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Painlevé Equations

A. Ghose Choudhury, Partha Guha,
Nikolai A. Kudryashov

Department of Physics, Surendranath College, 24/2 Mahatma

Gandhi Road, Calcutta-700009, India;
S.N. Bose National Centre for Basic Sciences, JD Block, Sector

III, Salt Lake, Kolkata - 700098, India;
Department of Applied Mathematics, National Research
Nuclear University MEPHI, 31 Kashirskoe Shosse, 115409

Moscow, Russian Federation

Abstract

We derive the Lagrangians of the higher-order Painlevé equations
using Jacobi’s last multiplier technique. Some of these higher-order
differential equations display certain remarkable properties like pass-
ing the Painlevé test and satisfy the conditions stated by Juráš, (Acta
Appl. Math. 66 (2001) 25–39), thus allowing for a Lagrangian de-
scription.

1 Introduction

The study of higher-order Painlevé equations is interesting from the mathe-
matical point of view because of the possibility of existence of new transcen-
dental functions beyond the six Painlevé transcendents. In addition such
higher-order Painlevé often have interesting physical and mathematical ap-
plications. For example it is known that special solutions of equations for
the Korteweg de Vries hierarchy which are used for describing water waves
can be expressed via the higher-order Painlevé equations.

The first Painlevé hierarchy was first introduced in [1]. Thereafter many
results were obtained in the analysis of the higher Painlevé equations. Scaling
similarity solutions of three integrable PDEs namely the Sawada-Kotera,
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fifth order KdV and Kaup-Kupershmidt equations were considered in [2]
where it was shown that these fourth-order ordinary differential equations
(ODEs) may be written as non-autonomous Hamiltonian equations for time
dependent generalizations of integrable cases of the Hénon-Heiles system.

In [3] it was proved that higher-order members for the first and second
Painlevé hierarchies do not have polynomial first integrals and that their
solutions can determine new transcendental functions. Lax pairs for some
equations of these hierarchies are presented in [4] and the Cauchy problem
for equations of these hierarchies can be solved by an analogy with the Cauchy
problem of the well known Painlevé equations. The Painlevé tests for higher-
order Painlevé equations were demonstrated in [5–7].

In [8] two new hierarchies of nonlinear ODEs were introduced which were
called the K1 and K2 hierarchies and which may be considered as new higher
Painlevé hierarchies. The equations of these hierarchies have all the proper-
ties that are unique to the famous Painlevé equations.

Shimomura in [9] presented an interesting expression for the first Painlevé
hierarchy which allows us to consider new properties of equations. Poles and
α - points of the meromorphic solutions of the first Painlevé hierarchy was
studied by Shimomura in [10], where a lower estimate for the number of poles
of meromorphic solution is also given.

In [11] instanton-type solutions and some leading expressions for the sec-
ond member of the first hierarchy were constructed using multiple-scale anal-
ysis. Recently Mo in [12] has applied a twistor description of the similarity
reductions to the case of the KdV hierarchy to obtain the twistor spaces of
the Painlevé I and Painlevé II hierarchy. Dai and Zhang [13] have extended
the results by Boutroux [14,15] for the first Painlevé equation to the case of
the first Painlevé hierarchy. The authors have shown that there are solutions
characterized by divergent asymptotic expansions near infinity in specified
sectors of the complex plane for higher-order analogue of the first Painlevé
equation.

Some important results connected with higher-order Painlevé equations
were also obtained in the papers [16,17]. In [16] Claeys and Vanlessen proved
the universality of the correlation kernel in a double scaling limit near sin-
gular edge points in random matrix models that were built out of functions
associated with a special solution of the second member for the first Painlevé
hierarchy. In [17] the authors established the existence of real solution of
the fourth-order analogue of the Painlevé equation and obtained the solv-
ability of an associated Riemann - Hilbert problem through the approach of
a vanishing lemma and found additionally the asymptotics of solutions.

The Hamiltonian structure of the second Painlevé hierarchy was consid-
ered in [18]. Here the authors introduced new canonical coordinates and
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obtained the Hamiltonian for evolutions. They also gave an explicit formu-
lae for these Hamiltonians and demonstrated that these Hamiltonians are
polynomials in the canonical coordinates.

The aim of this paper is to obtain the Lagrangians for the four higher
Painlevé hierarchies using the same approach. In recent years much attention
has been paid to the Lagrangian framework of higher-order differential equa-
tions. Although a Lagrangian always exists for any second-order ordinary
differential equation its connection with Jacobi’s last multiplier (JLM) [19,20]
is perhaps not very widely known. The credit for resurrecting the JLM, in
recent years, must go to Leach and Nucci, who have shown how it may be
used to determine the first integrals and also Lagrangians of a wide variety
of nonlinear differential equations [21]. While it appears that the connection
of the Jacobi last multiplier to the existence of Lagrangian functions were
the subjects of investigation by a few authors in the early 1900’s, the precise
nature of this interrelation was brought out by Rao, in the 1940’s [22]. There-
after it does not appear to have attracted the attention of most researchers
working in the field of differential equations.

According to the classical theory of Darboux [23] every scalar second-
order ordinary differential equation is multiplier variational. The problem
of finding a Lagrangian for a given ODE is generally referred to as the in-
verse variational problem of classical mechanics. The necessary and sufficient
conditions for an equation y′′ = F (x, y, y′) to be derivable from the Euler-

Lagrange equation ∂L
∂y

− d
dx

(

∂L
∂y′

)

= 0, was enunciated by Helmholtz [24, 25]

in the form of certain identities.
The variational multiplier problem for higher-order scalar ordinary dif-

ferential equations has been studied by Fels [26] and Juráš [27]. The inverse
problem for a fourth-order ODE was solved by Fels who investigated scalar
fourth-order ordinary differential equations of the form

d4u

dx4
= f(x, u,

du

dx
,
d2u

dx2
,
d3u

dx3
).

Fels approach for solving the fourth-order inverse problem was essentially
based on a modified version of Douglas’s [28] classical solution to the multi-
plier problem as refined by Anderson and Thompson in [29], who used the
variational bicomplex theory [30] to derive the multiplier and showed that
the existence of a multiplier was in a direct correspondence with the existence
of special cohomology classes arising in the variational bicomplex associated
with a differential equation. Fels conditions ensure the existence and unique-
ness of the Lagrangian in the case of a fourth-order equation and it has been
shown by Nucci and Arthurs [31] and more recently by us [32] that when
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these conditions are satisfied, a Lagrangian can be derived from the Jacobi
last multiplier.

In fact Fels approached the problem using Cartan’s equivalence method,
and arrived at two differential invariants whose vanishing completely char-
acterizes the existence of a variational multiplier. Unlike the second-order
case, the multiplier is unique up to a constant multiple. The programme was
further developed by Juráš [27] who studied the inverse problem for sixth and
eighth-order equations. In fact Juráš obtained a similar solution by using,
however, a more direct approach in the spirit of the variational bicomplex;
the differential invariants becoming increasingly complicated for higher-order
systems. By analyzing the structure equations of the horizontal differential
he uncovered a two-form Π with the property dΠ ≡ 0 mod Π, if and only
if the equation

d2nu

dx2n
= f

(

x, u,
du

dx
, · · · ,

d2n−1u

dx2n−1

)

,

is multiplier variational. He proved that a Lagrangian, if it exists, is unique
up to the multiplication by a constant and found functions I1, I2, ..., In, whose
vanishing provides a necessary condition for the above equation to be varia-
tional. These functions are not relative contact invariants, but their simul-
taneous vanishing is a contact invariant condition.

In [32] the authors made use of the Jacobi Last Multiplier (JLM) to derive
Lagrangians for a set of fourth-order ODEs which pass the Painlevé test, i.e.,
their solutions are free of movable critical points. Recently the conjugate
Hamiltonian equations for such fourth-order equations passing the Painlevé
test have also been derived in [33].

2 Four Painlevé hierarchies

Now the first and the second Painlevé hierarchy are well known and can be
written as the following

N
∑

m=1

tm Lm[u] = x, (1)

(

d

dx
+ u

) M
∑

m=1

tm Lm[ux − u2]− xu− βN = 0, (2)

where N and M are integers, tm, (m = 1, . . . , N) is the sequence of operators
Lm[u] that satisfies the Lenard recursion relation

dx Lm+1[u] =
(

d 3
x + 4 u dx + 2 ux

)

Lm[u], L0[u] =
1

2
. (3)
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Taking the operator (3) into account we obtain

L1[u] = u, (4)

L2[u] = uxx + 3 u2, (5)

L3[u] = uxxxx + 10 u uxx + 5 u2
x + 10 u3, (6)

L4[u] = uxxxxxx + 14 u uxxxx + 28 ux uxxx + 21 u2
xx+

70 u2 uxx + 70 u u2
x + 35 u4.

(7)

Using the values of operators L1, L2, L3, L4 and so on we can obtain the
equations of the first and the second Painlevé hierarchies.

The sixth-order ordinary differential equations of the first and the second
Painlevé hierarchies have the form

t4
(

uxxxxxx + 14 u uxxxx + 28 ux uxxx + 21 u2
xx + 70 u2 uxx+

+70 u u2
x + 35 u4

)

+ t3
(

uxxxx + 10 u uxx + 5 u2
x + 10 u3

)

+

+ t2
(

uxx + 3 u2
)

+ t1 u = x,

(A)

t3
(

uxxxxxx − 14 u2 uxxxx − 56 u ux uxxx − 28 u2
x uxx − 42 u u2

xx+

+70 u4 uxx + 140 u3 u2
x − 20 u7

)

+ t2
(

uxxxx − 10 u2 uxx−

−10 u u2
x + 6 u5

)

+ t1
(

uxx − 2 u3
)

− xu− β3 = 0,

(B)

We see that equations of the first and the second hierarchy have even
integer orders 2N − 2 and 2M respectively.

Equations (A) and (B) are important and interesting because setting the
constants t3 = t2 = 0 one recovers the Painlevé equations. When t1 = t3 = 0
these yield equations which we have studied recently. In the case t1 = t2 = 0
they reduce to sixth-order equations which are the third members of the
first and second Painlevé hierarchies. The general case of these equations
correspond to the first and second Painlevé hierarchies.
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There are two other hierarchies of nonlinear ordinary differential equa-
tions that have the properties similar to Painlevé equations. These hierar-
chies were introduced in [8] and were referred to in [34] as the K1 and K2

hierarchies. These hierarchies can be presented as the following

N
∑

m=1

tmHm [u] = x, (8)

(

d

dx
+ u

) M
∑

m=1

tmHm

[

ux −
1

2
u2

]

− xu− βM = 0, (9)

where N and M are integers, tm are parameters of the equation and the
operator Hm may be calculated by means of the formulae

Hn+2 = J [v] Ω[v]Hn, (10)

under the conditions

H0[v] = 1, H1[v] = vxx + 4 v2, (11)

where the operators Ω[v] and J [v] are determined by the relations

Ω = D3 + 2 v D + vx, D =
d

dx
, (12)

J = D3 + 3 (v D +Dv) + 2 (D2 v D−1 +D−1 v D2)+

+8 (v2D−1 +D−1 v2), D−1 =

∫

dx.

(13)

Taking conditions (11) and operators (12), (13) into account we have the
operators H2 and H3 as the following

H2[v] = vxxxx + 12 v vxx + 6 v2x +
32

3
v3, (14)
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H3[v] = vxxxxxxxx + 20 v vxxxxxx + 60 vx vxxxxx + 134 vxx vxxxx+

+136 v2 vxxxx + 84 v2xxx + 544 v vx vxxx + 408 v v2xx + 396 v2x vxx+

+
1120

3
v3 vxx + 560 v2 v2x +

256

3
v5.

(15)

Note that hierarchies (8) and (9) can also be presented using another
operator Gk[u]. In terms of this operator these hierarchies take in the form

N
∑

k=1

tk Gk[u] = x. (16)

(

u−
1

2

d

dx

) M
∑

k=1

tk Gk[−2 ux − 2 u2]− xu− βM = 0. (17)

Hierarchy (16) can be transformed to (8) but hierarchy (17) coincides
with hierarchy (9). The recursion relation Gk is determined by the nonlinear
operator

Gk+2 = J1[v] Ω[v]Gk, (18)

under the conditions

G0[v] = 1, G1[v] = vxx +
1

4
v2. (19)

The operator J1[v] takes the form

J1 = D3 +
1

2
(D2 v D−1 +D−1 v D2) +

1

8
(v2D−1 +D−1 v2). (20)

Hierarchies K1 and K2 though similar to the first and the second Painlevé
hierarchies have a fundamental difference in the sense that we cannot trans-
form equations of hierarchies (16) and (17) to hierarchies (1) and (2). More-
over the hierarchy K1 has even integer order except 6 k (k = 1, 2, . . .) and
hierarchy K2 also has even integer order except 6 k (k = 1, 2, . . .).

The fourth order equation corresponding to the hierarchy K1 takes the
form
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t2

(

uxxxx + 12 u uxx + 6 u2
x +

32

3

)

+ t1
(

uxx + 4 u2
)

= 0. (C)

At t2 = 0 equation (C) is the first Painlevé equation but at t 6= 0 the
forth order equation differs from the the fourth order equation of the first
Painlevé equation and we hope that this one may give a new transcendal
function.

On the other hand the sixth-order equation from hierarchy K2 can be
written as

t2
(

uxxxxxx + 7 ux uxxxx − 7 u2 uxxxx + 14 uxx uxxx − 28 u ux uxxx−

−28 u2
x uxx − 21 u u2

xx −
28

3
u u3

x − 14 u2 ux uxx + 14 u4 uxx+

+28 u3 u2
x −

4

3
u7

)

+ t1
(

uxxxx + 5 ux uxx − 5 u2 uxx−

−5 u u2
x + u5

)

− xu− β2 = 0.

(D)

Equation (D) is a sixth-order nonlinear ordinary differential equation with
properties similar to the Painlevé equations but cannot be transformed to
the equation of the second Painlevé hierarchy. This equation does not have
a first integral in the polynomial form and it is possible that it determines a
new transcendental function.

In the following section we find the Lagrangians for the nonlinear ordinary
differential equations (A), (B) and (D).

3 Inverse problem for sixth-order equations

and their Lagrangians

Consider a sixth-order equation in the normal form, u6 = f(x, u, u1, u2, u3, u4, u5).
Here we introduce the abridged notation uk = dku/dxk. The following theo-
rem due to Juráš gives the necessary and sufficient conditions for a sixth-order
equation to admit a variational multiplier [27].

Theorem. A sixth-order ordinary differential equation admits a varia-
tional multiplier and non-degenerate third-order Lagrangian if and only if
following two conditions are satisfied

0 = −
2

3
D4

x

( ∂f

∂u5

)

+
10

9

∂f

∂u5
D3

x

( ∂f

∂u5

)

+D3
x

( ∂f

∂u4

)

+
20

9
Dx

( ∂f

∂u5

)

D2
x

( ∂f

∂u5

)
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−
20

27

( ∂f

∂u5

)2
D2

x

( ∂f

∂u5

)

−
1

3

∂f

∂u4
D2

x

( ∂f

∂u5

)

−
∂f

∂u5
D2

x

( ∂f

∂u4

)

−D2
x

( ∂f

∂u3

)

−
10

9

∂f

∂u5

(

Dx

( ∂f

∂u5

))2
−Dx

( ∂f

∂u5

)

Dx

( ∂f

∂u4

)

+
20

81

( ∂f

∂u5

)3
Dx

( ∂f

∂u5

)

+
1

3

( ∂f

∂u5

)2
Dx

( ∂f

∂u4

)

+
1

3

∂f

∂u5

∂f

∂u4
Dx

( ∂f

∂u5

)

+
1

3

∂f

∂u3
Dx

( ∂f

∂u5

)

+
2

3

∂f

∂u5
Dx

( ∂f

∂u3

)

+Dx

( ∂f

∂u2

)

−
2

243

( ∂f

∂u5

)5
−

1

27

( ∂f

∂u5

)3 ∂f

∂u4

−
1

9

( ∂f

∂u5

)2 ∂f

∂u3

−
1

3

∂f

∂u5

∂f

∂u2

−
∂f

∂u1

,

and

0 =
5

3
D2

x

( ∂f

∂u5

)

−
5

3

∂f

∂u5
Dx

( ∂f

∂u5

)

− 2Dx

( ∂f

∂u4

)

+

5

27

( ∂f

∂u5

)3
+

2

3

∂f

∂u5

∂f

∂u4
+

∂f

∂u3
.

Prove. Suppose the sixth-order equation

u6 = f(x, u, u1, u2, u3, u4)

is independent of u5. Then it admits a variational multiplier and a non-
degenerate third-order Lagrangian if and only if the following two conditions
are satisfied:
0 = D3

x

(

∂f

∂u4

)

−D2
x

(

∂f

∂u3

)

+Dx

(

∂f

∂u2

)

− ∂f

∂u1
and 0 = −2Dx

(

∂f

∂u4

)

+ ∂f

∂u3
.

3.1 The Jacobi Last Multiplier and construction of La-

grangians for sixth-order equations

In this section we describe the connection of the Jacobi Last Multiplier with
the Lagrangian function for sixth-order ODEs.

Proposition. Let u6 = f(x, u, u1, u2, u3, u4, u5) be a sixth-order ordinary
differential equation which admits a Lagrangian L. Then the function M :=
(

∂2L
∂u2

3

)3

, is a Jacobi last multiplier, i.e., it satisfies the equation dM
dx

+ ∂f

∂u5
M =

0, where u5 = uxxxxx.
Proof : Considering the higher-order Euler operator, E, the Euler-

Lagrange equation of motion for the ODE u6 = f(x, u, u1, ..., u5) is given
by

E(L) =
∂L

∂u
−Dx

( ∂L

∂u1

)

+D2
x

( ∂L

∂u2

)

−D3
x

( ∂L

∂u3

)

= 0, (21)
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where L = L(x, u, u1, u2, u3) is a third-order Lagrangian. It is obvious
that the partial derivatives of L, namely Lu, Lu1, ....Lu3 are all functions of
x, u, ..., u3. Upon expanding the Euler-Lagrange equation we find that

0 = E(L) = u5Lu2u3−[2u5Lu3u3x+u5Lu2u3+f(x, u, u1, ..., u5)Lu3u3+u5Dx(Lu3u3)+

+2u4u5Lu3u3u3+2u5u1Lu3u3u+2u2u5Lu3u3u1+2u3u5Lu3u3u2 ]+terms independent of u5.

Here the subscripts denote partial derivatives with respect to the indicated
variables. Since the partial derivative of this equation with respect to u5

must also be identically zero, we find that 3Dx(Lu3u3) +
∂f

∂u5
(Lu3u3) = 0.

Let be M(3) = Lu3u3 , then the above equation, E(L) = 0 is expressible as

be Dx

(

logM3
(3)

)

+ ∂f

∂u5
= 0, showing thereby that the Jacobi Last multiplier

is given by
M = M3

(3). �

Remark: Note that for the fourth-order ODE, u4 = f(x, u, ..., u3), ad-
mitting a second-order Lagrangian the analog of (3.1) is the following equa-
tion:

Dx

(

logM2
(2)

)

+
∂f

∂u3
= 0,

so that the JLM is M = M2
(2) where M(2) = Lu2u2 . On the other hand for

the second-order ODE, u2 = f(x, u, u1), it is the solution of

Dx

(

logM(1)

)

+
∂f

∂u1
= 0,

with M = M(1) = Lu1u1 .
Equation (??) provides us a tool for determining the Lagrangian of a

fourth-order equation once a solution of the defining equation for the JLM
, M, is obtained from (??). In fact in the event f is independent of u5, so
that the condition (??) is trivially satisfied one obtains the solution M(3) =
constant, which may be set equal to unity, without loss of generality. In such
a situation the Juráš conditions are also considerably simplified as evident
from the Corollary 1.

3.2 Determination of the Lagrangians

We wish to determine a nondegenerate third-order Lagrangian L = L(x, u, u1, u2, u3)
such that E(L) = 0, where ∂2L

∂u3
2 6= 0, where E is the Euler-Lagrange op-

erator E = ∂
∂u

− Dx

(

∂
∂u1

)

+ D2
x

(

∂
∂u2

)

− D3
x

(

∂
∂u3

)

, and Dx denotes the total

derivative operator Dx = ∂
∂x

+ u1
∂
∂u

+ u2
∂

∂u1
+ u3

∂
∂u2

. If there is a third-
order Lagrangian satisfying the conditions stated in Theorem 3.1, one says
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that the ordinary differential equation u6 = f(x, u, u1, u2, u3, u4, u5) admits
a variational multiplier.

In the new notation equation (A) is given by

t3(u6 + 14uu4 + 28u1u3 + 21u2
2 + 70u2u2 + 70uu2

1 + 35u4)+

+t2(u4 + 10uu2 + 5u2
1 + 10u3) + t1(u2 + 3u2) = x.

Proposition. Equation (A) admits a Lagrangian description with La-
grangian L = t3(−

1
2
u2
3 + 7u5 − 35u2u2

1 + 7uu2
2) + t2(

1
2
u2
2 − 5uu2

1 +
5
2
u4) +

t1(−
1
2
u2
1 + u3)− x u, where uk = u(k), k = 1, 2, .....

Outline of the proof : In order to show this we will adopt the technique
used in [32], to derive Lagrangians for a certain class of fourth-order ODEs,
namely that of the Jacobi Last Multiplier (JLM). For a sixth-order ODE
written in the form

u6 = f(x, u, u1, ..., u5)

one can rewrite the equation as a first-order system: u1 = v, v1 = w, w1 =
s, s1 = t, t1 = r, r1 = f(x, u, v, w, s, t, r), where the subscript 1 denotes
differentiation with respect to the independent variable x. Then by definition
the JLM, M, for the above system of first-order ODEs is defined as the
solution of the following equation d logM

dx
+
(

∂v
∂u

+ ∂w
∂v

+ ∂s
∂w

+ ∂t
∂s

+ ∂r
∂t

+ ∂f

∂r

)

=
0. Since in case of eqns (A) and (B) the function f is independent of u5 i.e.,

of r in this notation it follows that
d logM(3)

dx
= 0 ⇒ M(3) = constant.

Furthermore since the JLM is connected to the Lagrangian by the following
relation M(3) =

∂2L
∂u2

3
, where u3 =

d3u
dx3 , therefore setting the constant in (??)

to be −t3 we have

∂2L

∂u2
3

= −t3 ⇒ L = −t3
u2
3

2
+R(x, u, u1, u2)u3 + V (x, u, u1, u2).

Consequently the determination of the Lagrangian essentially reduces to
finding appropriate functions R and V such that the Euler-Lagrange equa-
tion E(L) = 0, reproduces the desired equation, namely (??). Detailed
calculations however show that it is possible to choose R = 0 so as to sim-
plify the resulting calculations, and therefore the Lagrangian is of the form,
LA = t3(−

1
2
u2
3) + V (x, u, u1, u2). To deduce the unknown function V we

substitute this form of the Lagrangian into (21) and compare the resulting
equation with our original sixth-order ODE. One finds that in this case

E(LA) =
∂LA

∂u
−Dx

(

∂LA

∂u1

)

+D2
x

(

∂LA

∂u2

)

−D3
x

(

∂LA

∂u3

)

= 0

gives

−t3u6 = Vu−Vxu1−u1Vuu1−u2Vu1u1+u4Vu2u2+Vxxu2+2u1Vxuu2+2u2Vxu1u2+2u3Vxu2u2

11



+u2
1Vuuu2 + u2

2Vu1u1u2 + u2
3Vu2u2u2 +2u1u2Vuu1u2 +2u1u3Vuu2u2 +2u2u3Vu1u2u2.

Inserting the value of u6 from the original equation and equating the coeffi-
cient of u4 we find that

Vu2u2 = t314u+ t2

which leads to the following solution, namely V = t37uu
2
2 + t2

u2
2

2
+ Tu2 + S

where T and S are functions of x, u, u1. Once again we may set T = 0 so that
LA = t3

(

−1
2
u2
3 + 7uu2

2

)

+ t2(
1
2
u2
2) + S, and it remains therefore to determine

the unknown function S. From the remaining terms we find that one must
have Su − Sxu1 − u1Suu1 − u2Su1u1 = t3(70u

2u2 + 70uu2
1+35u4) + t2(10uu2+

5u2
1 + 10u3) + t1(u2 + 3u2)− x. Next equating the coefficients of u2 it is seen

that −S = t335u
2u2

1+ t25uu
2
1+ t1

u2
1

2
+Ku1+N(x, u). Again choosing K = 0,

we have ultimately from (3.2),

−Nu = t335u
4 + t210u

3 + t13u
2 − x.

This yields

−N = t37u
5 + t2

5

2
u4 + t1u

3 − xu,

and finally the following expression for the unknown function S

S = −t335u
2u2

1 − t25uu
2
1 + t1(−

1

2
u2
1) + t37u

5 + t2
5

2
u4 + t1u

3 − xu.

We find finally that the expression for the Lagrangian of eqn. (A) is,

LA = t3

(

−
1

2
u2
3 + 7u5 − 35u2u2

1 + 7uu2
2

)

+t2

(

1

2
u2
2 − 5uu2

1 +
5

2
u4

)

+t1

(

−
1

2
u2
1 + u3

)

−xu.

�

In a similar manner we find that the sixth-order equations (B) and (D)
also admit a Lagrangian description, which are stated below.

Proposition. The Lagrangians associated with the equations (B) and
(D) are given by

LB = t1

(

−
1

2
u2
1 −

1

2
u4

)

+ t2

(

1

2
u2
2 + 5u2u2

1 + u6

)

+

+t3

(

−
1

2
u2
3 −

5

2
u8 − 35u4u2

1 − 7u2u2
2

)

−
1

2
xu2 − β3u,

(22)

LD = t2

(

−
1

2
u2
3 +

7

2
u1u

2
2 −

7

2
u2u2

2 +
7

6
u4
1 +

7

3
u2u3

1 − 7u4u2
1 −

u8

6

)

+

+t1

(

1

2
u2
2 +

5

2
u2u2

1 −
5

6
u3
1 +

u6

6

)

−
1

2
xu2 − β2u. (23)
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4 Conclusion

Let us briefly discuss the results of this paper. We have found the La-
grangians LA, LB and LD for the sixth-order nonlinear differential equations
from the Painlevé hierarchies. These Lagrangians are generalizations of the
well known Lagrangians of the Painlevé equations. It is interesting to look
at the properties of the Lagrangians LA, LB and LD. For example we know
that there exists the following symmetry of equation (B) when u(x) → −u(x)
and β3 → −β3. This symmetry is preserved for the Lagrangian LB as well.
Equations (A), (B) and (D) posses the Painlevé property. The Lagrangians
of several mechanical systems usually involve a difference of their kinetic and
potential energies respectively. Here this property holds for the Lagrangians
LA and LB at t2 = t3 = x = 0. However this is not true in the general case
and as such the Lagrangians derived here are really examples of nonstandard
ones. The question of irreducibility of the higher Painlevé equations is an
open problem.
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[27] M. Juráš, The inverse problem of the calculus of variations for sixth- and
eighth-order scalar ordinary differential equations. Acta Appl. Math. 66
(2001), no. 1, 25–39.

[28] J. Douglas, Solution to the inverse problem of the calculus of variations,
Trans. Amer. Math. Soc. 50 (1941) 71-128.

[29] I. Anderson and G. Thompson, The inverse problem of the calculus of
variations for ordinary differential equations. Mem. Amer. Math. Soc.
98 (1992), no. 473,

[30] I. Anderson, Introduction to the variational bicomplex,
www.math.usu.edu/ fgmp/.../IntroVariationalBicomplex.pdf

[31] M.C Nucci and A. M. Arthurs, On the inverse problem of calculus for
fourth-order equations, Proc.R. Soc. A doi: 10.1098/rspa.2009.0618.

15



[32] P. Guha and A. Ghose Choudhury, On Lagrangians and Hamiltonians
of Some Fourth-Order Nonlinear Kudryashov ODEs, Comm. Non. Sc.
Num. Sim. 16 (2011) 3914-3922.

[33] P. Guha, A. Ghose Choudhury and A.S. Fokas, Hamiltonians and Con-
jugate Hamiltonians of Some Fourth-Order Nonlinear ODEs, Preprint.
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