to problem defined by
(4.1),(4.2), and (4.13). Let h = (h1, . . . , hN) be an arbitrary admissible variation,
i.e., hi(a) = hi(b) = 0, i = 1, . . . , N , and Gj [y + εh]α,βγ (x) = 0, j = 1, . . . , r, where
ε ∈ R is a small parameter. Because y = (y1, . . . , yN ) is a solution to problem defined
by (4.1),(4.2), and (4.13), it follows that

∂

∂ε
J (y + εh)

∣

∣

∣

∣

ε=0

= 0 ,

that is,

∫ b

a

[

N+1
∑

i=2

∂iL[y]
α,β
γ (x)hi−1(x) +

N+1
∑

i=2

∂N+iL[y]
α,β
γ (x)CDαi−1,βi−1

γi−1
hi−1(x)

]

dx = 0,

(4.14)
and, for j = 1, . . . , r,

N+1
∑

i=2

∂iG
j [y]α,βγ (x)hi−1(x) +

N+1
∑

i=2

∂N+iG
j [y]α,βγ (x)CDαi−1,βi−1

γi−1
hi−1(x) = 0. (4.15)

Multiplying the jth equation of the system (4.15) by the unspecified function λj(x),
for all j = 1, . . . , r, integrating with respect to x, and adding the left-hand sides (all
equal to zero for any choice of the λj) to the integrand of (4.14), we obtain

∫ b

a





N+1
∑

i=2



∂iL[y]
α,β
γ (x) +

r
∑

j=1

λj(x)∂iG
j [y]α,βγ (x)



 hi−1(x)

+

N+1
∑

i=2



∂N+iL[y]
α,β
γ (x) +

r
∑

j=1

λj(x)∂N+iG
j [y]α,βγ (x)



 (CDαi−1,βi−1

γi−1
hi−1(x))



 dx

=

∫ b

a

[

N+1
∑

i=2

∂iF [y, λ]α,βγ (x)hi−1(x) +
N+1
∑

i=2

∂N+iF [y, λ]α,βγ (x)(CDαi−1,βi−1

γi−1
hi−1(x))

]

dx

= 0,
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where F [y, λ]α,βγ (x) = L[y]α,βγ (x) +
∑r

j=1 λ(x)G
j [y]α,βγ (x). Integrating by parts,

∫ b

a

[

N+1
∑

i=2

∂iF [y, λ]α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iF [y, λ]α,βγ (x)

]

hi−1(x)dx = 0. (4.16)

Because of (4.15), we cannot regard the N functions h1, . . . , hN as being free for arbi-
trary choice. There is a subset of r of these functions whose assignment is restricted
by the assignment of the remaining (N − r). We can assume, without loss of gener-
ality, that h1, . . . , hr are the functions of the set whose dependence upon the choice
of the arbitrary hr+1, . . . , hN is governed by (4.15). We now assign the functions
λ1, . . . , λr to be the set of r functions that make vanish (for all x between a and b)
the coefficients of h1, . . . , hr in the integrand of (4.16). That is, λ1, . . . , λr are chosen
so as to satisfy

∂iF [y, λ]α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iF [y, λ]α,βγ (x) = 0, i = 2, . . . , r + 1, x ∈ [a, b].

(4.17)
With this choice (4.16) gives

∫ b

a

[

N+1
∑

i=r+2

∂iF [y, λ]α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iF [y, λ]α,βγ (x)

]

hi−1(x)dx = 0.

Since the functions hr+1, . . . , hN are arbitrary, we may employ the fundamental lemma
of the calculus of variations to conclude that

∂iF [y, λ]α,βγ (x) +D
βi−1,αi−1

1−γi−1
∂N+iF [y, λ]α,βγ (x) = 0, (4.18)

i = r + 1, . . . , N + 1, for all x ∈ [a, b].
Remark 4.10. In order to determine the (N + r) unknown functions y1, . . . , yn,

λ1, . . . , λr, we must consider the system of (N + r) equations, consisting of (4.13),
(4.17), and (4.18), together with the 2N boundary conditions (4.2).

Assume now that the constraints, instead of (4.13), are characterized by inequal-
ities:

Gj [y]α,βγ (x) ≤ 0, j = 1, . . . , r.

In this case we can set

Gj [y]α,βγ (x) + (φj(x))
2 = 0, j = 1, . . . , r,

where φj have the some continuity properties as yi. Therefore, we obtain the following
problem:

Ĵ (y) =

∫ b

a

L̂(x,y(x),CD
α,β

γ y(x), φ1(x), . . . , φr(x)) dx −→ min (4.19)

subject to r independent constraints (r < N)

Gj [y]α,βγ (x) + (φj(x))
2 = 0, j = 1, . . . , r, (4.20)

and boundary conditions (4.2). Applying Theorem 4.9 we get the following result.
Theorem 4.11. A set of functions y1, . . . , yN , φ1, . . . , φr, which is a solution

to problem (4.19)–(4.20), satisfies, for suitably chosen λj, j = 1, . . . , r, the following
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system of equations:

D
βi−1,αi−1

1−γi−1
∂N+iF̂ (x,y(x),CD

α,β

γ y(x), λ1(x), . . . , λr(x), φ1(x), . . . , φr(x))

+ ∂iF̂ (x,y(x),CD
α,β

γ y(x), λ1(x), . . . , λr(x), φ1(x), . . . , φr(x)) = 0,

i = 2, . . . , N +1, where F̂ = L̂+
∑r

j=1 λj(G
j +φ2

j), and λj(x)φj(x) = 0, j = 1, . . . , r,
hold for all x ∈ [a, b].

4.5. Sufficient condition of optimality. In this section we provide sufficient

optimality conditions for the elementary and the isoperimetric problem of the CD
α,β

γ

fractional calculus of variations. Similarly to what happens in the classical calculus
of variations, some conditions of convexity are in order.

Definition 4.12. Given a function f ∈ C1([a, b]×R
2N ;R), we say that f(x,y,v)

is jointly convex in (y,v), if

f(x,y + y0,v + v0)− f(x,y,v) ≥
N+1
∑

i=2

∂if(x,y,v)y
0
i−1 +

N+1
∑

i=2

∂N+if(x,y,v)v
0
i−1

for all (x,y,v),(x,y + y0,v + v0) ∈ [a, b]× R
2N .

Theorem 4.13. Let L(x,y,v) be jointly convex in (y,v). If y satisfies the
system of N fractional Euler–Lagrange equations (4.3), then y is a global minimizer
to problem (4.1)–(4.2).

Proof. The proof is similar to the proof of Theorem 3.3 in [28].
Theorem 4.14. Let F (x,y,v, λ̄) = L(x,y,v) −

∑r
j=1 λ̄jG

j(x,y,v) be jointly

convex in (y,v), for some constants λ̄j ∈ R, j = 1, . . . , r. If y0 satisfies the sys-
tem of N fractional Euler–Lagrange equations (4.10), then y0 is a minimizer to the
isoperimetric problem defined by (4.1),(4.2) and (4.8).

Proof. By Theorem 4.13, y0 minimizes
∫ b

a
Fλ̄{y}

α,β
γ (x) dx. That is, for all func-

tions satisfying condition (4.2) we have

∫ b

a

L[y]α,βγ (x) dx −
r
∑

j=1

λ̄j

∫ b

a

Gj [y]α,βγ (x) dx

≥

∫ b

a

L[y0]α,βγ (x) dx −
r
∑

j=1

λ̄j

∫ b

a

Gj [y0]α,βγ (x) dx.

Restricting to the isoperimetric constraints (4.8), we obtain that

∫ b

a

L[y]α,βγ (x) dx −
r
∑

j=1

λ̄j lj dx ≥

∫ b

a

L[y0]α,βγ (x) dx −
r
∑

j=1

λ̄j lj dx.

Therefore,

∫ b

a

L[y]α,βγ (x) dx ≥

∫ b

a

L[y0]α,βγ (x) dx

as desired.
Choosing r = 1 in Theorem 4.14 one can easily obtain [4, Theorem 3.10].



12 A. B. MALINOWSKA AND D. F. M. TORRES

5. Multiobjective fractional optimization. Multiobjective optimization is a
natural extension of the traditional optimization of a single-objective function. If the
objective functions are commensurate, minimizing one-objective function minimizes
all criteria and the problem can be solved using tradicional optimization techniques.
However, if the objective functions are incommensurate, or competing, then the min-
imization of one objective function requires a compromise in another objective. Here
we consider multiobjective fractional variational problems with a finite number d ≥ 1
of objective (cost) functionals

(

J 1(y), . . . ,J d(y)
)

=

(

∫ b

a

L1[y]α,βγ (x) dx, . . . ,

∫ b

a

Ld[y]α,βγ (x) dx

)

−→ min (5.1)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (5.2)

ya,yb ∈ R
N , and r (r < N) independent constraints

Gj [y]α,βγ (x) ≤ 0, j = 1, . . . , r, (5.3)

where Li, Gj ∈ C1([a, b] × R
2N ;R), i = 1, . . . , d, j = 1, . . . , r. We would like to find

a function y ∈ D, satisfying constraints (5.2) and (5.3), that renders the minimum
value to each functional J i, i = 1, . . . , d, simultaneously. The competition between
objectives gives rise to the necessity of distinguish between the difference of multiob-
jective optimization and traditional single-objective optimization. Competition causes
the lack of complete order for multiobjective optimization problems. The concept of
Pareto optimality is therefore used to characterize a solution to the multiobjective
optimization problem. For the usefulness of variational analysis and Pareto optimal
allocations in welfare economics, we refer the reader to [32]. We define

E := {y ∈ D : y satisyies conditions (5.2) and (5.3)}.

Definition 5.1. A function ȳ ∈ E is called a Pareto optimal solution to problem
(5.1)–(5.3) if does not exist y ∈ E with

∀i ∈ {1, . . . , d} : J i(y) ≤ J i(ȳ) ∧ ∃i ∈ {1, . . . , d} : J i(y) < J i(ȳ).

Definition 5.1 introduces the notion of global Pareto optimality. Another impor-
tant concept is the one of local Pareto optimality.

Definition 5.2. A function ȳ ∈ E is called a local Pareto optimal solution
to problem (5.1)–(5.3) if there exists δ > 0 for which does not exist y ∈ E with
‖y − ȳ‖1,∞ < δ and

∀i ∈ {1, . . . , d} : J i(y) ≤ J i(ȳ) ∧ ∃i ∈ {1, . . . , d} : J i(y) < J i(ȳ).

Naturally, any global Pareto optimal solution is locally Pareto optimal. For
enhanced notions of Pareto optimality of constrained multiobjective problems, the
reader is referred to [6].
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5.1. Fractional Pareto optimality conditions. We obtain a sufficient condi-
tion for Pareto optimality by modifying the original multiobjective fractional problem
(5.1)–(5.3) into the following weighting problem:

d
∑

i=1

wi

∫ b

a

Li[y]α,βγ (x) dx −→ min (5.4)

subject to y ∈ E , where wi ≥ 0 for all i = 1, . . . , d, and
∑d

i=1 wi = 1.
Theorem 5.3. The solution of the weighting problem (5.4) is Pareto optimal if

the weighting coefficients are positive, that is, wi > 0 for all i = 1, . . . , d. Moreover,
the unique solution of the weighting problem (5.4) is Pareto optimal.

Proof. Let ȳ ∈ E be a solution to problem (5.4) with wi > 0 for all i = 1, . . . , d.
Suppose that ȳ is not Pareto optimal. Then, there exists y such that J i(y) ≤ J i(ȳ)
for all i = 1, . . . , d and J j(y) < J j(ȳ) for at least one j. Since wi > 0 for all

i = 1, . . . , d, we have
∑d

i=1 wiJ
i(y) <

∑d
i=1 wiJ

i(ȳ). This contradicts the minimality
of ȳ. Now, let ȳ be the unique solution to (5.4). If ȳ is not Pareto optimal, then
∑d

i=1 wiJ i(y) ≤
∑d

i=1 wiJ i(ȳ). This contradicts the uniqueness of ȳ.
Therefore, by varying the weights over the unit simplex {w = (w1, . . . , wd) : wi ≥

0,
∑d

i=1 wi = 1} ones obtains, in principle, different Pareto optimal solutions. The
next theorem provides a necessary and sufficient condition for Pareto optimality. The
result is analogous to that valid for the finite dimensional case (see, e.g., Chapter 3.1
and Chapter 3.3 of [31]).

Theorem 5.4. A function ȳ ∈ E is Pareto optimal to problem (5.1)–(5.3) if and
only if it is a solution to the scalar fractional variational problem

∫ b

a

Li[y]α,βγ (x) dx −→ min

subject to y ∈ E and

∫ b

a

Lj[y]α,βγ (x) dx ≤

∫ b

a

Lj [ȳ]α,βγ (x) dx, j = 1, . . . , d, j 6= i,

for each i = 1, . . . , d.
Proof. Suppose that ȳ is Pareto optimal. Then ȳ ∈ Ck = {y ∈ E : J j(y) ≤

J j(ȳ), j = 1, . . . , d, j 6= k} for all k, so Ck 6= ∅. If ȳ does not minimize J k(y) on
the constrained set Ck for some k, then there exists y ∈ E such that J k(y) < J k(ȳ)
and J j(y) ≤ J j(ȳ) for all j 6= k. This contradicts the Pareto optimality of ȳ.
Now, suppose that ȳ minimize each J k(y) on the constrained set Ck. If ȳ is not
Pareto optimal, then there exists y such that J i(y) ≤ J i(ȳ) for all i = 1, . . . , d and
J j(y) < J j(ȳ) for at least one j. This contradicts the minimality of y for J j(y) on
Cj .

Remark 5.5. For a function y ∈ E to be Pareto optimal to problem (5.1)–(5.3),
it is necessary to be a solution to the fractional isoperimetric problems

∫ b

a

Li[y]α,βγ (x) dx −→ min

subject to y ∈ E and

∫ b

a

Lj[y]α,βγ (x) dx =

∫ b

a

Lj [ȳ]α,βγ (x) dx, j = 1, . . . , d, j 6= i,
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for all i = 1, . . . , d. Therefore, necessary optimality conditions for the fractional
isoperimetric problems (see Theorem 4.8) are also necessary for fractional Pareto
optimality.

5.2. Examples. We illustrate our results with two multiobjective fractional vari-
ational problems.

Example 1. Let ȳ(x) = Eα(x
α), x ∈ [0, 1], where Eα is the Mittag–Leffler

function:

Eα(z) =
∞
∑

k=1

zk

Γ(αk + 1)
, z ∈ R, α > 0.

When α = 1, the Mittag–Leffler function is simply the exponential function: E1(x) =
ex. We note that the left Caputo fractional derivative of ȳ is ȳ (cf. [21], p. 98):

C
0 D

α
x ȳ(x) = ȳ(x).

Consider the following multiobjective fractional variational problem (N = 1, γ = 1,
and d = 2):

(

J 1(y),J 2(y)
)

=

(∫ 1

0

(C0 D
α
xy(x))

2 dx,

∫ 1

0

ȳ(x)C0 D
α
x y(x) dx

)

−→ min (5.5)

subject to

y(0) = 0, y(1) = Eα(1). (5.6)

Observe that ȳ satisfies the necessary Pareto optimality conditions (see Remark 5.5).
Indeed, as shown in [4, Example 1], ȳ is a solution to the isoperimetric problem

J 1(y) =

∫ 1

0

(C0 D
α
x y(x))

2 dx −→ min

subject to

∫ 1

0

ȳ(x)C0 D
α
xy(x) dx =

∫ 1

0

(ȳ(x))2 dx.

Consider now the following fractional isoperimetric problem:

J 2(y) =

∫ 1

0

ȳ(x)C0 D
α
xy(x) dx −→ min

subject to

∫ 1

0

(C0 D
α
xy(x))

2 dx =

∫ 1

0

(C0 D
α
x ȳ(x))

2 dx.

Let us apply Theorem 4.7. The equality xD
α
1 y(x) = 0 holds if and only if y(x) =

d(1 − x)α−1 with d ∈ R (see [21, Corollary 2.1]). Hence, ȳ does not satisfy equation

xD
α
1 (

C
0 D

α
x y) = 0. The augmented function is

Fλ{y}
α,β
γ (x) = ȳ(x)C0 D

α
xy(x)− λ(C0 D

α
xy(x))

2,
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and the corresponding fractional Euler–Lagrange equation gives

xD
α
1 (ȳ(x) − 2λC

0 D
α
x y(x)) = 0.

A solution to this equation is λ = 1
2 and y = ȳ. Therefore, by Remark 5.5, y = ȳ is a

candidate Pareto optimal solution to problem (5.5)–(5.6).
Example 2. Consider the following multiobjective fractional variational problem:

(

J 1(y),J 2(y)
)

=

(∫ 1

0

1

2
(C0 D

α
x y(x)− f(x))2 dx,

∫ 1

0

1

2
(C0 D

α
xy(x))

2 dx

)

−→ min

(5.7)
subject to

y(0) = 0, y(1) = χ, χ ∈ R, (5.8)

where f is a fixed function. In this case we have N = 1, γ = 1, and d = 2. By Theo-
rem 5.3, Pareto optimal solutions to problem (5.7)–(5.8) can be found by considering
the family of problems

w

∫ 1

0

1

2
(C0 D

α
xy(x)− f(x))2 dx+ (1 − w)

∫ 1

0

1

2
C
0 D

α
xy(x) dx −→ min (5.9)

subject to

y(0) = 0, y(1) = χ, χ ∈ R, (5.10)

where w ∈ [0, 1]. Let us now fix w. By Theorem 4.6, a solution to problem (5.9)–(5.10)
satisfies the fractional Euler–Lagrange equation

xD
α
1 (

C
0 D

α
x y(x)− wf(x)) = 0. (5.11)

Moreover, by Theorem 4.13, a solution to (5.11) is a global minimizer to problem
(5.9)–(5.10). Therefore, solving equation (5.11) for w ∈ [0, 1], we are able to obtain
Pareto optimal solutions to problem (5.7)–(5.8). In order to solve equation (5.11),
firstly we use Corollary 2.1 of [21] to get the following equation:

C
0 D

α
xy(x)− wf(x) = d(1 − x)α−1, d ∈ R. (5.12)

Equation (5.12) needs to be solved numerically. We did numerical simulations using
the MatLab solver fode for linear Fractional-Order Differential Equations (FODE)
with constant coefficients, developed by Farshad Merrikh Bayat [29]. The results for
α = 1/2, f(x) = ex, and different values of the parameter w can be seen in Figure 5.1.
Numerical results for different values of α show that when α → 1 the fractional solu-
tion converges to the solution of the classical problem of the calculus of variations.

Acknowledgments. The authors would like to express their gratitude to Ivo
Petras, for having called their attention to [29] as well as for helpful discussions on
numerical aspects and available software packages for fractional differential equations.
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