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ABSTRACT 

 

The aim of this comment is to extend the study of the dynamics of a finite extensibility 

nonlinear oscillator conducted by Febbo [M. Febbo, A finite extensibility nonlinear 

oscillator, Applied Mathematics and Computation 217 (2011) 6464-6475]. We show 

that the linearized harmonic balance method is not sufficiently adequate for this 

oscillator and that the harmonic balance method without linearization provides better 

results. We also discuss what happens when the oscillation amplitude approaches 1 and 

why the harmonic balance method does not give optimum results. For these values of 

the oscillation amplitude the periodic solution becomes markedly anharmonic and is 

almost straight between the turning points. Finally, a ‘heuristic’ solution is proposed 

which is adequate for the whole amplitude range 0 < A < 1.  

 

KEYWORDS: Finite extensibility; Nonlinear oscillator; Approximate solutions; 

Harmonic balance method. 
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1. Introduction 

 In a recent paper [1], Febbo studied analytically the dynamics of a finite 

extensibility nonlinear oscillator (FENO) using two different approaches. One involved 

a linearized harmonic balance (LHB) procedure, which allowed him to obtain analytical 

approximations to the frequency of oscillations and periodic solution. In Febbo’s paper 

the approximate period obtained using a LHB method is compared with the exact one 

(numerically integrated) and very good agreement is obtained for amplitudes (A) 

between 0 and 0.9 with a relative error of less than 3.53%. However, for the rest of the 

amplitude range (0.9 < A < 1), the relative error for the approximate period increases 

exponentially and the author mentioned that higher order perturbation solutions are 

needed in such cases.  

 In this note, we would first like to take the opportunity to congratulate the author 

of Ref. [1] for his interesting, comprehensive study of a finite extensibility nonlinear 

oscillator. We will then add some interesting results about application of the harmonic 

balance method to a finite extensibility nonlinear oscillator −whether or not it is better 

to use a linearized version of this procedure− which are not included in Ref. [1] and 

compare the approximate and exact periodic solutions. Our results may provide 

information about why approximate methods fail when the oscillation amplitude 

approaches 1. In particular, we show that linearized harmonic balance procedures, even 

though they simplify the harmonic balancing, do not always provide optimal results. For 

instance, if the second order harmonic balance method without linearization is applied 

to a finite extensibility nonlinear oscillator, the relative error is as low as 0.60% for A = 

0.9, whereas this error is 3.53% when a linearized harmonic balance method is used. 

This means that great care must be exercised when linearized harmonic balance 

procedures are applied to nonlinear oscillators with very strong nonlinearities. Finally, 

we present some comments on the behaviour of the periodic solutions for amplitudes 

approaching 1, which may not only enable us to understand this type of nonlinear 

oscillator better, but also provide the basis for a more detailed study of the dynamics of 

a finite extensibility nonlinear oscillator and an extension of  Febbo’s paper. 
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 2. Application of the harmonic balance method  

 The non-dimensional equation of motion governing a finite extensibility 

nonlinear oscillator is [1] 

  
    

 

d
2
x

dt
2

+
x

1! x
2

= 0  (1) 

 

with initial conditions 

 

      

 

x(0) = A  (with 0 < A < 1)     and       
    

 

dx

dt
(0) = 0  (2) 

 

where A is the oscillation amplitude. 

 The harmonic balance (HB) method provides a technique for calculating 

analytical approximations to the periodic solutions of differential equations by using a 

truncated Fourier series [2-4]. As we mentioned in the introduction, the HB method 

without linearization will be applied to a finite extensibility nonlinear oscillator. 

 Before applying the HB method to Eq. (1), this equation is rewritten in a form 

that does not contain the fractional expression 

 

  
    

 

(1! x
2 )

d2
x

dt
2

+ x = 0  (3) 

 

Introducing a new independent variable   

 

! = "t , where ω is the frequency of the 

oscillations, Eqs. (2) and (3) can be rewritten as 

 

 
    

 

!
2(1" x

2 )
d2

x

d# 2
+ x = 0,        

 

x(0) = A  (0 < A < 1),      
    

 

dx

d!
(0) = 0 (4) 

 

The new independent variable τ is chosen in such a way that the solution of Eq. (4) is a 

periodic function of τ of period 2π [3] Applying the lowest harmonic balance method it 

is easy to obtain the following first-order analytical approximate frequency (Eq. (32) in 

Febbo’s paper [1])  
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!
1
(A) =

2

4 " 3A
2

 (5) 

 

and the corresponding approximate periodic solution is     

 

x1(t ) = Acos!1t . The second-

order approximate solution to Eq. (4) can be expressed as  

 

      

 

x2(t ) = Acos! + c1(cos3! " cos! )  (6) 

 

which satisfies the initial conditions in Eq. (4) and where c1 depends on the initial 

amplitude A. In Febbo’s paper [1], Eq. (6) is substituted in Eq. (4) and higher-order 

corrections in c1 are discarded. This is the linearized harmonic balance (LHB) method 

that Febbo mentioned. This approximation is usually sufficient due to the low values of 

c1. However, as we can see in this note, when A approaches 1, the higher-order 

corrections in c1 are important and can not be discarded. Then, the LHB method does 

not give accurate approximations to the frequency and the periodic solution when A 

increases (for A = 0.9, Febbo obtained a relative error of 3.53% for the approximate 

period using the LHB method, see Table 1 in [1]). 

 Substituting Eq. (6) into Eq. (4), expanding the expression in a trigonometric 

series, simplifying and setting the coefficient of the resulting items cosτ and cos3τ equal 

to zero yields 

  

      

 

(4 ! 3A
2
! 5c1A! 30c1

2 )"2
! 4 = 0 (7) 

and 

      

 

[A
3
! (36 !19A

2 )c1 ! 41c1
2
A + 48c1

3]"2
+ 4c1 = 0 (8) 

 

From Eq. (7) the second approximate frequency ω2 can be obtained as follows 

 

  
    

 

!2( A) =
2

4 " 3A
2
" 5Ac1( A) " 30c1

2( A)
 (9) 
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Substituting Eq. (9) into Eq. (7) and simplifying, the following cubic equation is 

obtained 

  
    

 

c1
3
!

23

9
Ac1

2
!

8

9
(2 ! A

2 )c1 +
1

18
A

3
= 0  (10) 

 

which allows us to obtain c1. In Figure 1 we plot the discriminant ∆ of the cubic 

equation (10) as a function of A. For 0 < A < 0.421673 this discriminant is ∆ > 0 and 

there will be one real root and two complex conjugate roots; for A = 0.421673 the 

discriminant is ∆ = 0 and there will three real roots, of which at least two are equal; and 

for 0.421673 < A < 1 the discriminant of the equation is ∆ < 0 and there will be three 

unequal real roots. Instead of solving Eq. (10) for these intervals of A to find the 

corresponding values of c1, it would be better to have only one expression for c1 as a 

function of A. In order to obtain this expression, we proceed as follows. A first 

approximate value of c10 can be determined by disregarding the first two terms in this 

equation 

  
    

 

!
8

9
(2 ! A

2 )c10 +
1

18
A

3
= 0  (11) 

 

Solving this equation we obtain 

  
    

 

c10 =
A

3

16(2 ! A
2 )

 (12) 

 

To further improve this result, we assume that c1 can be written as follows 

 

      

 

c
1

= c
10

+ !  (13) 

 

where δ is a correction term and 
    

 

! << c
10

. Substituting Eq. (13) into Eq. (10) and 

linearizing with respect to the correction term δ gives 
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which is a linear instead of a cubic equation. Solving Eq. (14) and taking into account 

Eq. (12) and (13) we obtain 

 

  
    

 

c1( A) =
8192A

3
!12288 A

5
+ 6512A

7
!1217A

9

8(32768 ! 65536A
2

+ 52096A
4
!19383A

6
+ 2811A

8 )
  (15) 

 

For example, for A = 0.9 we obtain c1 = 0.0355911 using Eq. (15) and c1 = 0.0355781 

solving numerically the exact equation in (10). As we can see, for A = 0.9 the 

percentage error is less than 0.037% when Eq. (15) is used. In Figure 2 we plot c1 as a 

function of the oscillation amplitude A. As can be seen, c1 tends to 1199/22056 = 

0.0543616 when A approaches 1.  

 For A = 0.9 and using Eqs. (9) and (15) we obtain for the period T2 = 2π/ω2 = 

3.67972 while the exact value is Tex = 3.65767, which means that the relative error for 

the approximate period is −0.60%. As can be seen in Table 1 in Ref. [1], the relative 

error is −3.53% for A = 0.9 when the LHB method is used, almost six times more than 

the relative error obtained using the HB method without linearization (Eqs. (9) and 

(15)). Now, to reach the same relative error (−3.53%) it is necessary to consider A = 

0.954 in Eqs. (9) and (15). In order to produce a global estimator of the accuracy of the 

solution, the L2 norm over one period [1] has been obtained to compare the approximate 

solution in Eq. (6) and we have obtained that increases from 0.03 to 0.13 when A 

increases from o.9 to 0.954. In Figure 3 we plot the relative errors for the approximate 

frequencies ω2 (obtained in this paper, Eqs. (9)) and ωLhb2 (obtained using the linearized 

HBM, Eq. (33) in Ref. [1]) for 0 < A  ≤ 0.9. As can be seen in this figure, for this range 

of values of A the LHB method provides poorer results than the HB method without any 

linearization. 

 The exact periodic solutions achieved by numerically integrating Eq. (1), and the 

proposed normalized second-order approximate periodic solutions in Eq. (6), for one 

complete cycle are plotted in Figures 4, 5 and 6 for A = 0.4, 0.8 and 0.9, respectively. In 

these figures parameter h is defined as follows 

 

      

 

h = 2!T
ex

t   (16) 
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These figures show that the HB method provides a good approximation to the exact 

periodic solution and is adequate for obtaining the approximate analytical expression of 

x(t) for 0 < A ≤ 0.954 

 

3. What happen when A approaches 1?  

 To better understand what happens when the oscillation amplitude, A, 

approaches 1, it is necessary to plot the exact periodic solution (achieved numerically) 

for one complete cycle. Figure 7 shows this exact solution for A = 0.999. As we can see 

in Figures 4, 5 and 6, the periodic solution is very close to the cosine function (or it can 

be approximate with only two harmonics, Eq. (6)) for 0 < A < 0.9. However, when A 

approaches 1, the curvature becomes more concentrated at the turning points (x = ± A). 

For these values of A, x(t) becomes markedly anharmonic and is almost straight 

between the turning points. As the velocity is the derivative of the displacement with 

respect to time, we can conclude that the velocity is practically constant between the 

turning points, and its value is given by the slope of the straight lines between x = +A 

and –A, and between x = -A and +A. Figure 8 shows the exact velocity for A = 0.999. 

Only in the vicinity of the turning points, where the magnitude of the restoring force is 

maximum and the velocity becomes zero, is the force effective in changing the velocity. 

We investigated what type of functions could verify the behaviour of the periodic 

solutions of Eq. (1) when A approaches 1 and found that the following solution satisfies 

this behaviour not only when A approaches 1, but also over the whole range 0 < A < 1, 

 

      

 

x(t ) = A
sin!1(r cos"t )

sin!1
r

  (17) 

 

where r is a parameter which depends on A and which tends to 0 when A tends to 0. In 

Figures 9, 10 and 11 we plot the exact solutions and the approximate solutions obtained 

using Eq. (17) for A = 0.99, 0.999 and 0.9999, respectively, for which the values of 

parameter r used were r = 0.985, 0.9968 and 0.99895, respectively. These values were 

obtained by means of a least squares adjustment of Eq (17) to the exact numerical 

values. Obviously, r has to function a function of A. We have proposed the solution in 
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Eq. (17) because the behaviour we can see in Figures 9-11 is similar to that we can see 

for the relativistic nonlinear oscillator [5, 6], and for this oscillator an analytical 

approximate solution is similar to this equation. For small values of A, parameter r will 

also be small and it is possible to do the Taylor series expansion of Eq. (17) giving 

 

  

 

x(t) ! A "
A

24
r
2# 

$ 

% 

& 
cos't +

A

24
r
2
cos3't   (18) 

 

which coincides with Eq. (6) and for small values of A we can write 

 

      

 

c
1
!

A

24
r

2    and       
    

 

r !
24c

1

A
 (19) 

 

Obviously, Eq. (17) is a ‘heuristic’ solution to Eq. (1) and more studies are necessary to 

better understand the behaviour of a finite extensibility nonlinear oscillator for 

oscillation amplitudes approaching 1. 

 

4. Conclusions 

 In summary, this paper shows that the LHB method is not adequate for applying  

to a finite extensibility nonlinear oscillator and that the HB method provides better 

results for the approximate frequency and periodic solutions, reducing the relative error 

from 3.53% to 0.60% for A = 0.9. We discussed the reason why the accuracy of the 

approximate solutions obtained using the harmonic balance method is not good when A 

approaches 1. This is due to the fact that for these values of A the solution x(t) becomes 

markedly anharmonic and is almost straight between the turning points. The behaviour 

of these periodic solutions was also investigated when the oscillation amplitude 

approaches 1 and a ‘heuristic’ solution was proposed. As Febbo pointed out at the end 

of his paper, a more detailed study is necessary to better understand the behaviour of 

this oscillator when A approaches 1 and to obtain analytical approximate solutions for 

these values of the oscillation amplitude. 
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FIGURE CAPTIONS 

 

Figure 1.- The discriminant ∆ of the cubic equation (10) as a function of de oscillation 

amplitude. 

Figure 2.- c1 (Eq. (15)) as a function of the oscillation amplitude A 

Figure 3.- Relative errors for the approximate frequencies ω2 (obtained in this paper, 

Eqs. (9), continuous line) and ωLhb2 (obtained using the linearized HBM, Eq. (33) in 

Ref. [1], dashed line). 

Figure 4.- Comparison of the normalized approximate solution in Eq. (6) ( and 

dashed line) with the exact solution ( and continuous line) for A = 0.4. 

Figure 5.- Comparison of the normalized approximate solution in Eq. (6) ( and 

dashed line) with the exact solution ( and continuous line) for A = 0.8. 

Figure 6.- Comparison of the normalized approximate solution in Eq. (6) ( and 

dashed line) with the exact solution ( and continuous line) for A = 0.9. 

Figure 7.- Normalized exact periodic solution obtained by numerically integrating Eq. 

(1) for A = 0.999. 

Figure 8.- Normalized exact velocity obtained using from Eq. (1) for A = 0.999. 

Figure 9.- Comparison of the normalized approximate solution in Eq. (17) with r = 

0.985 ( and dashed line) with the exact solution ( and continuous line) for A = 0.99. 

Figure 10.- Comparison of the normalized approximate solution in Eq. (17) with r = 

0.99968 ( and dashed line) with the exact solution ( and continuous line) for A = 

0.999. 

Figure 11.- Comparison of the normalized approximate solution in Eq. (17) with r = 

0.99895 ( and dashed line) with the exact solution ( and continuous line) for A = 

0.9999.  
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