Another proof of Pell identities by using the determinant of tridiagonal matrix

Meral Yaşar*\&Durmuş Bozkurt ${ }^{\dagger}$
Department of Mathematics, Nigde University and
Department of Mathematics, Selcuk University

May 25, 2018

Abstract

In this paper, another proof of Pell identities is presented by using the determinant of tridiagonal matrices. It is calculated via the Laplace expansion.

Key words: Pell numbers, Pell identities, tridiagonal matrix, Laplace expansion, determinant.

1 Introduction

Pell numbers are defined as

$$
P_{n}=2 P_{n-1}+P_{n-2}
$$

with the initial conditions $P_{0}=0, P_{1}=1$ for $n \geq 2$.
In [1], a complex factorization formula for $(n+1)$ th Pell number is obtained to provided the tridiagonal matrix

$$
N(n)=\left[\begin{array}{cccccc}
2 i & 1 & & & & \\
1 & 2 i & 1 & & & \\
& 1 & 2 i & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & 2 i & 1 \\
& & & & 1 & 2 i
\end{array}\right]
$$

as in the following:

$$
P_{n+1}=m|N(n)|, \quad m=\left\{\begin{array}{rc}
1, & n \equiv 0(\bmod 4) \tag{1}\\
-i, & n \equiv 1(\bmod 4) \\
-1, & n \equiv 2(\bmod 4) \\
i, & n \equiv 3(\bmod 4)
\end{array} .\right.
$$

[^0]In [2], an identity of Fibonacci numbers is proved via the determinant of the tridiagonal matrix. In [3], the authors showed the connection between Fibonacci numbers and Chebyshev polynomials and obtained a complex factorization for Fibonacci numbers by using a sequence of the tridiagonal matrices. Then with a small difference in the tridiagonal matrix, it is showed that how Lucas numbers and Chebyshev polynomials are connected to each other. Two complex factorization are obtained by using the $n \times n$ tridiagonal and anti-tridiagonal matrix for n is even in 4].

In this paper, we give another proof of Pell identities

$$
\begin{gather*}
P_{2 n}=P_{n}\left(P_{n+1}+P_{n-1}\right) \tag{2}\\
P_{n}=P_{k} P_{n-k+1}+P_{k-1} P_{n-k} \tag{3}
\end{gather*}
$$

where k is a positive integer. For $1 \leq k \leq n$

$$
\begin{gather*}
P_{n}=P_{1} P_{n}+P_{0} P_{n-1} \\
P_{n}=P_{2} P_{n-1}+P_{1} P_{n-2} \\
P_{n}=P_{3} P_{n-2}+P_{2} P_{n-3} \\
P_{n}=P_{4} P_{n-3}+P_{3} P_{n-4} \tag{4}\\
\vdots \\
P_{n}=P_{n} P_{1}+P_{n-1} P_{0} .
\end{gather*}
$$

2 Main Result

Let A be an $n \times n$ matrix, $A\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)$ be the $k \times k$ submatrix of A and $M\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)$ be the $(n-k) \times(n-k)$ minor of the matrix A. The cofactor of A is defined by

$$
\AA\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)=(-1)^{m} M\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)
$$

where $1 \leq i_{1}, i_{2}, \cdots, i_{k} \leq n$ and $m=\sum_{r=1}^{k}\left(i_{r}+j_{r}\right)$.
The determinant of the matrix A is

$$
\begin{aligned}
\operatorname{det}(A)= & \sum_{\substack{1 \leq i_{1}, i_{2}, \cdots, i_{k} \leq n}} \operatorname{det}\left(A\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)\right) \\
& \times \operatorname{det}\left(\AA\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right],\left[j_{1}, j_{2}, \ldots, j_{k}\right]\right)\right)
\end{aligned}
$$

If $A(i, j)=a_{i j}$, then $\AA(i, j)=(-1)^{i+j} M(i, j)=\AA_{i j}$ and the determinant is

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} \AA_{i j}
$$

This is the famous Laplace expansion formula [2]. We will use this formula to proof of Pell identities in (3).

The cofactors of the first row of the matrix $N(n)$ are

$$
\begin{aligned}
& \AA_{11}=\left\{\begin{aligned}
-P_{n-1} & , n \equiv 0(\bmod 4) \\
-i P_{n-1} & , n \equiv 1(\bmod 4) \\
P_{n-1} & , n \equiv 2(\bmod 4) \\
i P_{n-1} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
& \AA_{12}=\left\{\begin{array}{rl}
-i P_{n-2} & , n \equiv 0(\bmod 4) \\
P_{n-2} & , n \equiv 1(\bmod 4) \\
i P_{n-2} & , n \equiv 2(\bmod 4) \\
-P_{n-2} & , n \equiv 3(\bmod 4)
\end{array} .\right.
\end{aligned}
$$

By using the Laplace expansion formula the determinant of the matrix $N(n-1)$ is

$$
\begin{equation*}
\operatorname{det}(N(n-1))=2 P_{n-1}+P_{n-2} \tag{5}
\end{equation*}
$$

From (11), the initial value $P_{0}=0, P_{1}=1, P_{2}=2$ and the fact $P_{2}=2 P_{1}$ are used in (5), then we have

$$
\begin{align*}
P_{n} & =2 P_{1} P_{n-1}+P_{1} P_{n-2} \\
& =P_{2} P_{n-1}+P_{1} P_{n-2} . \tag{6}
\end{align*}
$$

If the first two rows of the matrix $N(n-1)$ are chosen, there are only three 2×2 submatrices of the matrix $N(n-1)$ whose determinants are nonzero. i.e.

$$
\begin{aligned}
& A([1,2],[1,2])=\left[\begin{array}{cc}
2 i & 1 \\
1 & 2 i
\end{array}\right]=-P_{3} \\
& A([1,2],[1,3])=\left[\begin{array}{cc}
2 i & 0 \\
1 & 1
\end{array}\right]=i P_{2} \\
& A([1,2],[2,3])=\left[\begin{array}{cc}
1 & 0 \\
2 i & 1
\end{array}\right]=P_{1}
\end{aligned}
$$

and their cofactors are

$$
\begin{gathered}
\AA([1,2],[1,2])=\left\{\begin{aligned}
i P_{n-2} & , n \equiv 0(\bmod 4) \\
-P_{n-2} & , n \equiv 1(\bmod 4) \\
-i P_{n-2} & , n \equiv 2(\bmod 4) \\
P_{n-2} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
\AA([1,2],[1,3])=\left\{\begin{aligned}
-P_{n-3} & , n \equiv 0(\bmod 4) \\
-i P_{n-3} & , n \equiv 1(\bmod 4) \\
P_{n-3} & , n \equiv 2(\bmod 4) \\
i P_{n-3} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
\AA([1,2],[2,3])=0 .
\end{gathered}
$$

By using the Laplace expansion the determinant of the matrix $N(n-1)$ is

$$
\operatorname{det}(N(n-1))=\left\{\begin{array}{rl}
-i P_{3} P_{n-2}-i P_{2} P_{n-3} & , n \equiv 0(\bmod 4) \tag{7}\\
P_{3} P_{n-2}+P_{2} P_{n-3} & , n \equiv 1(\bmod 4) \\
i P_{3} P_{n-2}+i P_{2} P_{n-3} & , n \equiv 2(\bmod 4) \\
-P_{3} P_{n-2}-P_{2} P_{n-3} & , n \equiv 3(\bmod 4)
\end{array} .\right.
$$

From (1) and(7), we obtain

$$
\begin{equation*}
P_{n}=P_{3} P_{n-2}+P_{2} P_{n-3} \tag{8}
\end{equation*}
$$

If the first three rows of the matrix $N(n-1)$ are chosen, there are only four 3×3 submatrices of the matrix $N(n-1)$ whose determinants are nonzero:

$$
\begin{aligned}
& A([1,2,3],[1,2,3])=\left[\begin{array}{ccc}
2 i & 1 & 0 \\
1 & 2 i & 1 \\
0 & 1 & 2 i
\end{array}\right]=-i P_{4} \\
& A([1,2,3],[1,2,4])=\left[\begin{array}{ccc}
2 i & 1 & 0 \\
1 & 2 i & 0 \\
0 & 1 & 1
\end{array}\right]=-P_{3} \\
& A([1,2,3],[1,3,4])=\left[\begin{array}{ccc}
2 i & 0 & 0 \\
1 & 1 & 0 \\
0 & 2 i & 1
\end{array}\right]=i P_{2} \\
& A([1,2,3],[2,3,4])=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 i & 1 & 0 \\
1 & 2 i & 1
\end{array}\right]=P_{1}
\end{aligned}
$$

and their cofactors are

$$
\begin{gathered}
\AA([1,2,3],[1,2,3])=\left\{\begin{aligned}
P_{n-3} & , n \equiv 0(\bmod 4) \\
i P_{n-3} & , n \equiv 1(\bmod 4) \\
-P_{n-3} & , n \equiv 2(\bmod 4) \\
-i P_{n-3} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
\AA([1,2,3],[1,2,4])=\left\{\begin{aligned}
i P_{n-4} & , n \equiv 0(\bmod 4) \\
-P_{n-4} & , n \equiv 1(\bmod 4) \\
-i P_{n-4} & , n \equiv 2(\bmod 4) \\
P_{n-4} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
\AA([1,2,3],[1,3,4])=0 \\
\AA([1,2,3],[2,3,4])=0
\end{gathered}
$$

By using the Laplace expansion the determinant of the matrix $N(n-1)$ is evaluated as follows:

$$
\operatorname{det}(N(n-1))=\left[\begin{array}{rl}
-i P_{4} P_{n-3}-i P_{3} P_{n-4} & , n \equiv 0(\bmod 4) \tag{9}\\
P_{4} P_{n-3}+P_{3} P_{n-4} & , n \equiv 1(\bmod 4) \\
i P_{4} P_{n-3}+i P_{3} P_{n-4} & , n \equiv 2(\bmod 4) \\
-P_{4} P_{n-3}-P_{3} P_{n-4} & , n \equiv 3(\bmod 4)
\end{array} .\right.
$$

From (1) and (9), we have

$$
\begin{equation*}
P_{n}=P_{4} P_{n-3}+P_{3} P_{n-4} \tag{10}
\end{equation*}
$$

The remainig identities in (4) can be shown similarly.

Now, we give another proof of following Pell identity:

$$
\begin{equation*}
P_{2 n}=P_{n}\left(P_{n+1}+P_{n-1}\right) \tag{11}
\end{equation*}
$$

If we choose the first $(n-1)$ rows of the matrix $N(2 n-1)$, there are only n the $(n-1) \times(n-1)$ submatrices of the matrix $N(2 n-1)$ whose determinants are nonzero but only the cofactors of two of them are nonzero. i.e.

$$
\begin{aligned}
& A([1,2, \ldots, n-1],[1,2, \ldots, n-2, n-1])=\left\{\begin{aligned}
-i P_{n} & , n \equiv 0(\bmod 4) \\
P_{n} & , n \equiv 1(\bmod 4) \\
i P_{n} & , n \equiv 2(\bmod 4) \\
-P_{n} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
& A([1,2, \ldots, n-1],[1,2, \ldots, n-2, n])=\left\{\begin{aligned}
-P_{n-1} & , n \equiv 0(\bmod 4) \\
-i P_{n-1} & , n \equiv 1(\bmod 4) \\
P_{n-1} & , n \equiv 2(\bmod 4) \\
i P_{n-1} & , n \equiv 3(\bmod 4)
\end{aligned}\right.
\end{aligned}
$$

and their cofactors are

$$
\begin{aligned}
& \AA([1,2, \ldots, n-1],[1,2, \ldots, n-2, n-1])=\left\{\begin{aligned}
P_{n+1} & , n \equiv 0(\bmod 4) \\
i P_{n+1} & , n \equiv 1(\bmod 4) \\
-P_{n+1} & , n \equiv 2(\bmod 4) \\
-i P_{n+1} & , n \equiv 3(\bmod 4)
\end{aligned}\right. \\
& \AA([1,2, \ldots, n-1],[1,2, \ldots, n-2, n])=\left\{\begin{array}{rl}
i P_{n} & , n \equiv 0(\bmod 4) \\
-P_{n} & , n \equiv 1(\bmod 4) \\
-i P_{n} & , n \equiv 2(\bmod 4) \\
P_{n} & , n \equiv 3(\bmod 4)
\end{array} .\right.
\end{aligned}
$$

From Laplace expansion the determinant of the matrix $N(2 n-1)$ is

$$
\operatorname{det}(N(2 n-1))=\left\{\begin{array}{rl}
-i P_{n}\left(P_{n+1}+P_{n-1}\right) & , n \equiv 0,2(\bmod 4) \tag{12}\\
i P_{n}\left(P_{n+1}+P_{n-1}\right) & , n \equiv 1,3(\bmod 4)
\end{array} .\right.
$$

From (11) and (12) we have

$$
P_{2 n}=P_{n}\left(P_{n+1}+P_{n-1}\right)
$$

Thus the proof is completed.

References

[1] M. Yasar, H. Kiyak, D. Bozkurt, Complex Factorization Formulas for Fibonacci and Pell Numbers, The First International Conference on Mathematics and Statistics, American Sarjah University, U.A.E, March, 1821, 2010.
[2] J. Feng, Fibonacci identities via the determinant of tridiagonal matrix, Applied Mathematics and Computation, 217, 5978-5981, 2011.
[3] N. D. Cahill, J. R. D'Errico, J. Spence, Complex Factorizations of the Fibonacci and Lucas Numbers, Fibonacci Quarterly, 41(1), 13-19, 2003.
[4] M. Akbulak, F. Yılmaz, D. Bozkurt, Complex Factorization of the Fibonacci Numbers by Anti-tridiagonal Matrix Method, The 3rd Int. Workshop on Matrix Analysis and Appl. Zhejiang Forestry University, Hangzhou/Lin'An, China, July, 9-13, 2009.

[^0]: *e-mail:myasar@nigde.edu.tr
 \dagger e-mail:dbozkurt@selcuk.edu.tr

