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Electroseismics is a procedure that uses the conversion of electromagnetic to seismic
waves in a fluid-saturated porous rock due to the electrokinetic phenomenon. This
work presents a collection of continuous and discrete time finite element procedures
for electroseismic modeling in poroelastic fluid-saturated media. The model involves
the simultaneous solution of Biot’s equations of motion and Maxwell’s equations in
a bounded domain, coupled via an electrokinetic coefficient, with appropriate initial
conditions and employing absorbing boundary conditions at the artificial boundaries.
The 3D case is formulated and analyzed in detail including results on the existence
and uniqueness of the solution of the initial boundary value problem. Apriori error
estimates for a continuous-time finite element procedure based on parallelepiped ele-
ments are derived, with Maxwell’s equations discretized in space using the lowest
order mixed finite element spaces of Nédélec, while for Biot’s equations a nonconform-
ing element for each component of the solid displacement vector and the vector part
of the Raviart-Thomas-Nédélec of zero order for the fluid displacement vector are
employed. A fully implicit discrete-time finite element method is also defined and
its stability is demonstrated. The results are also extended to the case of tetrahedral
elements. The 2D cases of compressional and vertically polarized shear waves coupled
with the transverse magnetic polarization (PSVTM-mode) and horizontally polarized
shear waves coupled with the transverse electric polarization (SHTE-mode) are also
formulated and the corresponding finite element spaces are defined. The 1D SHTE ini-
tial boundary value problem is also formulated and approximately solved using a dis-
crete-time finite element procedure, which was implemented to obtain the numerical
examples presented.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Electromagnetic waves induced by an artificial electromagnetic source and propagating in the Earth subsurface generate
surface measurable seismic disturbances (electroseismic effect) [1,2].

In order to explain this phenomenom, Thompson and Gist [3] and Pride [4] suggested that they are generated by an elec-
trokinetic coupling explained as follows [5,6]. Within a fluid saturated porous medium there exists a nanometer-scale
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separation of electric charge in which a bound charge existing on the surface of the solid matrix (normally of negative sign) is
balanced by adsorbed positive ions of the surrounding fluid, setting an immobile layer. Further from the surface there exists
a distribution of mobile counter ions, forming the so called diffuse layer. The effective thickness of this double layer is of
about 10 nm. When an electromagnetic wave propagates, the electric field acts on the charge excess of the double layers
generating pressure gradients and consequently fluid flow and macroscopic disturbances. This is known as electro-osmosis
and is responsible for the electroseismic phenomena.

On the other hand, the reciprocal situation arises when an applied pressure gradient creates fluid flow and hence, an ionic
convection current, which in turn produces an electric field. This is known as electrofiltration and is responsible for the so-
called seismoelectric phenomena.

Using a volume averaging approach, Pride [4] derived a set of equations describing both electroseismic and seismoelectric
effects in electrolyte-saturated porous media. In these equations the coupling mechanism acts through the (generally fre-
quency dependent) electrokinetic coupling coefficient L(w). When this coefficient is set to zero, Pride’s set of equations turns
to the uncoupled Maxwell’s and Biot’s equations, describing the latter mechanical wave propagation in a fluid saturated por-
ous medium [7,8].

Several works already exist implementing different numerical methods to solve the set of equations modeling both men-
tioned processes. Among others, Han and Wang [9] used a finite-element algorithm to model diffusive electric fields induced
by SH waves, Garambois and Dietrich [10] introduced an extension to the generalized reflection and transmission matrix
method to study seismoelectric conversions, Pain et al. [11] used a mixed finite element method to model electric fields in-
duced by acoustic waves in borehole geometries, Haines and Pride [6] developed a finite-difference algorithm capable to
model seismoelectric conversions in heterogeneous media; White [12] used seismic ray theory to determine the linear
dependence between the magnitude of the electroseismic or seismoelectric responses and the electrokinetic coupling
coefficient, and White and Zhou [13] used Ursin’s formalism to model electroseismic conversions on homogeneous layered
media within the frame of a unified treatment of electromagnetic, acoustic and elastic waves. More recently, analytic and
numerical methods were applied to describe induced wave fields in homogeneous fluid-saturated porous media in the case
of cylindrical symmetry, [14-16]. In the last reference, a time domain finite-difference (FDTD) with perfectly matched layers
(PML) as boundary conditions was presented to model electroseismics as well as acoustic well logging. Santos [17] presented
and analyzed a collection of global and domain-decomposed finite element methods, formulated in the space-frequency do-
main, to solve the fully coupled Maxwell’s and Biot’s equations as formulated by Pride [4].

The objective of this paper is to define and analyze a collection of continuous and discrete-time continuous-time finite
element procedures for the approximate solution of the coupled Maxwell’s and Biot’s equations of motion in an isotropic
bounded domain, with absorbing boundary conditions at the artificial boundaries. The results presented include existence
and uniqueness of the solution of the continuous-time initial boundary value problem, apriori error estimates for the con-
tinuous-time finite element method and the stability analysis for a discrete-time finite element procedure.

In the 3D case, the electromagnetic fields are computed employing the lowest order mixed finite element space of Nédé-
lec [19], Monk [22], while the nonconforming space defined in [24] was used to approximate each component of the dis-
placement vector in the solid phase. The displacement in the fluid phase is approximated using the vector part of the
Raviart-Thomas-Nédélec mixed finite element space of zero order [18,19]. In 2D, there are two possible cases, compres-
sional and vertically polarized seismic waves coupled with the transverse magnetic polarization (PSVTM-mode) and hori-
zontally polarized shear waves coupled with the transverse electric polarization (SHTE-mode). The 2D finite element
procedures to discretize the PSVTM-mode employ the following spaces. In the case of rectangular elements the vector elec-
tric field and the scalar magnetic field are computed using the rotated Raviart-Thomas-Nédélec spaces of zero order [18,19],
while for triangular elements the 2D mixed finite element space of Nédélec [19], Monk and Parrot [23] of lowest order are
used . Also, both for rectangular and triangular elements, the nonconforming spaces defined in [24] are used to approximate
each component of the displacement vector in the solid phase and the displacement in the fluid phase is approximated using
the vector part of the Raviart-Thomas-Nédélec mixed finite element space of zero order. The 2D finite element spaces for the
SHTE-mode are identical to those of the PSVTM-mode, except that in this mode the solid and fluid displacements are scalar
functions in H' and L2, respectively. Consequently, the solid displacement is approximated using the nonconforming spaces
defined in [24] and the fluid displacement employing piecewise constants.

The organization of the paper is as follows. In Section 2 the differential system describing the propagation of coupled elec-
tromagnetic and seismic waves are stated, with corresponding initial conditions and absorbing boundary conditions at the
artificial boundaries. Section 3 gives a variational formulation and a result on the existence and uniqueness of the solution
the initial boundary value problem. In Section 4 the 3D finite element spaces based on parallelepipeds used for the spatial
discretization are presented and their approximation properties are stated. Also, the continuous-time finite element proce-
dure is formulated and results on the existence and uniqueness of the approximate solution are derived. In Section 5 apriori
error estimates for the procedure are derived. In Section 6 a fully implicit discrete-time finite element procedure is presented
and its unconditional stability is demonstrated. In Section 7 the results are extended to the case of tetrahedral elements. In
Sections 8 and 9 the 2D possible cases for this coupled system, i.e., the PSVTM and SHTE cases are defined, and the corre-
sponding initial boundary value problems are formulated, as well as their weak formulations and the corresponding contin-
uous-time finite element methods. Finally in Section 10 the initial boundary value problem for 1D SHTE modeling is defined,
a weak formulation is given and a discrete-time finite element method is formulated, which was implemented to obtain the
numerical results included in this section.
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2. The differential model

Consider a 3D-rectangular domain Q = Q, U Q, where ©, and &, are associated with the air and subsurface poroelastic
(disjoint) parts of €, respectively.

Let us denote by E, H the electric and magnetic fields in €, respectively, and by u°, t' the solid and relative fluid displace-
ment vectors in €,

Following [4,6], for electroseismic modeling the electric and magnetic fields E and H and the displacement vectors u° and
W satisfy the coupled electromagnetic-poroelastic equations, stated in the space-time domain as follows:

gZ—f+aE—VXH:J;, Q, (1)

VxE+u%—I;I:O., Q, (2)
dw oW i

wa+PfW—V'T(U):FS7 @, 3)

oot oo n 0
hW_‘_mW K—OEM—LOK—OE—I—vpffF , .Qp7 (4)
Ty (U) = 2GEpm (U°) + Om (A V - U + aKoy V- 1), Qp, (5)
pi(u) = —0Kay V-t — Koy V-1, Q. (6)

In the equations above u = (u%, 1) and 7,,(u) is the stress tensor of the bulk material and pf(u) the fluid pressure, while &;,(u®)
denotes the strain tensor of the solid frame. Also, J? is an external applied current density, ¢ is the electric permitivity, u the
magnetic permeability and ¢ the electric conductivity.
The coefficients in the stress strain relations (5) and (6) can be determined as follows. The coefficient G is equal to the
elastic shear modulus of the dry matrix. Also:
2

e =K —= 7

Ac C 3Ga ( )
with K. being the bulk modulus of the saturated material. The coefficients in (5) and (6) can be obtained from the relations
[30,31]:

. K BRI
O(—]_Ky Kav—[ Ks +E )
Ko = Km + 0?Kay,

(8)

where ¢ denotes the effective porosity and K, K, and Ky denote the bulk modulus of the solid grains composing the solid
matrix, the dry matrix and the saturant fluid, respectively. Furthermore:

Py = ¢ps + (1 = P)ps, (9)

where p; and pydenote the mass densities of the solid grains composing the solid matrix and the saturant fluid. On the other
hand, 7 is the fluid viscosity, ko the permeability and m is the mass coupling coefficient between the solid and fluid phases in
Q,. The coefficient m can be written in the form:

0o Of
== 10
n (10)
with o being the formation tortuosity.
The positive coupling coefficient Ly is defined as [32] by
ek, o d
lo=—- : 1-20- ), (11)

with { = 0.008 + 0.02610g;,(C.) denoting the zeta potential and C, being the electrolyte molarity. In (11) € and krare the vac-
uum and fluid permitivities and

€okkaT

d=
e2z2N;.

(12)

is the Debye length in meters. In (12) e is the electronic charge, kg is the Boltzman constant, T is the absolute temperature (so
that kgT is the thermal energy) z is the ionic valence and N;. the ionic concentration in ions per meters cubed.

To solve Egs. (1)-(6) in £2 on a time interval J = (0,T) we need a collection of initial and boundary conditions. Let I" denote
the boundary of Q and let I'y, = Q, N Q, denote the free surface. Also let I'y = 9Q,\I'q p, I'p = 3Q2,\ I, denote the artificial
boundaries of €, and €,, respectively; in Fig. 1 a scheme of the used domain and boundaries is shown. Also, if I’ is either an
inner interface in €2 or a part of the boundaries I', I', or Iy, set:
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Fig. 1. Scheme of the domain and boundaries used in this work.

t

grs(u) = (T(U)V -V, T(U)V : Xlﬂ T(u)v ' Xzapf(u)) )
t
b

Sr(u) = (us-vous -t us -t )

(13a)
(13b)

where ¢ denotes transposition, v is the unit outer normal on I’y and x', x? are two unit tangents on I'; such that {v, x', %%} is

an orthonormal set on I'),.
Consider the solution of (1)-(6) with the absorbing boundary conditions [37,34]:

¢?P,E+ p'?vxH=0, onT,

ou
—Gr,(u) =DSr, <§>’ on I'p,

the free surface condition:

—Gr,(u) =0, on Iy,
and the initial conditions:

E(t=0)=E,, H(t=0)=H,,

wWiEt=0)=u, (=0 =u,

s

Wi—o—u, P—0)-u,
Here:

P,E=E—-v(v-E)=-vx (vxE)

is the 3-D orthogonal projection of the trace of E into the tangential plane perpendicular to the normal vector v.

(14)
(15)

(16)
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The matrix D in (15) is defined as: D = R:S*R?, where S = R 2MR * and

p, 00 o Ae+2G 0 0 oKy
0 b 0O O 0 G 0 O
R=loob o] M| o o0c¢ o 18)
P5 0 0 m aKsy 0 0 Kgp
where (0,2
b=p, - # (19)

Remark. The boundary conditions (14) and (15) impose that seismic and electromagnetic waves arriving normally to the
artificial boundaries be completely absorbed.

Remark. Note that since o, > 1, the matrix R is positive definite. Also, we will require that the following conditions be sat-
isfied by the coefficients defining the matrix M:

G>0, (20a)
Je+2G—o?K2, >0, (20Db)
Kqy > 0. (20c)

Conditions (20a)-(20c) are necessary and sufficient for the matrix M to be positive definite. In particular, the condition (20b)
imposes that the inverse of the jacketed compressibility coefficient be strictly positive, see [33]. As a consequence of the po-
sitive definitess of the matrices R and M, the matrix D is also positive definite.

3. A weak formulation

For X c RY,d = 1, 2,3 with boundary dX, let (-,-)x denote the L%(X) inner product for scalar, vector, or matrix valued func-
tions. Also, fors € R, || - ||s,x will denote the usual norm for the Sobolev space H*(X). In addition, if X = Q or X = I', the subscript
X may be omitted such that (-,-)=(-,-)e or {-,-) = (-,-) . Set:

H(curl, Q) = {lp e Vxye LZ(Q)}7
H(div,Q,) = {lp e LX(Q))": V-ye LZ(QP)},
H'(div, Q,) = {Ip eH'(Q))": V-ye H1(Qp)},

(d = 3 here) provided with the natural norms:

1
W lacunay = (1015 + 19 < wlig ),
Wl(ava,) = (10150, + 1V - ¥lGg,)

1
Wt o) = (10170, + 1V - g, )
Recall the integration by parts formulas [35,36]:

(VxUV)—(U,VxV)=(xUV)=(vxUPV), VUV eHcurlQ), (21)
(Vo 0)+ (W, Vo) =(-v,0), VyecHdiv,Q), ¢cH Q). (22)

Note that as indicated in [36] since U, V € H(curl, 2), v x U and P,V belong to H '%(dQ), and the boundary integral in (21) is
understood as (v x U- P,V,1) the duality pair between v x U- P,V e [Lip(0Q)] and 1 e Lip(0€2). Here [Lip(0€2)]' is the dual
space of Lipschitz-continuous functions on 0.

To obtain a variational formulation, multiply (1) by ¥ € H(curl, ), integrate in € and use (21) and (14). Also multiply (2)
by ¢ € [L*(2)]? and integrate in Q. Finally, multiply (3) by #* € [H!(2)]? and (4) by ¢/ € H(div, ), add the resulting equations,
integrate in @, and use (22) and (15). We obtain the weak formulation: for te<], find (EH,u’, )(t) € H(curl, Q) x
[L2(2)]P x [H'(Q)]? x H(div, ) such that:

&

oF -\ 172 )
(65 %) + (@B - Y <9+ <(H> PE Pw> — (L9). v e Hicurl ) 23
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oH
(VxEg)+ (n50) =0 gclP@r, 24
o’u n ou n ou

(Patz, v)g + (K—O T vf)gp + Ay, v) — (LOK—OE, vf)gp + <DSFP <at),5pp(v)>rp =0, v=(v7)

€ H'(2)]’ x H(div, 2,). (25)

In (25):

| Pola prla

P= (,Dfld mld >7 (26)

dxd

where I; is the identity matrix in R®*“ and A(u, v) is the bilinear form defined as:

A 9) = 3 () em (), — (). V- ), = (ME@), &)1 v € [H'(@))] x H(div. ). (27)

I m

The non-zero entries of the symmetric 7 x 7 matrix M = (my) in (27) have the values my; = my3 = M33 = A+ 2G, Myp =Mq3 =
Ma3 = Ae, M1 = Mog = M34 = Kay, Mag = Kay, Mss =meg =my7 =G and

B(U) = (en (U), &2 (u®), £33(u), V - ul), £1(U), £13 (u®), £33 (u®))".

Furthermore, we assume that P and M are positive definite since they are associated with the kinetic and strain energy
densities, respectively. We also assume that the entries in these two matrices are bounded below and above by positive
constants.

Our continuous weak formulation is stated as follows: find (E,H,u’,v’) € H(curl, Q) x [L*(2)]* x [H'(2,)]® x H(div,,)
satisfying (23)-(25).

Let us analyze the uniqueness of the solution of our continuous problem. Set J; = 0 in (24) and set to zero the initial con-
ditions in (17). Then choose ¢ = H in (24) to get:

(V x E,H) + (M%H) =0. (28)

Also, choose \ = E in (23) and use (25) to obtain:

OF oH e\"?
<8§,E) + (oE,E) + (,ua,H) + <(ﬁ> P,E, PXE> =0. (29)

Next, choose v =% 3f = % in (25) and add the resulting equation to (29) to get:

1d du du L o
2dt [(Pat’at) . + (Mé€(u), €(u))q, + (¢E,E) + (uH, H) | + ¢(E,§> + (0E,E)g,
1/2
& ou ou
+ <<M> P,E, PXE> + <D5pp (&> ,Sr, <§> >r,, =0, (30)
where
o’ n o n o ouf

(D(BE) *(O'EE)QP_ (LOK—OE7§>QP+ (K_O E,ﬁ)%. (31)
Set:

Ami":P :inf{A(X),XE Qp}7 A:O-7 Ko, X= (X],X27X3),

Ko.max = SUP{KO(X), Xe .Qp}.
and assume that:

Ominp > 0, Kominp >0, Komaxp < 00, (32)

, Lon n Lo )
Ci = min | Ominp — , - > 0. 33
! ( P 2 Ko,max p KO,maXv P 2 Koﬁma)u p ( )
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Thus:
o
¢(E7§) > Ci(IEl g, + 1 15,)- (34)
Next, since the matrix M is positive definite, Korn’ second inequality [38,39] implies that:
(ME(u), €w))g, = Co (Il g, + 1% I ina, ) — C3 (1wl5a, + ¥ 15, )- (35)
Set:

2= [H'(@)] < H(div. Q).
provided with the natural norm:
s = (112 g, + 1 ey
Then choose a constant { such that { > C3 and define the bilinear form:
A (u,v) = A(u, v) + {(u, v),
so that A4, is Z-coercive, i.e.,
Acuu) = Colull3, (36)
Next, add to (30) the inequality:
2
)

integrate in time the resulting inequality and use (34) and (36) to obtain:
du ou t
<7>§,§> (6) + Col[u(O)]13 + (2E, E)(E) + (R, H)(6) | + Cy [ /0 (IES5a, + Huf<s>||§,gp)ds}
@

+ /Ot(GE,E)Qﬂ (s)ds + /Ot <(§)1/2P2E, PXE>(s)ds + /ot <D51‘p (Z_Ltl)’ Sr, (2—?) >r,, (s)ds

t 2
</ (nu(s)néw O,Q,,>ds‘ (37)

Assume that ¢ and u are bounded below and above by positive constants, so that:

ou
ot

{(d, o ¢ 2
7 aHuHo,gp S5 <||u||o.9p +

1
2

ou
of (s)

O<e <<€ <00, O<pu, <UL <oo. (38)

Thus apply Gronwall’s lemma in (37), note that all terms in the left-hand side of (37) are nonnegative and use (38) to con-
clude that:

[u®llz =0, [E®lo=0, [H()lo=0, Vte],

so that uniqueness holds for the solution of our differential problem. Assuming sufficient regularity on the initial data and
the external sources, existence can be derived using the compactness argument of Lions [28] with an argument similar to
that given in [27]. For brevity the argument is omitted. The result is summarized in the following theorem.

Theorem 1. Assume the validity of (33) and (38) and that the matrices M and D are positive definite. Then there exists a unique
solution of problem (1)-(4) with the boundary conditions (14)-(16) and the initial conditions (17).

4. A continuous-time finite element method. Parallelepiped elements

Let 7" be a quasiregular partition of  into parallelepipeds ©; of diameter bounded by h. Denote by ¢; and ¢;, the centroids
of I'i=0Q;N I and Iy = I'yj = 0Q; N 0€2, respectively.

To approximate the electromagnetic fields E, H we will employ the 3D mixed finite element space V' x W", defined as
follows [19,22]:

V= {y e Hicurl, @) : ylo €V} =Pora x Prog x Prio},

Wh — {QD S [LZ(Q)]3 : §0|QJ € W_:] = P170,0 X P(),]‘o X P0‘0.1}.
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Here, P, ;,; denote the polynomials of degree not greater than r in x4, not greater than s in x, and not greater than t in x3 on Q;.
Note that functions in V" have continuous projections of their traces across the interelement boundaries I'ji. Also:
V x VP cwh.
For any ¢ € V" and any ¢ € W" the local degrees of freedom in €; are [22]:

v
Z { v Xp (mp), where m, is the mid-point of the p-edge e; of ©; of unit tangent XJI}J <p< 12}7 (39)
J

P
> = { 7)(Gp), Wwhere G, is the centroid of the p-face f} of ©; of unit normal v, 1 < p < 6}. (40)
J

To approximate the solid displacement vector we will employ the nonconforming finite element space AC" presented in
[24]. This choice is made based on the numerical dispersion analysis presented in [25], where it is shown that using this non-
conforming space allows for using about half the number of points per wavelength as compared with standard bilinear ele-
ments to have a desired tolerance in numerical dispersion. See also [26] for the analysis of the numerical dispersion of waves
in fluid-saturated poroelastic media when employing this non-conforming element to represent the solid displacement vec-
tor. The space AVC" is defined as follows. On the reference element R = [—1,1)? set:

Q(R) = Span{1.&;, X, %3, (k1) — &(fz). (1) — (Xs)}, &@y:fféf.
Then let /\/C]"1 = [Q(@)P and
ACh = {v: v =g € NC vi(E) = vl&) Y G, k)}.

The six local degrees of freedom are the values at the centroids ¢j of the faces of Q.
To approximate the fluid displacement, we employ the vector part of the Raviart-Thomas-Nédélec space of zero order
[18,19], defined as follows:

M= {W € H(div, Q) : w|Qj € M} = P90 x Po1 x Po,m}-
The approximating properties of the finite element spaces defined above can be stated as follows. Let:
3 3
@) ={wwe e @]},
3
with [H}I(Qp)] defined in similar fashion. Also, if I'j , denotes any inner interface I’ in €, let:

Ah = {;h i —trrjkp<lh\gj> € [Po(Typ)]’ = Al 7+l :o},

where Po(Ij,p) denotes the constant functions defined on Ij p.

Remark. Note that there are two copies of [Po(1jx, p)]3 assigned to each I' p,, one from €; to Q, and another from € to Q;.
Then we define the projections:

Iy, : H(curl, Q) N [HX(Q)] — V" - pr — ) - 7hds =0, 1<p<12, (41)

for each p-edge e}, with tangent yj, of ©;:

Py Q)P - W (Paw—w,0) =0, ¢@eW", (42)
R: [H(Q) = NC": (0 —Ra§) () =06 =g or &, for o = (], 05, 3). (43)
Qu: [H' (@) = M (¢ —Qu?f) -v,1);=0; B=Tjy, or Ij (44)
Sp: [H Q)] x H' (div; Q,) — A":  (t(v)y = Sp(v),1), =0, v = (¢, ¢/),B=Ty, or Ij. (45)

Let us define the broken norms:

|Z/Hsh$2p Z ”stQ

Qcp
The approximation properties of these operators can be stated as follows [19,29]:

¥ — nllg < Ch W)y, ¥ € H(Q)P, (46)
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IV x (W — My)llg <Ch |V x ¢y, yeH(Q)P, VxyeH(Q),
IPh@ — @llo < Ch |l@ll;, ¥V @ eH(Q),

1

|0 = Rav®llg, + hl[v° = Ru° |3 g, + B[ — Rav¥ |3, + 12 ( > - thsnémj)

Qicp

1/2
+h%(2 |r<vj>vj—5hvj|§,m,.) <O (1190, + 1V - Pllig, ), o= (2,0) € [H(@,) x H'(div, ),

Qcy
Q4% ~ o, < Ch VI, < [H(2)]
IV (0~ Q' )log, < Ch [V -2 l1q,. ¥ €H'(div, Q).
Note that since V x y € W'V y € V!, it follows from (42) that:
(Pof —f.V xyp)=0, Vel
Also note the orthogonality property for functions on AC":

<z}j - U3, 1> — 0 for all interior interfaces Iy, ¢* € AC".

T
Set:
A 0) = 3 3 (1) (0.9 )| = 3 w00,
and o |
Ou(E.H.t, 1), (9. 9.9 11)) = (650 ) + (GF.) = (H. )+ <(§)U2PXE>PW> +(V xEp)
+ <,u%,<p> + (7322;, v)gp + (Kio %, >Qp + Ay(u, v) — (LO%E, vf>Qp
()50,
Let: p

W=V s Wt s A" x M.
Then the continuous-time Galerkin procedure is defined as follows: find (E", H" ush w/h) : ] — Y" such that:
O ((E"H' wh, ™), (y, 0,27, 0)) = (2.0), (0,0, 77, ¥F) € O,
with the initial conditions:
EMt=0)~Ey, H"(t=0)~ Ho,
uwh(t=0)~ud, uwh(t=0)~u.

To analyze uniqueness for (56)-(58), let us introduce the space:
1 3 :
2h = [H,,(Qp)} x H(div, @)
provided with the norm:

1/2
2 2
2 = (1815 ng, + 1 )

As in the continuous case, let us define the bilinear form:

Acp(u, v) = Ap(u, 0) + {(u,v), u,vezh

(55)
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with ¢ > G5, so that:

Acn(u,u) = Golfull%, (60)
Acn(u, v) < Cllufl ]| 2] - (61)

Then if u = (u", /'™, a repetition of the argument leading to (37) implies that:
" =0, [E"(t)]ly =0, [H"(t)],=0, Vt,

so that uniqueness holds for (56)-(58). Existence follows from finite-dimensionality. Thus we can state the following
theorem:

Theorem 2. Under the hypothesis of the positive definitess of the matrices M and D and the validity of (33) and (38), there exists a
unique solution of (56) for every choice of the initial conditions (57) and (58).

5. Apriori error estimates
Now we derive the error estimate for the procedure (56) stated in the following theorem:

Theorem 3. Assume that the matrices M and D are positive definite and the validity of (33) and (38). Also assume that E, H, u®,
are smooth enough so that the following quantities are finite:

S ousl? i 6uf2 Ell2
1= Wl gre o + |57 g W g pt @iy + ﬁ 2O divey) T IEl2g -
NT = Bl g o)+ IV < Bl + Hat ) H Ot 2y mr (@)
2
M2 = 1(0) B, + 1 (0) B ey + | o (©) ; %utf(o) .

= [IEQ) + |H2(0)]]7.
Then the following a priori error estimate holds:

h h h h
IE = EMll i~ g 20y + IH = H'll 1~ g 20y + 10 = U | g 41 ) + W — v = Hediv.ay))

a(us _ us‘h)
ot

L (.1 (2p))

o — uh

o —
ot

+ (v — us‘hHLz(/,Lz(rp)) + W -t VHLz(],LZ(FP)) <cn'’? [No + N1 + Mo + M;]. (62)

L®(,1%(2p))

Proof. Set:

o= (E—E'"H-H'w —uhf — ") = (&F,6",0, ),
Y= (HhE —E" P,H - H" Ryu® —uh, Q¥ — uf=“) = (Y5, 9", 9, 9),
and
# = (5.9), 7= ().
First, use integration by parts element by element and the boundary conditions (14)-(16) to see that, for y» € H(curl, £2),

¢ € [LA(Q)] and v= (", /) € [L*(£2,)]° such that ¥lg € H'(2)]* and of |, € H(div, Q):

@h((E7 H7 us’uf)7 (l% (p7 1/57 Z}f)) = Uzvlp) + Z |:<'C(U)V7 Z}q>69j\1"p - <pf(u)7 Z)f : v>an\['p} . (63)

Qicp
Now subtract (63) from (56) to see that, for (y, @, 75, ¢/) € J"
On((5°,6).8°,0), (W, 0, 2, 0) = 3 [0V, )egr, — (B, & V), |- (64)

QcQp

Next, by hypothesis u* € [H*(€2,)]?, ¢ € H'(div, €2,,) and consequently pu) € H'"*(3¢)). Also, / € M" c H(div, Q) and conse-
quently #/- v is continuous across the interior interfaces of the elements Q. Thus:
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Z <pf(u)7 v v>a§zj\r,, =0

QcQp

Also use that ¢* [/\/Ch}3 is constant on I'j and that Sy(u) changes sign on each side of I'j (c.f. (45)) to see that:

> (i), ¥y, = 0.

QcQp

Thus, (63) becomes:
On((65,0".8°,0), (0.0, 0%, 9)) = 3 {2y = Sa(w), Phegye (0o, 07 0F) €D

QcQp

Now (67) yields:

Ou((5 777, . 0, %, V) = ((nthE PoH = H, Rt =, Qi = v/, (¢, ¢, ", V)
—+ Z V — Sh Z/s>an\Fp7 (l//v ®, vs’ Uf) € yh'

Qicp

Next, choose y =0, =0, ¥ = EL;, v = % in (68) and add to the resulting equation the inequality:

)
o, ’

C d B2 C B2 0
ia”? 0.0, < 5 <|V lo.g, + 3

to obtain:
1d 6?‘* 6? B B n oy oy 3y oy
za{—*-+mww+@awi;@%<)%@»
é s s S ayB n a(Qhuf_ ) a'})f
i(”’y HOQF H >+ (P(Rhu —u 7Qhu _uf)aﬁ o + K_OT7E )
9]

+Ah((Rhus —w,Qu fuf)7¥> + <Dspp((Rhu5 —w,Qud —u)).Sr, (ay )> + (LO e W)gp

ot ;Toy’at
(M igE_p o
(togfy me-£.5) o+ 5= (ewv-siw. )

Qcy

(68)

(69)

which will be integrated in time from O to t, but first we will bound the time integral of the last eight terms in the right-hand

side of (69) First, using the approximation properties (49) and (50):
ayB 0
(Pirar w0 - ). %) < c<h“|u5|§,gp R + |
Qp

B2
’
0,92p

ot

so that:

[ (Pwer - w0 -5 s

Next, using again (50):

Also, using integration by parts in time:

/0 Ah((Rhus—us,Qhuf—uf% o )( )ds = An((Raw® — v, Quud — ), 7%)g

Ry —us oQuu — '
- [ (SR ) 5 .
Let us bound each term in the right-hand side of (72). First:
An ((Rew* = v, Qu =), 9%)(0)] < C(IIRw* = w)(O) ] g, + 1(Qut = 1) ()i, ) 17°(O)]
C(I*(O) 1% + *Mg).

NG
Zs)
0.2

ds + thf}.

t
dsgc[/
0

dsgé/0 (77 o ayf) (s)ds + Ch* M2.

Ko ot ot

(70)

(73)
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Now choose the initial condition us"(0) € AC", 1/(0) € M" such that:

An(38(0),0) =0, v= (v v)eN" x M. (74)
Then choose v = 65(0) + (Ryu(0),Qx1/(0)) — (u5(0),1/(0)) in (74) and use the coercivity of A., in Z" to see that:

18°(0)]|+ < Ch Mo, (75)
so that using the triangle inequality and (49) and (50) we obtain the bound:

17°(0)]] 2+ < Ch M. (76)
Thus, (73) becomes:

A ((Ruw® — v, Qut — 1), %) (0)] < Ch” M. (77)
Next:

[ An (Reu* =, @t =), ) (O] < &P (0)1% + CB* (1w (130, + 1 Ol v ) (78)
and

-Ah (a(Rhuast_ us) 7a(Qhuaft_ uf) 7,yB) (S)ds <

/ t o/ 15(8) ads + M) (79)

Thus, collecting the estimates (77)-(79) we get the bound:

' S _ 148 _qf aVB ~1nyB 2 ‘ B 2 2 2
/ An( (Ruw® — v, Qu — ), = ) (5)|ds < ElP°(D)]2 + C / 175(6) L ndls + 1 (MG +M3) ). (80)
0 0

Note that the next term in the right-hand side of (69) can be bounded as follows:
5,,)
Jj

a S
<D5Fp ((Rnu® — 1, Qut — 1)), Sr, ( th >> Czhl/z (”us”]/z‘rj + - VjH]/z,rj) <H6_Vt or o oy
J )

0
<e(ms (%) 50 (%)), + O (11, + W),
so that:

/Ot <D5pp((RhuS—uS,Qhuf—uf)) S, (aayt)> (s)ds <é/0t <Dspp (%) S (agt)> (s)ds + Ch M2, (81)

Next, using (46), the integral in time of the sixth and seventh terms in the right-hand side of (69) can be bounded as:

/0 (Logvﬁ?tf) (s)ds+/0t( L 4E - E), 6t> (s)
/o <Klo% %) ()d5+c{h2/0 IIE(S)II?,Q,,dSJr/O ||yE(s)||§‘Qpas}

4

-

ds

ot
<ef (L i aVf) ds + €[N+ [ (o] (82)
b \Ko ot ' ot 0
Next, using integration by parts in time in the last term in the right-hand side of (69):
t ay5> : ! ou ou
T(Uu)v — Sp(u), = s)ds = (t(u)v — Sp(u), V)0 /<( )v S< ) 5> s)ds. 83
/ < @y =it T ) - (5)d5 = (5 = i), e, o~ i) 5 (a) 7)., O (83)

Next, since (t(u)v — Sp(u))(s) has average value zero on 9\ I'p, if ¢*(s) is the average value of y*(s) on Q; for s=0,...,t, using
the trace inequality and Korn’s second inequality [38,39]:

(T = Su(W), P)agyr, (O] = [(T(W)V = Su(1), 7 = &)eqr, (0)] < H(r(u)v—sh<u>><0>||o.m,||<ysfq5><0>||omj
< CR2 (|10 (0) .0, + IV - 1 () o) II(° — @) (O) /g, (7" — @) (O],
< Ch(|(0) 5.0, + IV -t (0) 11 )17 (0) |1 - (84)
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Thus, adding over j in (84) and using (76) we obtain:

2[R = S0 e O] < CB Mol o < CH (85)
Similarly:
(@)Y = i), 7 = Fegyyr, (O] < EF O g + B (IO 0, + IV - ¥ (D1 ,), (86)

so that adding over j in (86) we get:
3[R0y = S0 7 = Pl (0] < PO + O M (87)

In a similar fashion:

3 / t <r(21tl> V=S, (2;’) y5>mjw (s)ds| < c< /0 FOIds + hzzvlf). (88)

J
Combining the estimates (85), (87) and (88) we conclude that:

/Ot <I(u)v - 5“(”>’%yts>m_\rp (s)ds

Then integrate (69) from 0 to t and use the bounds (70) (71) (76) (80) (81) and (89) to obtain:

z(pagf agt) (6 + A (7,97 (0 + / (,j o @gj) (s)ds + /Ot<osrp(ay) Srp(aayt)> (5)ds

<é<|y3(t)|§h +/O[ <K10 ?tf,%”t%p(s)dwf <Dsfp (agt> s <agt>> (s)ds>

t
< PO, + C( | st ds + hsz). (89)

t B 0 t
n C< / (nv‘*(snzn +| %o )ds+ v ) + [ o) ) ¢ [ lkds. (90
0 0,2 0,92 0
Next choose % (0) e AC", %" (0) € M" such that:
2" B o gt
An( 5 (0).0] =0, v=(2", ) e NC" x M 91)
to see that, with the argument leading to (76):
B
Hal(O) < Ch Mo. 92)
ot 2h

Then use (92), that P and D are positive definite, that A, is Z"-coercive (see (60)), choose ¢ sufficiently small in (90) and
use Gronwall’s lemma in the resulting inequality to obtain the following estimate:

oy v t
| TS TR (i I e < c[h oo+ ) + [ 19#(0 1) 93)
t L=(J,L%(Qp)) t L2(LL2(Ip)) L2(LL2(Ip)) 0
Next, choose = ¥ = /=0, ¢ =" in (68) to get:
1d o(PhrH-H
(75 95,77) 5 g (0r".3%) = (V o UE = B)¥) o (2= ). (94)

Thus, taking i =y, ¢ =0, v’ = /= 0 in (68) and using (94) yields:

e\ 172
L [5.9F) + ()] + (095, 9F) + <<ﬁ) PXVE7PXVE>

- <W,VE> + (V x [IThE — EJ.y") + (uw’vﬁ + (0[T:E — EJ, ")

Q.|Q_

1
2

&

1/2
+ <(H) Px<[nh5ﬂ>,vaE> ~ (IPaH —H].V % 7). 53)
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Let us bound each term in the right-hand side of (95). First, the fact that V x y£ € W" and the orthogonality property (52)

imply that the last term in the right-hand side of (95) vanish. The other terms can be bounded using the approximating prop-
erties of I, and Py, in (46)-(48) as follows:

()

<IV I+ l17" Io+h2<|EI1+IIV E|lf + '

+[(V x [ITiE - E|,y") | + ‘(uw v”)‘ + | (G[IE — E], )|

)

and
e\ E E 1/2 E
(8) " PAUTE - E0.P,3# )| < WTAE — Elo P, < H 1l 1Pl
Y by ) 4o 97
S2\\u V5 Pyyt ) + Cho [ (97)
Thus, apply the bounds (96) and (97) in (95) to get the inequality:

1d E . E H . H E By, L e\ E E
d—[(svmﬂw,y)]+(0v,v)+§ w) PP

N[ —

(uv 124 [ ||0+h<uE|\1 IV xR+ g Hl)) (98)
Now integrate (98) from O to t and use (38) to get:
t t
O + 1@ + [ (ayﬂyf)(s)dxC(|w5<0>\|3+||v”<0>|\3+ [ (F15+ 1 s)12)ds - N%). (99)

Next, choose E"(0) to be the IT,-projection of E(0) into V" and H"(0) to be the P,-projection of H(0) into W", so that using the
triangle inequality we have that:

[75(0)[I < Ch IEQO) ]Iy, [[7"(0)]l < Ch [|H(0)]|;. (100)
Thus use (100) and apply Gronwall’s lemma in (99) to obtain the estimate:

¥l gz + 172 g2 < CY? (No+No). (101)
Next using (101) in (93) we get:

oY v

< Ch'? Mg + My + No + Ny)]. (102)

Pl + [

H ot (L2 (I'p)) H

L(J,12(2p)) (LA (Ip))

Finally, using the triangle inequality, the approximating properties (46), (48) (49) and the estimates (101) and (102) we
obtain the estimate in (62). This completes the proof. O

Remark. Notice that the loss of half power of h in the error estimate (62) is only due to the error terms associated with the
absorbing boundary conditions appearing in the right-hand side of (81) and (97).

6. The discrete-time finite element procedure

1

Let L a positive integer, At = T/L, g" = g(nAt). Set g"1/> = £+£" and
2n gn+1 _ zgn +gn—l 0 gn+1 _gn—l n gn+1 _gn
= W= dg" =——

Our fully implicit discrete-time procedure is defined as follows: given (E™®, H™! ush0 ysh1 yfho yfhly e ph s ywh s (NC")2 x
(M™)?, for n > 1 compute (EM H™ yshnt1 yfhnely ¢ Yh such that:

(sth’*"-l,zp) ¥ (oih’"*l/z, w) - (FI’L”*“Z, V x 1//) + <(§)1/2Pﬁh~"”z,w> = ("), welh (103)
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(v x Ehn-1/2, <p) + (,udtHh’”’l, (p) =0, pew, (104)
(P*ulm, v),, + Moawhn ) 44 wtr v + (DSr(eu"™),Sr(v)), — (L M grn12 ) — g

) o8 Ko ) o, h 2 9 r I rp 0 Ko ) )
v= (v, 1) e NC" x M". (105)

To analyze the procedure (103)—-(105), choose y = E"-1/2 in (103) and ¢ = H"/2 in (104) and add the resulting equations
to get:

ZLAt [<8Eh1n7Eh»") _ (sEth’Eh‘m) + (,uH’%n,Hh,n) _ (IuHhﬂflth‘nfl)} N <<Z)1/2prhﬂ1/27px§/1.n1/2>

_ (i), (106)

Next, choose v=0u™" in (105) and add the resulting equation to (106) to obtain:

1 h.n phn hn-1 phn-1 h,n h,n h,n-1 h,n—1 h.,n h.n h,n-1 h,n-1

TN[(SE E )—(sE E )+(,uH H )—(uH H )+(Pdtu ™), — (Pdat, d T
1 hn+1 4,hn+ 1 hn-1 ,,h,n-1 Thn-1/2 f.hn Thn-1/2 Fhn-1/2
+ZAh<u Ju >_ZA’1(U qutthy +45(E , ou >+(0E E )Qa
e\"? Thn-1/2 hn+1/2 h.n hon sn Thn-1/2
+ <ﬁ> p,Enn-172 p Eh + (DSr(au"™), Sr (au"™)) . = (]e- BN ) (107)
where ®(EM+1/2 gufhn) is defined in (31). Add the inequality:

¢ _ _ _

iz " G g, = 16 MG g, ) < (I TG g, + Nt g, + N1 g, + Idet™ 15 g, + det™ " 5,) (108)

to (107), multiply the result by At, add from n=1 to n=N and use (34) and (60) to conclude that:

C N oo
(B EP) - (H™ HY) o (P, dut ), 4 22 (N2 4 N2 ) o S (B 122+ flou )2 Y ae

n=1
N 1/2
~ ~ & ~
T Z <<0Eh,n1/27Eh.nl/2)Q + <<,u> PXEh.n1/27PZEh.n1/2> I <Dsr(auh,n)7 Sr(auh‘”)>rp)At
n=1 “
< C(IE™ I3 + IH 5 + w03 + 6™ 13 + et g,
N
2 2 2 -1y2 2 -172
£ ("5 + -+ 5 g, + 1" 5, + 4" g, + et g, + 1™ 1|o,gp)Ar>. (109)
n=1

Next apply Gronwall’s lemma in (109), use (38) and that the matrices P and D are positive definite to conclude that:

L-1
h,n 2 h,ny 2 2 np2 Thn— 2 g2
max [[E" |3 + [HM 1+ lde™ |G g, + 112 ] + 3 (IEM1215, + ow 13, ) At

1<n<l-1 =1

—

-1
x> ((GEM 12 o2y, P ER V2R o ot o o v ) A

n

Il
—_

n=1

L-1
J X )2
< C(”E”Ono Il + 168 s+ U1 + el g, + > IUZ"'O%“) (110)
The estimate (110) yields uniqueness, existence and unconditional stability for the procedure (103)-(105).

7. The case of tetrahedral elements

Let 7¢(2) be a nonoverlapping quasiregular partition of Q = Q, U Q, into tetrahedral elements Q; of diameter bounded by
h and for x = (Xq,X5,X3) let:

Ri={U: u=(a+prope (P,
Then following [20,21] the space V" to approximate the electric field is:

Vi ={y e Hicurl, Q) : yl, € Ri(@) ¥ j},
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while the space to approximate the magnetic field is:
wh={g e (@) : ply, € (Po())’ ¥ j}-

Nédélec [20] showed that the following degrees of freedom:
M}" = {/ - yds, for the six edges e; of Q]},
B €j

where y; is a unit vector parallel to e;, are R;-solvent and curl-conforming, that curl V! c W' and that (47) holds.
Let us define the projection:

Hh:H(curl,Q)HVh:/(I/Jfﬂhx//)%jds:o, 1<j<6, (111)

¢

where »/ is a unit vector parallel to the edge ej.

Also, let the L2-projection P, be defined as in (42). Then the approximating properties (46)-(48) remain valid.

The nonconforming finite element space to approximate the solid displacement vector is defined as in [24] as follows: Let
NC! = [P1()) and

A = {z/: v =g € NCJ, (&) = wil(&) Y (i, k)}.

The four local degrees of freedom are the values at the centers &, of the faces of ©;. Next, let:

S ={U:U=o+xac [P, icP}, (112)
and let:
M" = (v € H(div, Q) : ;= vy € S1 ¥ j}. (113)

The projections:
Ru: [HA (@) — NP,
Qu: [H'(@)P U (HY(@p) — M
S [H*(Q,))® x H'(div; @) — A",
are defined identically than in (43)-(45). The degrees of freedom:
N;(¢') = {{(¢/ -v,1);,B any of the four faces of Q;} (114)

are Sq-solvent and conforming in H(div;€2,) (see [20]), so that (44) uniquely defines Q.
Setting:
Y=Vt W x N x M™,

the definition of the continuous and discrete-time Galerkin procedures (56)-(58) and (103)-(105) remain unchanged. Also,
the existence and uniquess results and apriori error estimates in Theorems 2 and 3 and the stability results as derived in
(110) remain valid.

8. 2D case. The PSVTM and SHTE modes

In this section we will assume that all physical quantities describing our domains 2, and Qp are independent of the x,-
direction (i.e., x, is the symmetry axis) and consider two types of electromagnetic sources. First, if the source is an infinite
solenoid J;, in the x,-direction at depth x5 = 0, under the above symmetry asumption, this source term induces electric and
magnetic fields of the form (E;(x1,x3,t),0,E3(X1,X3,t)), (0,Hx(x1,X3,t),0), respectively, and solid and relative fluid displacements
of the form us = (u5(x1,xs,t), 0, U§(x1,X3,t)) and v = (u'; (x1,X3,1), 0,15 (X1, X3, t)), respectively. Consequently only compres-
sional and vertically polarized shear seismic waves (PSV-waves) are generated. This is a 2D model known as a PSVTM-mode.

On the other hand, if the electromagnetic source is a infinite line source current density J; in the x,-direction at depth
x3 = 0, this source term induces electromagnetic fields (0, Ex(x1,x3,t),0) and (Hq(x1,X3,t),0,H3(x1,X3,t)) and horizontally polar-
ized shear waves (SH-waves), so that u* = (0, u$(x1,x3,t), 0), v = (0, ué(xl,x3, t),0), and consequently:

Vur=v-u=0. (115)
Hence, it follows from (6) and (115) that:
p;=0. (116)
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In this case we get another 2D model known as SHTE-mode.

For the PSVTM-mode, let us identify the 3D vectors (E;(x1,X3,t),0,E3(xq,X3,t)) and (0,H,(x1,x3,t)),0) with the 2D vector
E(x1,x3,t) = (E1(x1,X3,t),E3(X1,X3,t)) and the scalar H,(xq,X3,t), respectively. Similarly, for the SHTE-mode, let us identify the
3D vectors (Hq(x1,x3,t),0,H3(x1,X3,t)) and (0, Ex(x1,x3,t)),0) with the 2D vector H(x,X3,t) = (H1(X1,X3,t),H3(X1,X3,t)) and the sca-
lar E5(x1,x3, t), respectively.

Next recall that for a scalar function ¢ and a 2D vector function V = (Vy,V3):

_(_ % d¢ _oVy oVs
curl o= (5050 V=S5

Also, let us identify our 3D-rectangular domain 2 with the 2D-rectangular domain € N {x, = 0}, so that Q is the union of
the disjoint rectangular subdomains €, and .

For 2D PSVTM electroseismic modeling the electric and magnetic fields E and H and the displacement vectors u® and 1
satisfy the coupled electromagnetic-poroelastic equations, stated in the space-time domain as follows:

e%+a£—curl H, =0, Q (117)

curl E+%:ﬁn, Q, (118)
o*us o

PbF‘*‘Pf?—V'T(U):Q Qp, (119)
u % o o n

pf¥+m¥+}€_o ﬁ_LOK_OE—Ffo(u)_O’ Qp, (120)

For 2D SHTE electroseismics, the corresponding equations are:

E%JraEz—curlH:]Z, Q, (121)

curl E; +6ai;1:0, Q, (122)
otus A,

pb?hpf?;—v-(cwg) =0, Q, (123)
Fuy %y, moh, o

PraE T g a2 =0 % 124

Set:
Gr,(u) = (T(w)v- v, 1wy 1,5 (W), (126a)
Sro(u) = (v, g1 ) (126b)

where I’ is any subset of 9€2,, v is the unit outer normal on I's and j is a unit tangent on I’ oriented counterclockwise.
Then, for the PSVTM-mode, consider the solution of (117)-(120) with the absorbing boundary conditions:

—¢"?E-y+H, =0, onT, (127)
ou
—Gr,(u) = DS, (&), on I'p, (128)

the free surface condition:
—Gr,(u) =0, on Iy, (129)
and the initial conditions:
E(x1,x3,t =0) =Ey, Hay(x1,%3,t =0) = Hay, (130)
WX, x5t =0) =1, ' (x;,%3,t =0) =1t

N

ou o
a(X],X?,,t:O):ui, ﬁ(Xl,Xg,t:O):u{.

The matrix D in (132) is defined as in the 3D case, changing the definition of the matrices R and M in the obvious fashion.
For the SHTE-mode, consider the solution of (121)-(124) with the absorbing boundary conditions:

W”?H.-y—&?E, =0, onT, (131)
ous 1/2
—GVUS - v=0—2 = — p?
GVu, -v=uo 5 (G(pb pf/m)) , onl)p, (132)
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the free surface condition:
GVui-v=0, on [, (133)
and the initial conditions:
H(x1,x3,t =0) = Ho, Ez(x1,x3,t =0)=Eyp (134)
U (X1,%3,t = 0) = U3, ug(xl,xg,t:O):uéro,

S

ou o,
a—tz(x17x3,t:0) =Uuy, a—tz(xhxg,t:O) = uQ].

Remark. The absorbing boundary conditions employed for Maxwell’s and Biot’s equations were obtained from the general
3D case.

Using the integration by parts formula[35]:

(y,curl @) — (curly, @) = (- 1, @), ¥y € H(curl, @), p € H'(Q), (135)
for the PSVTM-mode we get the weak form: find (E, H,,u*,t') € H(curl, 2) x L*(Q) x [H'(2,)]* x H(div, Q2,) satisfying:

12
(ggf,lp> + (OE, ) — (Hy, curly) + <(Z) E‘le//‘X> =0,

¥ € H(curl, Q), (136)
H
el E.g)+ (15200) = o) 9 <L) (137)
o’u n o n ou B
(Pe) (L%w), +awo-(wlew) + (o (G)suw) -o
v=(2,7) € [H(Q)) x H(div, Q). (138)

Remark. The matrix P in (138) is defined as in (26) for d = 2 while the bilinear form A is given by (27) deleting rows and
columns 3, 6, and 7 in the matrix M.

Similarly, for the SHTE-mode, the weak form is: find (E,, H,u$, 1)) € L*(2) x H(curl, Q) x H'(Q,) x L*(Q,) satisfying:

oF ;

(6% 0) + (0B 0) - (curl H.) = (E.0). ¢ <L2(@) (139
1/2
(Excurti) + () + ((5) "Ho v 7) =0, v e Hien, ), (140
o%us o’ S ous o%us i
<pb¥zz,vs>g +<pf?22,v‘> +(GVu2,Vv‘)Qp+<oc(a—t2>,vs>r +<pf?22,vf> +(m?22,z/
» IR » @ @
+ i%,vf - (LOEEva) =0, v=(0%0)eH'(Q) x [X(Q). (141)
Ko Ot 0 Ko Q

Uniqueness for the solution of 136,23,24 and (139)-(141) follows with the same argument than for the 3D case.

9. Finite element methods for the PSVTM and SHTE modes

First consider the case that 7"(Q) is a nonoverlapping quasiregular partition of Q = @, U Q, into rectangles ©; of diameter
bounded by h such that @ = U_, ;.

Let us consider first the PSVTM-mode. To approximate the electromagnetic fields E and H, we will employ the mixed fi-
nite element space V' x W", defined as follows [19,23]:

V= {y e Hicurl, @) : I €V} = Poa(Q) x Pro(@)},
Wh = {q) eX(Q): @@ e EPO(Qj)}.
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The functions in V" have continuous tangential components across the internal boundaries I’ 'ik- Also, curl Yhcwh .
Following [23], the degrees of freedom for V" are defined in the following way. Let ©; be a general element of the partition
74(Q) and let € [H'(€2))]*. Then define the following moments on I'j:

Mr, (¥) = {<w T fe Po(ij)}- (142)

Note that (142) are curl-conforming and unisolvent for elements in V".

To approximate each component of the solid displacement vector we employ the nonconforming finite element space AC"
as in [24], while to approximate the fluid displacement vector we choose M", the vector part of the Raviart-Thomas-Nédélec
space [18,19] of zero order. Thus:

R=[-117 Q) =Span(1.&1.%.2(k) - %)), 42) =2~ 32"

with the degrees of freedom being the values at the midpoint of each edge of R. Next let ./\/(?]’41 = [Q(2)))? and
N = {0 = vl € NG, 03(&) = &) Y (k) (143)
M= {w € H(div, Q) : W|Q € M]' = Py(Q) x Po.l(gj)}. (144)

Next consider the case in which 7" is a quasiregular partition of € into triangles ©; of diameter bounded by h. Set:
Ri={U:u=(a+bxs,c+dx;), a,b,c constants},
and let us define the spaces to approximate the electric and magnetic fields V' and V" as:
Vh = {l// € H(curl, Q) : Y| € Ri(2) Vj},
W ={p e L’(Q): plg € Po(2) ¥ j}.

The local degrees of freedom for V" and W" can be taken to be the values of the tangential components at the mid-points of
each edge of the triangle ©; and the values at the centroids of €;, respectively.
Next, if:

N = [Py()]?,

the space AC" to approximate each component of the solid displacement in Q2 is defined as in the rectangular case in (143).
with the local degrees of freedom being the values at the mid-point of the edges of each ;.
Finally if:

Si={U:u=(a+bx;,c+dxs), a,b,c constants},
the space to approximate the fluid displacement vector is:
Mt = {vf € H(div,Q,) : ¥, € Si(2) v]'}.

The local degrees of freedom for M" are the values of normal components at the mid-points of each edge of the triangle Q;.
The approximating properties of the 2D finite element spaces defined above are the same than those stated in the 3D case.
Let:

Y= Vs W NC* x M.

Then the continuous-time Galerkin procedure for the PSVTM-mode is defined as follows: find (E”, HY ush uf >h> ] — V" such

that:
OE" N N N e\'"? , oH! o*uh
(eg,w)+<o-E,w>—(H2,curw)+<curlE,<p>+ (5) B v} (n%Eo)+ (Pop 0 Q

f.h h
" (l% ) + AU, v) — (LoiEhv ”f> i <D5r <ai)75r(”>> =.0), W.e.v.P)ed' (145
@ Ko @ ot r

Ko
with the initial conditions:

E'(t=0)~Ey, Hi(t=0)~ Hyyp, (146)
wht=0)~u), W't=0) ~u. (147)
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Remark. In (145) the bilinear form A, is defined as in (54), changing the definition of the matrix M as indicated in the
remark below (138).

Next we consider the SHTE-mode. In this case we will employ the spaces V' and W" to approximate the magnetic vector
field H and the scalar field E,. Also, to approximate the solid displacement 1 in €2, we employ the (scalar) nonconforming
finite element space AC" (ie. in (143) change the definition of /\/’Chto J\/’C" =Q(Q) (resp. /\/’Ch = P1(©;), depending on
whether we have rectangular of triangular elements). To approx1mate the ﬂu1d displacement uS we choose the > space of
piecewise constants over the restriction of the partition 7'(Q) to @,. Thus, for the fluid dlsplacement the space /\/l“ is de-
fined as:

ﬂjh - {W: W, € Po(Qj)}v M = {WG L) w =Wlg € '//\th}
Let:
Ph— Wh s VI A" x M

Then the global finite element procedure for the approximate solution of the SHTE-mode is defined as follows: Find
(Eg,Hh,u;ﬂug‘h) € Y" such that:

oF, n h h oH" T
< ot 7(;0) (O-ELQD)_(CurlH aqo)—'_(EZacurl lﬁ)"— IU“F”// +<<E) H X7l//X>
oH" Pus" GRTA oh ouy"
+<“F"”) (pbaT,v‘ ) gt ) +(GVu2 ,v¢>9p+ o 2= ). F
oS ulh n ot o
1% (L, LE
(pf 6t2 70{)9 + (m al_z 71))( . + Ko ot avf . <0K0 Zavf)gp

)

=(9), (@, 5, V) e, (148)

with the initial conditions:
Eb(t=0) ~ Eyo, H"(t=0)~ Hy, (149)
' (E=0) m U3y, U (E=0) ~ U (150)

Existence and uniqueness results for (145)-(150) follow with the argument given for the 3D case.
Discrete time finite element procedures for the PSVTM and SHTE-modes can be defined and analyzed similarly to that in
(103)-(105) for the 3D case and for brevity are not stated here.

10. Numerical experiments for electroseismic modeling

Consider the ideal case of an infinite plane of current density in the x,-direction. In this case the electromagnetic and dis-
placement fields depend only on the x;-direction and have components (0, Ex(xs,t),0) and (Hy(xs,t),0,0), u* = (0, u5(x3,t),0),

W= (O,Ltg(x37t),0), and we have a 1D SHTE model. Thus, if Q,=(0=1",T"y,), 2,=(qp '?) and the xs-axis is positive
downward (1)-(6) reduce to:

OF, oH;
8E+0E2—%_je_5x3g(t)7 Q, (151)
oE, ©oH,
76273+ A Zu(? Q, (152)
0 us ow, 0 ouy\
Proe TProe " ax, (G&> =0, O, (153)
azus azuf n o’ n
Prae TMoe +;T ot L B=0 & (154)
with the boundary conditions:
W'?Hy +ve'?E, =0, on T (155)
ous ous
-V @7065 on Iy, (156)

where v=—1on I'"and v=1 on I'% and initial conditions:
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Hi(x3,t =0) =H1p, Ex(x3,t=0)=E;p
U5, t=0) = U, Up(Xs,t=0)=hy,

ous o
ot ot 2 (%, 0= 0) =1,

A weak formulation ca be stated as follows: for t € J, find <Ez,H1,u§,u£>(t) € () x H'(Q) x H'(Q,) x L*(R,) satisfying:

(157)

X3,t =0)=u5,,

OF oH ]
( 2,<p) (0Es, @) - (a—,@‘P) — (50), @clX®), (158)
d oH 172
(Ez,ax'/’) + < ! ,l//) <(%) H1,¢> —0, yeH(curl,Q), (159)
o%us GRTA oug, v ous o°us o’
(pb atz ,US)Q <pf az 705)9 +(G%’%>Qp+<a(§>’vs>ﬂ, pf atz avf ) + m?zzvvf .
h
+ (1%,10 - (LoiEz,vf) —0, v=(v0)eH (@) x 2(Q). (160)
Ko Ot 0 Ko 2

Uniqueness for the solution of (158)-(160) follows with the argument given for the 3D case.

10.1. A discrete time finite element procedure

L T(Q) is a nonoverlapping partition of Q=,U Q, into subintervals €; of diameter bounded by h such that

t
= U, Q. Let:
V= {y e H'(Q): w2 e Pu@)}, W'={pelX@): ¢l ePo(2)},
zh = {zﬁ cH'(Q): 1°|Q ¢ P1(Qj)}7 Mt = {vf cIX(Q,): Qe PO(QJ)}.
Our fully implicit discrete-time Galerkin procedure for 1D SHTE electroseismics is defined as follows.

Given (E5° H}' ush® ush! "0 uf'”) eV x Wh x (2")? x (M")?, for n > 1 compute (Eg’”,Hﬁ'*”,usz'h'"“,ug’h‘"“) e Vix
Wh % 2" x M" such that:

o172

h.n—-1 ’\hl,n—l/Z . 1 _(psn h
(edeBS™ " ) + (GBS 0) = |0 ) = (2" 0) @, (161)
12
(Ehn 1/2 61&) + (,Udthmilyl//) + <(%) Hh,n—l/z’l//> =0, ye Vh, (162)
2 s,h,n 2. .fhn 2 shn 2. .fhn i shon
(ot o), + (o), (2 o)+ (mudvr) o (Lo of)
h,n+1 h,n-1 ~
+ (Gv (%)w) T (oout), 7). (LOKEE’;"-‘/Z, vf> —0, v=(¢5 V) ez x M. (163)
Qp 0

The fact that (161)-(163) is unconditionally stable follows with a similar argument to that given in the analysis of (103)-
(105) for the 3D case.

Table 1
Parameters characterizing the model used in Example 1.
Homogeneous region brine saturated Layer 1: brine saturated Layer 2: 75% gas — 25% brine saturation
o¢ (S/m) 0.01 0.1 0.001
¢ (-) 0.2 0.25 0.2
K; (Pa) 3.7 x 10'° 2.5 x 10" 3.7 x 10'°
u (m/s) 1400 1450 1800
ps (kg/m?) 2650 2650 2650
ko (m?) 1013 10716 10713
Lo (A/(Pa m)) 32x1071 1.5 x107° 33 x107°
oy (kg/m?) 1000 1000 0.88
n (kg/(m s)) 0.001 0.001 1x107°
Ky (Pa) 2.25 x 10° 2.25 x 10° 0.1 x 10°

Sr(-) 1 1 0.75
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10.2. Numerical example

Let us consider a model comprising two layers of two hundred and one hundred meters depth referred to as Layer 1 and
Layer 2, respectively, immersed in an otherwise homogeneous Earth. The top of Layer 1 is located at 500 m below the sur-
face; Layer 2 is immediately beneath the former. Above the Earth surface a 100 m thick air layer is considered, with electric
conductivity of 10~7 S/m. The electric permittivity is taken to be equal to that of the vacuum in the whole model. Both the
homogeneous portion of the Earth model and Layer 1 are fully saturated with brine while Layer 2 is partially saturated with
gas (75% gas saturation), the remaining portal space is occupied by brine. This model corresponds to a partially gas-saturated
sandstone located beneath a seal layer. As Biot’s equations admit a single-phase saturating fluid, an effective one is built in
the gas-bearing region. The effective fluid properties are calculated as follows: the bulk modulus is calculated by means of
the Reuss average [40] 1/Key= Sw/Kw + Sg/Kg, where K, K, denote the bulk modulus of brine and gas, respectively and S,,, Sg
their respective saturations; the effective fluid density is the weighted average pey= Swpw + Sgp; and the effective viscosity is
given by 7., = 1,(1,, /ng)SW [41]. The electric conductivity is considered the mean value of the Hashin-Strikman bounds of a
two-phase composite [40]; the upper one is oy = 0y + (1 = Sw)/((0g — ow) ' +S»/(30y)) and the lower one is obtained
interchanging the g and w subscripts in the last formula. The electric conductivity of the different subsurface regions used
in Maxwell’s equations is obtained from the electric conductivity of the effective fluid by means of the expression ¢ = gegp?
[40,42]. Finally, it must be noticed that the electrokinetic coupling coefficient Ly is calculated considering that only brine is
present. As in gas/oil reservoirs brine is always the wetting phase, it is here assumed that the electrokinetic coupling takes
place through it, and it is not modified by the presence of gas.

Table 1 displays the values of the model parameters used in this example. The electromagnetic source is located on the
Earth’s surface, and has the following time dependence:

Surface solid displacement [m]
1.5e-12 T T T T T T T T T

1e-12 — -

5e-13 - \ =

-5e-13 - =

-le-12 =

156-12 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t[s]

Fig. 2. Trace of solid displacements measured on the surface. A”, B” and " are direct arrivals of waves originated at the 500 m, 700 m and 800 m depth
interfaces respectively. D” is a reflection on the lower boundary of the 200 m width layer of a downwards travelling wave originated on the top boundary of
the same layer.
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Table 2
Material parameters for the second model.
First and Third Layers (200 mts thick) Second layer (100 mts 75%
brine saturated gas-25% brine saturation thick)
¢ (S/m) 0.01 0.001
¢ (=) 0.2 0.2
o (m/s) 1400 1800
ps (kg/m?) 2650 2650
ko (m?2) 1013 1016
Lo (A/(Pa m)) 32 x 1071 15%x107°
pr (kg/m?) 1000 0.88
n (kg/(m s)) 0.001 1x10°°
S(—) 1 0.75
Table 3
Numerical estimate of the order of approximation of the
studied finite element method, 1D case.
& o
IE - E"lo 0.98
|H - H"o 1.06
lus — us 1.0
([T T 1.05
I§ (et 10
& W —u 1.06
2 2
f(0) = (1= 2(folt — £0))*) exp (~(mfo(t — t))°), (164)

where fy =30 Hz and ty = 0.06 s. In this example h =0.5m, dt = 2.5 x 10~*s and the numerical domain comprises 2750 ele-
ments. Fig. 2 shows a trace recorded by a surface geophone. In the figure the arrival times corresponding to seismic waves
originated by the conversion of electromagnetic to mechanic energy at the boundaries of the different layers are shown; the
arrival time values are in good agreement with the expected ones.

Next the order of spatial approximation given in Theorem 3 will be numerically tested in this one dimensional model; in
this case a simpler model will be considered, namely a partially gas saturated (75% gas-25% brine) single layer 100 m thick
surrounded by two brine saturated 200 m thick slabs. The model parameters are given in Table 2, and the same source as in
the previous model is used. It must be here noticed that in our choice of the finite element spaces employed, the two points
associated with the boundary of our domain are nodal points of the finite element discretization into C°-piecewise linear
functions and consequently the error terms appearing in the right-hand side of (81) and (97) (associated with the absorbing
boundary conditions) are of order h and not of order h'/? as in the 3D case. Therefore the power of h in the apriori error esti-
mate in Theorem 3 is one.

Since analytical solutions for this model are not available, four different solutions were calculated, using h; = 0.025,
hy=0.25, h5 = 0.5 and h, = 1 with the same time step 2.5 x 10~* in all cases; the solution corresponding to the finest mesh
(h=0.025) was associated with the analytical one. Three different snapshots were taken at three different times. Then, for
each snapshot the errors ||E — E"|o, |[H — H"|lo, [[u® — w||,, || —w'M]|o, || 2w —uh)||y and || & (wf — w/h)||, were calculated.
The time partial derivatives were approximated by a second order approximation at each snapshot. Let &;,i=2,3,4 be
any of the errors calculated for h;, i = 2,3,4, and consider the system of equations:

&, = Cdt’ + Dh;,
& = Cdt’ + Dhj, (165)
&4 = Cdt” + DHj,

where of course the seeked solution is the exponent o. In Table 3 its values obtained for the different errors using the first
snapshot are shown; the values or the other snapshots did not show significative differences. It can be clearly seen that the
numerical results are in very good agreement with the theoretical value (one) for the exponent ¢.

Acknowledgements

This work was partially supported by CONICET through PIP 112-200801-00952.



6374 J.E. Santos et al./Applied Mathematics and Computation 218 (2012) 6351-6374

References

[1] A.H. Thompson, Electromagnetic-to-seismic conversion: successful developments suggest viable applications in exploration and production, in: 75th
SEG Annual Meeting, Expanded Abstracts, Houston, 2005.
[2] S. Hornbostel, A.H. Thompson, Waveform design for electroseismic exploration, Geophysics 72 (2) (2007) Q1-Q10.
[3] A.-H. Thompson, G. Gist, Geophysical applications of electrokinetic conversion, The Leading Edge 12 (1993) 1169-1173.
[4] S.R. Pride, Governing equations for the coupled electromagnetics and acoustics of porous media, Phys. Rev. B 50 (1994) 15678-15696.
[5] G.I Block, J.G. Harris, Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments, J. Geophys. Res. 111 (2006) B01304,
doi:10.1029/2005JB003798.
[6] S.H. Haines, S.R. Pride, Seismoelectric numerical modeling on a grid, Geophysics 71 (6) (2006) N57-N65.
[7] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range, ]. Acoust. Soc. Am. 28 (1956) 168-178.
[8] ML.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range, ]J. Acoust. Soc. Am. 28 (1956) 179-191.
[9] Q. Han, Z. Wang, Time-domain simulation of SH-wave induced electromagnetic field in heterogeneous porous media: a fast finite element algorithm,
Geophysics 66 (2) (2001) 448-461.
[10] S. Garambois, M. Dietrich, Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media,
J. Geophys. Res. 107 (2002) 40-58.
[11] C.C. Pain, J.H. Saunders, M.H. Wortington, ].M. Singer, W. Stuart-Bruges, G. Mason, A. Goddard, A mixed finite element method for solving the
poroelastic Biot equations with electrokinetic coupling, Geophys. J. Int. 160 (2005) 592-608.
[12] B.S. White, Asymptotic theory of electroseismic prospecting, SIAM ]. Appl. Math. 65 (4) (2005) 1443-1462.
[13] B.S. White, M. Zhou, Electroseismic prospecting in layered media, SIAM J. Appl. Math. 67 (1) (2006) 69-98.
[14] H. Hu, W. Guan, ]. Harris, Theoretical simulation of electroacoustic borehole logging in fluid-saturated porous formation, J. Acoust. Soc. Am. 122 (2007)
135-145.
[15] W. Guan, H. Hu, Finite difference modeling of electroacoustic logging response in fluid-saturated porous formation, in: Annual Meeting, Society of
Exploration Geophysicists, San Antonio, USA, 2007, pp. 511-515.
[16] W. Guan, H. Hu, Finite-difference modeling of electroseismic logging in a fluid saturated porous formation, J. Comput. Phys. 228 (2008) 5633-5648.
[17] J.E. Santos, Finite element approximation of coupled seismic and electromagnetic waves in fluid-saturated poroviscoelastic media, Numer. Methods
Part. Diff. Equat. (2010), doi:10.1002/num.20527.
[18] P.A.Raviart, .M. Thomas, A mixed finite element method for second order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of
the Finite Element Method, Lecture Notes in Mathematics, vol. 606, Springer-Verlag, Berlin, New York, 1977, p. 292.
[19] J.C. Nédélec, Mixed finite elements in R?, Numer. Math. 35 (1980) 315-341.
[20] ].C. Nédélec, A new family of mixed finite elements in R>, Numer. Math. 50 (1986) 57-81.
[21] P.B. Monk, A mixed method for approximating Maxwell’s equations, SIAM J. Numer. Anal. 28 (6) (1991) 1610-1634.
[22] P.B. Monk, An analysis of Nédélec method for the spatial discretization of Maxwell’s equations, J. Comput. Appl. Math. 47 (1993) 101-121.
[23] P.B. Monk, A.K. Parrot, A dispersion analysis of finite element methods for Maxwell's equations, SIAM ]. Sci. Stat. Comput. 15 (4) (1994) 916-937.
[24] J. Douglas Jr., J.E. Santos, D. Sheen, X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, RAIRO
Math. Model. Numer. Anal. (M2AN) 33 (1999) 747-770.
[25] F.I. Zyserman, P.M. Gauzellino, J.E. Santos, Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamic
equations, J. Numer. Meth. Eng. 58 (2003) 1381-1395.
[26] E.I Zyserman, J.E. Santos, Analysis of the numerical dispersion of waves in saturated poroelastic media, Comput. Methods Appl. Mech. Eng. 196 (2007)
4644-4655.
[27] J.E. Santos, Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness results, Math. Model. Numer. Anal. (M2AN)
20 (1) (1986) 113-128.
[28] J.L. Lions, Quelques methodes dde resolution des problems aux limites nonlineaires, Dunod, Gauthier-Villars, Paris, 1969.
[29] J.E. Santos, D. Sheen, Finite element methods for the simulation of waves in composite saturated poroviscoelastic materials, SIAM J. Numer. Anal. 45 (1)
(2007) 389-420.
[30] F. Gassmann, Uber die elastizitdt poréser medien, Vierteljahrsschrift der Naturforschenden Gessellschaft in Zurich 96 (1951) 1-23.
[31] J.E. Santos, J.M. Corberd, C.L. Ravazzoli, ].L. Hensley, Reflection and transmission coefficients in fluid-saturated porous media, J. Acoust. Soc. Am. 91
(1992) 1911-1923.
[32] S.H. Haartsen, S. Pride, Electroseismic waves from point sources in layered media, J. Geophys. Res. 102 (24) (1997) 745-769.
[33] M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, ]J. Appl. Phys. 33 (4) (1962) 1482-1498.
[34] J.E. Santos, J. Douglas Jr., M.E. Morley, O.M. Lovera, Finite element methods for a model for full waveform acoustic logging, IMA J. Numer. Anal. 8 (1998)
415-433.
[35] V. Girault, P. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
[36] D. Sheen, A generalized Green’s theorem, Appl. Math. Lett. 5 (1992) 95-98.
[37] D. Sheen, Approximation of electromagnetic fields: part I. Continuous problems, SIAM ]. Appl. Math. 6 (1997) 1716-1736.
[38] G. Duvaut, J.L. Lions, Les Inéqualities en Méchanique et en Physique, Dunod, Paris, 1972.
[39] J.A. Nitsche, On Korn’s second inequality, RAIRO Anal. Numer. 15 (1981) 237-248.
[40] G. Mavko, T. Mukerji, J. Dvorkin, The Rock Physics Handbook, Cambridge University Press, 1998.
[41] J.M. Carcione, S. Picotti, D. Gei, G. Rossi, Physics and seismic modelling for monitoring CO, storage, Pure Appl. Geophys. 163 (2006) 175-207.
[42] S. Pride, S. Garambois, Electroseismic wave theory of Frenkel and more recent developments, J. Eng. Mech. 131 (9) (2005) 697-706.



