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Abstract

In this paper, another proof of Pell identities is presented by using

the determinant of tridiagonal matrices. It is calculated via the Laplace

expansion.
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1 Introduction

Pell numbers are defined as

Pn = 2Pn−1 + Pn−2

with the initial conditions P0 = 0, P1 = 1 for n ≥ 2.
In [1], a complex factorization formula for (n+1)th Pell number is obtained

to provided the tridiagonal matrix

N(n) =



















2i 1
1 2i 1

1 2i 1
. . .

. . .
. . .

1 2i 1
1 2i



















as in the following:

Pn+1 = m |N(n)| , m =















1, n ≡ 0 (mod 4)
−i, n ≡ 1 (mod 4)
−1, n ≡ 2 (mod 4)
i, n ≡ 3 (mod 4)

. (1)
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In [2], an identity of Fibonacci numbers is proved via the determinant of
the tridiagonal matrix. In [3], the authors showed the connection between
Fibonacci numbers and Chebyshev polynomials and obtained a complex fac-
torization for Fibonacci numbers by using a sequence of the tridiagonal matri-
ces. Then with a small difference in the tridiagonal matrix, it is showed that
how Lucas numbers and Chebyshev polynomials are connected to each other.
Two complex factorization are obtained by using the n × n tridiagonal and
anti-tridiagonal matrix for n is even in [4].

In this paper, we give another proof of Pell identities

P2n = Pn(Pn+1 + Pn−1) (2)

Pn = PkPn−k+1 + Pk−1Pn−k (3)

where k is a positive integer. For 1 ≤ k ≤ n

Pn = P1Pn + P0Pn−1

Pn = P2Pn−1 + P1Pn−2

Pn = P3Pn−2 + P2Pn−3

Pn = P4Pn−3 + P3Pn−4

...
Pn = PnP1 + Pn−1P0.

(4)

2 Main Result

Let A be an n×nmatrix, A([i1, i2, . . . , ik], [j1, j2, . . . , jk]) be the k×k submatrix
of A and M([i1, i2, . . . , ik], [j1, j2, . . . , jk]) be the (n− k)× (n− k) minor of the
matrix A. The cofactor of A is defined by

Å([i1, i2, . . . , ik], [j1, j2, . . . , jk]) = (−1)mM([i1, i2, . . . , ik], [j1, j2, . . . , jk])

where 1 ≤ i1, i2, · · · , ik ≤ n and m =
∑k

r=1
(ir + jr).

The determinant of the matrix A is

det(A) =
∑

1≤i1,i2,··· ,ik≤n

det(A([i1, i2, . . . , ik], [j1, j2, . . . , jk]))

× det(Å([i1, i2, . . . , ik], [j1, j2, . . . , jk])).

If A(i, j) = aij , then Å(i, j) = (−1)i+jM(i, j) = Åij and the determinant is

det(A) =

n
∑

i=1

aijÅij .

This is the famous Laplace expansion formula [2]. We will use this formula to
proof of Pell identities in (3).

2



The cofactors of the first row of the matrix N(n) are

Å11 =















−Pn−1 , n ≡ 0(mod4)
−iPn−1 , n ≡ 1(mod4)

Pn−1 , n ≡ 2(mod4)
iPn−1 , n ≡ 3(mod4)

Å12 =















−iPn−2 , n ≡ 0(mod 4)
Pn−2 , n ≡ 1(mod 4)
iPn−2 , n ≡ 2(mod 4)
−Pn−2 , n ≡ 3(mod 4)

.

By using the Laplace expansion formula the determinant of the matrix N(n−1)
is

det(N(n− 1)) = 2Pn−1 + Pn−2. (5)

From (1), the initial value P0 = 0, P1 = 1, P2 = 2 and the fact P2 = 2P1 are
used in (5), then we have

Pn = 2P1Pn−1 + P1Pn−2

= P2Pn−1 + P1Pn−2. (6)

If the first two rows of the matrix N(n− 1) are chosen, there are only three
2× 2 submatrices of the matrix N(n− 1) whose determinants are nonzero. i.e.

A([1, 2], [1, 2]) =

[

2i 1
1 2i

]

= −P3

A([1, 2], [1, 3]) =

[

2i 0
1 1

]

= iP2

A([1, 2], [2, 3]) =

[

1 0
2i 1

]

= P1

and their cofactors are

Å([1, 2], [1, 2]) =















iPn−2 , n ≡ 0(mod 4)
−Pn−2 , n ≡ 1(mod 4)
−iPn−2 , n ≡ 2(mod 4)

Pn−2 , n ≡ 3(mod 4)

Å([1, 2], [1, 3]) =















−Pn−3 , n ≡ 0(mod 4)
−iPn−3 , n ≡ 1(mod 4)

Pn−3 , n ≡ 2(mod 4)
iPn−3 , n ≡ 3(mod 4)

Å([1, 2], [2, 3]) = 0.

By using the Laplace expansion the determinant of the matrix N(n− 1) is

det(N(n− 1)) =















−iP3Pn−2 − iP2Pn−3 , n ≡ 0(mod4)
P3Pn−2 + P2Pn−3 , n ≡ 1(mod4)

iP3Pn−2 + iP2Pn−3 , n ≡ 2(mod4)
−P3Pn−2 − P2Pn−3 , n ≡ 3(mod4)

. (7)
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From (1) and(7), we obtain

Pn = P3Pn−2 + P2Pn−3. (8)

If the first three rows of the matrix N(n− 1) are chosen, there are only four
3× 3 submatrices of the matrix N(n− 1) whose determinants are nonzero:

A([1, 2, 3], [1, 2, 3]) =





2i 1 0
1 2i 1
0 1 2i



 = −iP4

A([1, 2, 3], [1, 2, 4]) =





2i 1 0
1 2i 0
0 1 1



 = −P3

A([1, 2, 3], [1, 3, 4]) =





2i 0 0
1 1 0
0 2i 1



 = iP2

A([1, 2, 3], [2, 3, 4]) =





1 0 0
2i 1 0
1 2i 1



 = P1

and their cofactors are

Å([1, 2, 3], [1, 2, 3]) =















Pn−3 , n ≡ 0(mod4)
iPn−3 , n ≡ 1(mod4)
−Pn−3 , n ≡ 2(mod4)
−iPn−3 , n ≡ 3(mod4)

Å([1, 2, 3], [1, 2, 4]) =















iPn−4 , n ≡ 0(mod4)
−Pn−4 , n ≡ 1(mod4)
−iPn−4 , n ≡ 2(mod4)

Pn−4 , n ≡ 3(mod4)

Å([1, 2, 3], [1, 3, 4]) = 0

Å([1, 2, 3], [2, 3, 4]) = 0

By using the Laplace expansion the determinant of the matrix N(n − 1) is
evaluated as follows:

det(N(n− 1)) =









−iP4Pn−3 − iP3Pn−4 , n ≡ 0(mod 4)
P4Pn−3 + P3Pn−4 , n ≡ 1(mod 4)

iP4Pn−3 + iP3Pn−4 , n ≡ 2(mod 4)
−P4Pn−3 − P3Pn−4 , n ≡ 3(mod 4)

. (9)

From (1) and(9), we have

Pn = P4Pn−3 + P3Pn−4. (10)

The remainig identities in (4) can be shown similarly.
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Now, we give another proof of following Pell identity:

P2n = Pn(Pn+1 + Pn−1). (11)

If we choose the first (n− 1) rows of the matrix N(2n− 1), there are only n the
(n− 1)× (n− 1) submatrices of the matrix N(2n− 1) whose determinants are
nonzero but only the cofactors of two of them are nonzero. i.e.

A([1, 2, . . . , n− 1], [1, 2, . . . , n− 2, n− 1]) =















−iPn , n ≡ 0(mod 4)
Pn , n ≡ 1(mod 4)
iPn , n ≡ 2(mod 4)
−Pn , n ≡ 3(mod 4)

A([1, 2, . . . , n− 1], [1, 2, . . . , n− 2, n]) =















−Pn−1 , n ≡ 0(mod 4)
−iPn−1 , n ≡ 1(mod 4)

Pn−1 , n ≡ 2(mod 4)
iPn−1 , n ≡ 3(mod 4)

and their cofactors are

Å([1, 2, . . . , n− 1], [1, 2, . . . , n− 2, n− 1]) =















Pn+1 , n ≡ 0(mod 4)
iPn+1 , n ≡ 1(mod 4)
−Pn+1 , n ≡ 2(mod 4)
−iPn+1 , n ≡ 3(mod 4)

Å([1, 2, . . . , n− 1], [1, 2, . . . , n− 2, n]) =















iPn , n ≡ 0(mod 4)
−Pn , n ≡ 1(mod 4)
−iPn , n ≡ 2(mod 4)

Pn , n ≡ 3(mod 4)

.

From Laplace expansion the determinant of the matrix N(2n− 1) is

det(N(2n− 1)) =

{

−iPn(Pn+1 + Pn−1) , n ≡ 0, 2(mod4)
iPn(Pn+1 + Pn−1) , n ≡ 1, 3(mod4)

. (12)

From (1) and (12) we have

P2n = Pn(Pn+1 + Pn−1).

Thus the proof is completed.
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