
ar
X

iv
:1

10
8.

54
18

v1
  [

m
at

h.
C

V
] 

 2
7 

A
ug

 2
01

1

Radii of Starlikeness Associated with the Lemniscate

of Bernoulli and the Left-Half Plane

Rosihan M. Ali, Naveen Jain, and V. Ravichandran

Abstract. A normalized analytic function f defined on the open unit disk in the com-
plex plane is in the class SL if zf ′(z)/f(z) lies in the region bounded by the right-half of
the lemniscate of Bernoulli given by |w2 − 1| < 1. In the present investigation, the SL-
radii for certain well-known classes of functions are obtained. Radius problems associated
with the left-half plane are also investigated for these classes.

1. Introduction

Let An denote the class of analytic functions in the unit disk D := {z : |z| < 1} of the
form f(z) = z+

∑

k=n+1 akz
k, and let A := A1. Let S denote the subclass of A consisting

of univalent functions. Let SL be the class of functions defined by

SL :=

{

f ∈ A :

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

< 1

}

(z ∈ D).

Thus a function f ∈ SL if zf ′(z)/f(z) lies in the region bounded by the right-half of the
lemniscate of Bernoulli given by |w2 − 1| < 1. For two functions f and g analytic in D,
the function f is said to be subordinate to g, written f(z) ≺ g(z) (z ∈ D), if there exists
a function w analytic in D with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). In
particular, if the function g is univalent in D, then f(z) ≺ g(z) is equivalent to f(0) = g(0)
and f(D) ⊂ g(D). In terms of subordination, the class SL consists of normalized analytic
functions f satisfying zf ′(z)/f(z) ≺

√
1 + z. This class SL was introduced by Sokó l

and Stankiewicz [20]. Paprocki and Sokó l[10] discussed a more general class S∗(a, b)
consisting of normalized analytic functions f satisfying |[zf ′(z)/f(z)]a − b| < b, b ≥ 1

2
,

a ≥ 1.
Recall that a function f ∈ A is starlike if f(D) is starlike with respect to 0. Similarly,

a function f ∈ A is convex if f(D) is convex. Analytically, a function f ∈ A is starlike or
convex if the following respective subordinations hold:

zf ′(z)

f(z)
≺ 1 + z

1 − z
, or 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1 − z
.
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Ma and Minda [6] gave a unified presentation of various subclasses of starlike and
convex functions by replacing the superordinate function (1+z)/(1−z) by a more general
function ϕ. They considered analytic functions ϕ with positive real part that map the
unit disk D onto regions starlike with respect to 1, symmetric with respect to the real axis
and normalized by ϕ(0) = 1. They introduced the following classes that include several
well-known classes as special cases:

ST (ϕ) :=

{

f ∈ A
∣

∣

∣

∣

zf ′(z)

f(z)
≺ ϕ(z)

}

and

CV(ϕ) :=

{

f ∈ A
∣

∣

∣

∣

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z)

}

.

For 0 ≤ α < 1,

ST (α) := ST ((1 + (1 − 2α)z)/(1 − z)), CV(α) := CV((1 + (1 − 2α)z)/(1 − z))

are the subclasses of S consisting of starlike and convex functions of order α in D respec-
tively. Then ST := ST (0), CV := CV(0) are the well-known classes of starlike and convex
functions respectively. Also let

ST n(α) := An ∩ ST (α), CVn(α) := An ∩ CV(α), SLn := An ∩ SL.
Since SL = ST (

√
1 + z), distortion, growth, and rotation results for the class SL can

conveniently be obtained by applying the corresponding results in [6].
The radius of a property P in a set of functions M, denoted by RP (M), is the

largest number R such that every function in the set M has the property P in each disk
Dr = {z ∈ D : |z| < r} for every r < R. For example, the radius of convexity in the class
S is 2−

√
3. Sokó l and Stankiewicz [20] determined the radius of convexity for functions

in the class SL. They have also obtained structural formula, growth and distortion
theorems for these functions. Estimates for the first few coefficients of functions in this
class can be found in [21]. Recently, Sokó l [22] determined various radii for functions
belonging to the class SL; these include the radii of convexity, starlikeness and strong
starlikeness of order α. In contrast, in our present investigation, we compute the SL-
radius for functions belonging to several interesting classes. Unlike the radii problems
associated with starlikeness and convexity, where a central feature is the estimates for the
real part of the expressions zf ′(z)/f(z) or 1 + zf ′′(z)/f ′(z) respectively, the SL-radius
problems for classes of functions are tackled by first finding the disk that contains the
values of zf ′(z)/f(z) or 1 + zf ′′(z)/f ′(z). This technical result will be presented in the
next section.

Another interesting class is M(β), β < 1, defined by

M(β) :=

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

< β, z ∈ ∆

}

.

The class M(β) was investigated by Uralegaddi et al. [23], while its subclass was in-
vestigated by Owa and Srivastava [9]. We let Mn(β) := An ∩ M(β). In the present
paper, radius problems related to M(β) will also be investigated. Related radius problem
for this class can be found in [1] and [11]. The following definitions and results will be
required.
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An analytic function p(z) = 1 + cnz
n + · · · is a function with positive real part if

Re p(z) > 0. The class of all such functions is denoted by Pn. We also denote the subclass
of Pn satisfying Re p(z) > α, 0 ≤ α < 1, by Pn(α). More generally, for −1 ≤ B < A ≤ 1,
the class Pn[A,B] consists of functions p of the form p(z) = 1 + cnz

n + · · · satisfying

p(z) ≺ 1 + Az

1 + Bz
.

Lemma 1.1. [7] If p ∈ Pn, then
∣

∣

∣

∣

zp′(z)

p(z)

∣

∣

∣

∣

≤ 2nrn

1 − r2n
(|z| = r < 1).

Lemma 1.2. [12] If p ∈ Pn[A,B], then
∣

∣

∣

∣

p(z) − 1 − ABr2n

1 − B2r2n

∣

∣

∣

∣

≤ (A− B)rn

1 − B2r2n
(|z| = r < 1).

In particular, if p ∈ Pn(α), then
∣

∣

∣

∣

p(z) − 1 + (1 − 2α)r2n

1 − r2n

∣

∣

∣

∣

≤ 2(1 − α)rn

1 − r2n
(|z| = r < 1).

2. The SLn-Radius Problems

In this section, three special classes of functions will be considered. First is the class

Sn :=

{

f ∈ An :
f(z)

z
∈ Pn

}

.

For this class, we shall find its SLn-radius, denoted by RSLn
(Sn).

Theorem 2.1. The SLn-radius for the class Sn is

RSLn
(Sn) =







√
2 − 1

n +
√

n2 + (
√

2 − 1)2







1/n

.

This radius is sharp.

Proof. Define the function h by

h(z) =
f(z)

z
.

Then the function h ∈ Pn and

zf ′(z)

f(z)
− 1 =

zh′(z)

h(z)
.

Applying Lemma 1.1 to the function h yields
∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤ 2nrn

1 − r2n
.
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Notice that if |w− 1| <
√

2 − 1, then |w + 1| ≤
√

2 + 1 and hence |w2 − 1| ≤ 1. Thus the
above disk lies inside the lemniscate |w2 − 1| < 1 if

2nrn

1 − r2n
≤

√
2 − 1.

Solving this inequality for r yields the desired SLn-radius for the class Sn.
Now consider the function f defined by

f(z) =
z + zn+1

1 − zn
.

Clearly the function f satisfies the hypothesis of the theorem and

zf ′(z)

f(z)
= 1 +

2nzn

1 − z2n
.

At z = R where R is the SLn-radius for the class Sn given in the theorem, routine
computations show that

∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

= 1.

This proves that the result is sharp.

The following technical lemma will be useful in our subsequent investigations.

Lemma 2.2. For 0 < a <
√

2, let ra be given by

ra =

{

(√
1 − a2 − (1 − a2)

)1/2
(0 < a ≤ 2

√
2/3)√

2 − a (2
√

2/3 ≤ a <
√

2),

and for a > 0, let Ra be given by

Ra =

{√
2 − a (0 < a ≤ 1/

√
2)

a (1/
√

2 ≤ a).

Then

{w : |w − a| < ra} ⊆ {w : |w2 − 1| < 1} ⊆ {w : |w − a| < Ra}.
Proof. The equation of the lemniscate of Bernoulli is

(x2 + y2)2 − 2(x2 − y2) = 0

and the parametric equations of its right-half is given by

x(t) =

√
2 cos t

1 + sin2 t
, y(t) =

√
2 sin t cos t

1 + sin2 t
,
(

−π

2
≤ t ≤ π

2

)

.

The square of the distance from the point (a, 0) to the points on the lemniscate is given
by

z(t) = (a− x(t))2 + (y(t))2

= a2 +
2(cos2 t−

√
2a cos t)

1 + sin2 t
,
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and its derivative is

z′(t) = 2
(−4 cos t +

√
2a(2 + cos2 t)) sin t

(1 + sin2 t)2
.

Clearly z′(t) = 0 if and only if

t = 0 or cos t =

√
2(1 ±

√
1 − a2)

a
.

Note that for a > 1, the numbers
√

2(1 ±
√

1 − a2)/a are complex and for 0 < a ≤ 1,
the number

√
2(1 +

√
1 − a2)/a > 1. For 0 < a < 1, the number

√
2(1 −

√
1 − a2)/a lies

between -1 and 1 if and only if 0 < a ≤ 2
√

2/3.
Let us first assume that 0 < a ≤ 2

√
2/3 and t = t0 be given by

cos t0 =

√
2(1 −

√
1 − a2)

a
.

Since

min{z(π/2), z(−π/2), z(0), z(t0)} = z(t0),

it follows that min
√

z(t) =
√

z(t0) . A calculation shows that

z(t0) =
√

1 − a2 − (1 − a2).

Hence

ra = min
√

z(t) =

√√
1 − a2 − (1 − a2).

Let us next assume that 2
√

2/3 ≤ a <
√

2. In this case,

min{z(π/2), z(−π/2), z(0)} = z(0),

and thus z(t) attains its minimum value at t = 0 and

ra = min
√

z(t) =
√

2 − a.

Now consider 0 < a ≤ 1/
√

2 and t = t0 be given by

cos t0 =

√
2(1 −

√
1 − a2)

a
.

It is easy to see that

max{z(π/2), z(−π/2), z(0), z(t0)} = z(0),

and thus

Ra = max
√

z(t) =
√

2 − a.

Similarly, for a ≥ 1/
√

2,

max{z(π/2), z(−π/2), z(0)} = z(π/2),

and hence

Ra = max
√

z(t) = a.
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Now consider the subclass CSn(α) consisting of close-to-starlike functions of type α
defined by

CSn(α) :=

{

f ∈ An :
f

g
∈ Pn, g ∈ ST n(α)

}

.

The SLn-radius for this class is given in the following theorem.

Theorem 2.3. The SLn-radius for the class CSn(α) is given by

RSLn
(CSn(α)) =





√
2 − 1

(1 + n− α) +
√

(1 + n− α)2 + (1 − 2α +
√

2)(
√

2 − 1)





1/n

This radius is sharp.

Proof. Let g be a starlike function of order α with h(z) = f(z)/g(z) ∈ Pn. Then
zg′(z)/g(z) is in Pn(α) and from Lemma 1.2,

(2.1)

∣

∣

∣

∣

zg′(z)

g(z)
− 1 + (1 − 2α)r2n

1 − r2n

∣

∣

∣

∣

≤ 2(1 − α)rn

1 − r2n
.

Applying Lemma 1.1 yields

(2.2)

∣

∣

∣

∣

zh′(z)

h(z)

∣

∣

∣

∣

≤ 2nrn

1 − r2n
.

Now

(2.3)
zf ′(z)

f(z)
=

zg′(z)

g(z)
+

zh′(z)

h(z)
,

and using (2.1)–(2.3), it follows that

(2.4)

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + (1 − 2α)r2n

1 − r2n

∣

∣

∣

∣

≤ 2(1 + n− α)rn

1 − r2n
.

Since the center of the disk in (2.4) is greater than 1, from Lemma 2.2, it is seen that the
points w are inside the lemniscate |w2 − 1| < 1 if

2(1 + n− α)rn

1 − r2n
≤

√
2 − 1 + (1 − 2α)r2n

1 − r2n
.

The last inequality reduces to (1− 2α+
√

2)r2n + 2(1 +n−α)rn − (
√

2− 1) ≤ 0. Solving
this latter inequality results in the value of R = RSLn

(CSn(α)).
The function f given by

f(z) =
z(1 + zn)

(1 − zn)(n+2−2α)/n

satisfies the hypothesis of Theorem 2.3 with g(z) = z/(1 − zn)(2−2α)/n. It is easy to see
that, for z = R = RSLn

(CSn(α)),
∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

[1 + (1 − 2α)R2n + 2(1 + n− α)Rn]2

(1 − R2n)2
− 1

∣

∣

∣

∣

= 1.

This shows that the result is sharp.
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For −1 ≤ B < A ≤ 1, define the class

ST n[A,B] :=

{

f ∈ An :
zf ′(z)

f(z)
∈ Pn[A,B]

}

.

This is the well-known class of Janowski starlike functions. For this class, we have the
following results.

Theorem 2.4. Let −1 < B < A ≤ 1 and either (i) 1 + A ≤
√

2(1 + B) and 2
√

2(1 −
B2) ≤ 3(1 − AB) < 3

√
2(1 − B2), or (ii) (A − B)(1 − B2) + (1 − B2)2 ≤ (1 −

B2)
√

(1 − B2) − (1 − AB)2+(1−AB)2 and 2
√

2(1−B2) ≥ 3(1−AB). Then ST n[A,B] ⊂
SLn.

Proof. Since zf ′(z)
f(z)

∈ Pn[A,B], Lemma 1.2 gives

(2.5)

∣

∣

∣

∣

zf ′(z)

f(z)
− 1 −AB

1 −B2

∣

∣

∣

∣

≤ A− B

1 −B2
(|z| < 1).

Let a = (1 − AB)/(1 − B2), and suppose the two conditions in (i) hold. By multiplying
the inequality 1 +A ≤

√
2(1 +B) by the positive constant 1−B and rewriting, it is seen

that the given inequality is equivalent to A − B ≤
√

2(1 − B2) − (1 − AB). A division
by 1 − B2 shows that the condition 1 + A ≤

√
2(1 + B) is equivalent to the condition

(A − B)/(1 − B2) ≤
√

2 − a. Similarly, the condition 2
√

2(1 − B2) ≤ 3(1 − AB) <
3
√

2(1 − B2) is equivalent to 2
√

2/3 ≤ a <
√

2. In view of these equivalences, it follows
from (2.5) that the quantity w = zf ′(z)/f(z) lies in the disk |w−a| < ra where ra =

√
2−a.

Since 2
√

2/3 ≤ a <
√

2 and |w − a| < ra, Lemma 2.2 shows that |w2 − 1| < 1 or
∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

< 1.

This proves that f ∈ SLn. The proof is similar if the conditions in (ii) hold, and is
therefore omitted.

Theorem 2.5. Let −1 ≤ B < A ≤ 1, with B ≤ 0. Then the SLn-radius for the class
ST n[A,B] is

RSLn
(ST n[A,B]) = min






1,





2(
√

2 − 1)

(A− B) +
√

(A− B)2 + 4(
√

2B − A)B(
√

2 − 1)





1

n






.

In particular, if 1 + A <
√

2(1 + B), then ST n[A,B] ⊆ SLn. Also the SL-radius for the
class consisting of starlike functions is 3 − 2

√
2.

Proof. Since zf ′(z)
f(z)

∈ Pn[A,B], Lemma 1.2 yields
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 − ABr2n

1 − B2r2n

∣

∣

∣

∣

≤ (A− B)rn

1 −B2r2n
.

Since B ≤ 0, it follows that

a :=
1 −ABr2n

1 − B2r2n
≥ 1.
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Using Lemma 2.2, the function f satisfies
∣

∣

∣

∣

∣

(

zf ′(z)

f(z)

)2

− 1

∣

∣

∣

∣

∣

< 1

provided

(A−B)rn

1 − B2r2n
<

√
2 − 1 −ABr2n

1 −B2r2n
,

that is,

(
√

2B − A)Br2n + (A− B)rn − (
√

2 − 1) < 0.

Solving the inequality, we get r ≤ RSLn
(ST n[A,B]). The result is sharp for the function

given by f(z) = z(1 + Bzn)
A−B

nB for B 6= 0 and f(z) = z exp(Azn/n) for B = 0. Such
function f satisfies the equation zf ′(z)/f(z) = (1 + Azn)/(1 + Bzn), and therefore the
function f ∈ ST n[A,B].

Theorem 2.6. Assume that f ∈ ST n[A,B] and 0 < B < A ≤ 1. Let R1 be given by

R1 =

(

2
√

2 − 3

(2
√

2B − 3A)B

)1/(2n)

,

and let R2 be the number RSLn
(ST n[A,B]) as given in Theorem 2.5. Let R3 be the largest

number in (0, 1] such that

(A−B)rn(1−B2r2n)+(1−B2r2n)2− (1−ABr2n)2−
√

(1 − B2r2n)2 − (1 − ABr2n)2 ≤ 0

for all 0 ≤ r ≤ R3. Then the SLn-radius for the class ST n[A,B] is given by

RSLn
(ST n[A,B]) =

{

R2 (R2 ≤ R1)

R3 (R2 > R1).

Proof. From the proof of the previous theorem, it easy to see that the quantity
w = zf ′(z)/f(z) lies in the disk |w − a| ≤ R where

a :=
1 − ABr2n

1 −B2r2n
, R =

(A− B)rn

1 − B2r2n
.

Let us first assume that R2 ≤ R1 where R1, R2 are as defined in the statement of the
theorem. In this case, r ≤ R1 if and only if a ≥ 2

√
2/3 and in particular, for 0 ≤ r ≤ R2,

we have a ≥ 2
√

2/3. Lemma 2.2 shows that f ∈ SLn in |z| ≤ r if R ≤
√

2 − a or
equivalently if r ≤ R2.

Let us now assume that R2 > R1. In this case, r ≥ R1 if and only if a ≤ 2
√

2/3 and
in particular for r ≥ R2, we have a ≤ 2

√
2/3. Lemma 2.2 shows that f ∈ SLn in |z| ≤ r

if R ≤
(√

1 − a2 − (1 − a2)
)1/2

or equivalently if r ≤ R3. The sharpness follows because
w = zf ′(z)/f(z) with z ∈ D fills the entire disk |w − a| < R where a and R are as given
above.
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3. The Mn(β)-Radius Problems

In this section, we compute the Mn(β)-radii for the classes Sn and CSn(α).

Theorem 3.1. The Mn(β)-radius of functions in Sn is given by

RMn(β)(Sn) =

[

β − 1

n +
√

n2 + (β − 1)2

]1/n

.

Proof. Since h(z) = f(z)/z ∈ Pn, Lemma 1.1 yields
∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

zh′(z)

h(z)

∣

∣

∣

∣

≤ 2nrn

1 − r2n
.

Therefore

Re
zf ′(z)

f(z)
≤ 1 + 2nrn − r2n

1 − r2n
≤ β

for r ≤ RMn(β)(Sn).
The result is sharp for the function

f(z) =
z(1 + zn)

1 − zn

which satisfies the hypothesis of Theorem 3.1.

For the class CSn(α), the following radius is obtained.

Theorem 3.2. The Mn(β)-radius of functions in CSn(α) is given by

RMn(β)(CSn(α)) =
β − 1

(1 + n− α) +
√

(1 + n− α)2 + (β − 1)(1 + β − 2α)
.

Proof. Define the function h by

h(z) :=
f(z)

g(z)
.

Then h ∈ Pn and by Lemma 1.1,

(3.1)

∣

∣

∣

∣

zh′(z)

h(z)

∣

∣

∣

∣

≤ 2nrn

1 − r2n
.

Since g ∈ ST n(α), it follows that zg′(z)/g(z) is in Pn(α) and therefore, by Lemma 1.2,

(3.2)

∣

∣

∣

∣

zg′(z)

g(z)
− 1 + (1 − 2α)r2n

1 − r2n

∣

∣

∣

∣

≤ 2(1 − α)rn

1 − r2n
.

Since
zf ′(z)

f(z)
=

zg′(z)

g(z)
+

zh′(z)

h(z)
,

in view of (3.1) and (3.2), it is seen that
∣

∣

∣

∣

zf ′(z)

f(z)
− 1 + (1 − 2α)r2n

1 − r2n

∣

∣

∣

∣

≤ 2(1 + n− α)rn

1 − r2n
.
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This represents a circular disk intersecting the real axis at

x0 =
1 − 2(1 + n− α)rn + (1 − 2α)r2n

1 − r2n
and x1 =

1 + 2(1 + n− α)rn + (1 − 2α)r2n

1 − r2n
,

and therefore

Re
zf ′(z)

f(z)
≤ 1 + 2(1 + n− α)rn + (1 − 2α)r2n

1 − r2n
≤ β

for r ≤ R.
The function

f(z) =
z(1 + zn)

(1 − zn)(n+2−2α)/n

satisfies the hypothesis of Theorem 3.2 with

g(z) =
z

(1 − zn)(2−2α)/n
.

Since
zf ′(z)

f(z)
=

1 + 2(1 + n− α)zn + (1 − 2α)z2n

1 − z2n
= β

for z = R = RMn(β)(CSn(α)), the result is sharp.
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