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Abstract

The family of fifth order nonlinear evolution equations is studied. Some traveling
wave elliptic solutions are found. The classification of these exact solutions is given.
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1 Introduction

Recently in Refs. [1–3] a method was introduced for classification of meromor-
phic exact solutions of nonlinear ordinary differential equations. This method
allows us to classify and construct meromorphic exact solutions for a wide
class of autonomous nonlinear ordinary differential equations in the explicit
form. The main idea of the approach from [1–3] is to compare the Laurent
series corresponding to solutions of ordinary differential equations with the
Laurent series for the general form of possible meromorphic exact solution.
The main advantage of the method from works [1–3] is that we can construct
and classify more general forms of exact solutions in comparison to existing
methods for finding exact solutions [4–15]. Using this approach in the work [1],
meromorphic exact solutions of second-order differential equation were clas-
sified. The authors of [3] presented the classification of elliptic solutions of
a third-order differential equation obtained with the help of the above men-
tion method. This method was used for constructing and classifying traveling
wave solutions of the Kawahara equation [2] and the generalized Bretherton
equation [16] as well.
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In this work we study traveling wave solutions of the equation that takes the
form

ut + αum ux + µ uxx + β uxxx + νuxxxx + δuxxxxx = 0. (1.1)

Eq. (1.1) at m = 1 was obtained in [17] for the description of nonlinear waves
in a viscoelastic tube. Nonlinear wave processes described by (1.1) at m = 1
were studied numerically in [18]. The meromorphic solutions of Eq. (1.1) at
α = γ = 0 were found and classified in [2]. Elliptic solutions of Eq.(1.1) at
µ = β = ν = 0 in the cases m = 1 and m = 3 in terms of the Jacobi elliptic
function were found in [7]. In [7] elliptic solutions of Eq.(1.1) in the case of
µ = ν = 0 and m = 2 were obtained as well. The simple periodic solutions of
Eq. (1.1) at any m were found in work [19]. However elliptic solutions of Eq.
(1.1) at ν 6= 0 and µ 6= 0 were not considered previously.

Using the traveling wave u(x, t) = y(z), z = x − C0 t in (1.1) and integrating
the result we obtain

C1 − C0 y +
α

m
ym+1 + µ yz + β yzz + ν yzzz + δ yzzzz = 0 (1.2)

Here C1 is an integration constant.

The aim of this work is to construct and classify elliptic solutions of Eq.(1.2)
at m = 1, 2, 4. To this aim we use the approach suggested in [1–3].

This paper is organized as follows. In section 2 we give a brief description of
the method from [1–3] and present elliptic solutions of Eq.(1.2) at m = 1.
In sections 3 and 4 we construct elliptic solutions of Eq.(1.2) in the cases of
m = 2 and m = 4 respectively. In the last section we discuss our results.

2 Meromorphic solutions of the equation studied at m = 1.

Let us briefly describe the approach from works [1–3] for finding elliptic solu-
tions of nonlinear ordinary differential equations.

We assume that solutions of Eq.(1.2) can be presented in the form of Laurent
series in a neighborhood of a movable pole z = z0

y(z)(l) =
∞
∑

k=0

a
(l)
k (z − z0)

k−p, p, l ∈ N (2.1)

In the case of m = 1 solutions of Eq.(1.2) admit one expansion (l = 1) in the
form (2.1). At m = 2 and m = 4 solutions of Eq.(1.2) admit two (l = 2) and
four (l = 4) expansions in the form (2.1) respectively.
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Eq.(1.2) is autonomous and thus without loss of generality we can set z0 = 0.
Using the residue theorem for an elliptic function we obtain the necessary
condition for existence of the elliptic solutions. This condition is the follow-
ing: the sum of coefficients of z−1 in series (2.1) is zero. From the necessary
condition follows that while Eq.(1.2) possesses one expansion of type (2.1)
the coefficient at z−1 has to be zero. In the general case we can present this
necessary condition in the form

∑

l

a
(l)
p−1 = 0, l = 1, 2, 3, . . . (2.2)

From here and below in the case of one expansion of type (2.1) we omit the
index l in coefficients of the series.

We use the method from [1–3] for constructing the elliptic solutions for Eq.(1.2).
The algorithm of this method is the following:

(1) Construct the formal Laurent expansion of type (2.1) for a solution of
Eq.(1.2);

(2) Check the necessary condition (2.2) for existence of the elliptic solutions;
(3) Take the general form of the possible elliptic solution for Eq.(1.2) and

find the Laurent expansion for the possible solution;
(4) Compare the formal Laurent expansion of solution for Eq.(1.2) that was

found in the first step with the formal Laurent expansion of the possible
elliptic solution that was found in the third step;

(5) Solve the system of the algebraic equations obtained in the fourth step
and find the parameters of Eq.(1.2) and parameter of the possible elliptic
solution.

We can see that the second step of the algorithm coincides with the first two
steps of the Painlevé test. The Laurent expansion for possible elliptic solution
can be find by using textbook [20] or by using symbolic computation software.

Let us construct elliptic solutions of Eq.(1.2) at m = 1. Without loss of gen-
erality we assume that α = 6, δ = −1 in Eq.(1.2). Thus from Eq.(1.2) we
have

C1 − C0 y + 3y2 + µ yz + β yzz + ν yzzz − yzzzz = 0 (2.3)

Eq.(2.3) admits one Laurent expansion (l = 1) of type (2.1) in a neighborhood
of moveable fourth order (p = 4) pole. The Fuchs indices corresponding to
expansion in the Laurent series are the following

j1 = −1, j2 = 12, j3,4 =
1

2

(

11± i
√
159

)

(2.4)

We see that the Fuchs index j2 has a positive integer value. Thus the expansion
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for the solution of Eq.(2.3) can exist if a12 is an arbitrary constant.

The expansion for the solution of Eq.(2.3) in the Laurent series is the following

y =
280

z4
+

280ν

11z3
−
(

21ν2

121
+

7β

3

)

20

13z2
+

(

59ν3

17303
+

20βν

1287
+

µ

9

)

140

23z
+

+ . . .+ a12z
8 + . . .

(2.5)

Series (2.5) corresponding to solution of Eq.(2.3) exists in the case

784354µ2β2ν2

3671430867
+

137745805669µ β2ν5

549479397531636
+

4490297861411µ ν9

297960291083728988
+

+
353857280651µ2ν6

4029515581898664
+

2781278216285ν10β

297960291083728988
+

206626426493ν6β3

3296876385189816
+

+
1673496887869ν8β2

44324671400885304
+

310β5ν2

65033397
+

194170261339µ β ν7

1704795053880204
+

+
163837µ3β ν

1498986567
+

32794140175µ2β ν4

99905345005752
+

80582613855300ν12

99146286858110820757
+

+
µ2 (5313276β3 + 7643363µ2)

506657459646
+

νβ4 (10286502336α+ 25164119899ν3)

674361078788826
−

− ν

85961304

(

4961 ν β + 19844µ+ 10737 ν3
) (

C2
0 − 12C1

)

+

+
5µν3

1348722157577652

(

42262166548β3 + 40586709267µ2
)

= 0

(2.6)

The last equality is the compatibility condition for existence of the Laurent
series (2.5). Series (2.5) does not exist if relation (2.6) is not satisfied.

In accordance with the classification of meromorphic solutions of autonomous
ordinary differential equations presented in [1, 2] there is one type of possi-
ble elliptic solution of Eq.(2.3). This are elliptic solutions corresponding to
Laurent series (2.5).

Let us construct elliptic solutions of Eq.(2.3). Taking into account the neces-
sary condition for elliptic solutions to exist (2.2) from series (2.5) we obtain

µ = −(531ν2 + 2420β)ν

17303
(2.7)

Using the approach from [1, 2] we find that the general form of the possible

4



elliptic solution of Eq.(2.3) corresponding to series (2.5) has the form

y = −20

13

(

21ν2

121
+

7β

3

)

℘(z, g1, g2)−
140ν

11
℘′(z, g1, g2)+

+280℘2(z, g1, g2)−
70g2
3

+ h0

(2.8)

Comparing expansion (2.5) with the Laurent series for (2.8) we obtain

h0 =
C0

6
− 1

169

(

4845ν4

29282
+

7β2

9
+

643βν2

726

)

,

g2 = −(121β + 48ν2) (2057β + 504ν2)

207843636
,

g3 = −ν2 (769365 ν4 + 6912246 βν2 + 19399325 β2)

934108684080
− 41β3

2372760

(2.9)

Taking into account (2.7) from condition (2.6) we have

C1 = − 3ν2

171424512006748

(

17324377875 ν6 + 187507377750 ν4β+

+709528086443 β2ν2 + 1078179110844 β3
)

+
C2

0

12
− 1860β4

199927

(2.10)

Also using (2.7) and (2.10) we obtain the value of a12

a12 =
β5 (51717941β + 174854187ν2)

1272898705720561920
+

27ν10 (322959854223ν2 + 5492718054164β)

38819181898104129541859840
+

ν4β2 (14947544754846βν2 + 4344006788100ν4 + 26834189262353β2)

167038348444816621893120
(2.11)

Substituting h0, g2 and g3 (2.9) into formulae (2.8) we obtain the elliptic
solution of Eq.(2.3).

Let us note that at β = −45ν2

176
and β = −35ν2

121
elliptic solution (2.8) degenerates

to simple periodic solutions.

3 Meromorphic solutions of the equation studied at m=2.

Let us consider the traveling wave solutions of the equation at m = 2. From
Eq. (1.2) we have

C1 − C0 y +
α

3
y3 + µ yz + β yzz + ν yzzz + δ yzzzz = 0 (3.1)
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Without loss of generality we assume that δ = −1 and α = 360 in Eq.(3.1).
Thus from Eq.(3.1) we obtain

C1 − C0 y + 120 y3 + µ yz + β yzz + ν yzzz − yzzzz = 0 (3.2)

Eq.(3.2) admits two different Laurent expansions (l = 2) in a neighborhood
of a moveable second order (p = 2) pole. The Fuchs indices corresponding to
expansions of the solution in the Laurent series are the following

j1 = −1, j2 = 8, j3,4 =
1

2

(

7± i
√
71
)

(3.3)

We see that the Fuchs index j2 has a positive integer value. So expansions for
the solution of Eq.(3.2) can exist if a8 is an arbitrary constant.

Expansions for solutions of Eq.(3.2) in a neighborhood of a moveable second
order pole are the following

y(1,2) = ± 1

z2
± ν

14z
∓ 23ν2 + 98β

5880
± 1

4

(

µ

45
+

3ν3

1715
+

β ν

126

)

z+ . . .+a
(1,2)
8 z6+ . . .

(3.4)

Series (3.4) corresponding to solutions of Eq.(3.2) exist in the case

±ν2β3

2100
± β µ2

900
+

3ν2C1

28
± 2323ν3µ β

617400
∓ 2C0 µ ν

315
∓ 31C0 ν

4

27440
±

± 577ν8

9882516
∓ C0 ν

2β

630
± 1289ν4β2

1234800
± 31ν2µ2

8400
± 257ν6β

540225
±

±4381ν5µ

4321800
± µ β2ν

630
= 0

(3.5)

In accordance with the classification of meromorphic solutions of autonomous
ordinary differential equations presented in [1, 2] there are different types of
possible elliptic solutions of Eq.(3.2). The first type is elliptic solutions corre-
sponding to one of the Laurent series (3.4). The second type is elliptic solutions
corresponding to both of the Laurent series (3.4).

The necessary condition for existence of elliptic solutions (2.2) in the case of
one of the Laurent series (3.4) gives us ν = 0. In the case of elliptic solutions
corresponding to both of the Laurent series (3.4) the necessary condition (2.2)
is automatically satisfied.

Let us construct elliptic solutions of Eq.(3.2) corresponding to both of the
series (3.4). In this case we force that the compatibility conditions (3.5) are
satisfied simultaneously. We see that this is correct at C1 = 0 or at ν = 0.
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In accordance with the method presented in [1,2] the possible elliptic solution
of Eq. (3.2) corresponding to both of the series (3.4) has the form

y = −
[

℘
′

(z, g1, g2) +B

℘(z, g1, g2)−A

]2

− ν

28

℘
′

(z, g1, g2) +B

℘(z, g1, g2)−A
+ 2℘(z, g1, g2) + h0 (3.6)

Here A, B and h0 are parameters that will be found later. Also we denote d
dz

by ′.

First we consider the case of C1 = 0. Comparing expansion (3.4) with the
Laurent series for (3.6) we obtain

h0 = A =
ν3 − 196µ

1680ν
, B = 0, g2 =

38416µ2 + ν6 − 532 ν3µ

141120ν2
,

g3 =
(196µ− ν3) (38416µ2 − 567 ν3µ+ ν6)

296352000ν3
, β =

39ν3 − 1372µ

196ν

(3.7)

From the compatibility conditions (3.5) we have

C0 =
134456µ2 − 4067 ν3α + 11 ν6

6860ν2
(3.8)

Solving the algebraic system of equations for parameters h0, A, B, g2, g3 we
obtain values for constant a8 in the form

a
(1,2)
8 =

1

23897825280000ν4

(

± 1475789056µ4 ∓ 8605184 ν3µ3∓

∓263424 ν6µ2 ∓ 224 ν9µ± ν12
) (3.9)

Expressions (3.9) are necessary conditions for existence of the Laurent series
(3.4). These conditions show us that the elliptic solution of Eq. (3.2) contains
only one arbitrary constant. In this case we can add the arbitrary constant z0
to the variable z.

Taking into account formulae (3.7) we have an elliptic solution of Eq.(3.2) in
the form

y = −




℘
′

(z, g1, g2)

℘(z, g1, g2)− ν3−196µ
1680ν





2

− ν℘
′

(z, g1, g2)

28(℘(z, g1, g2)− ν3−196µ
1680ν

)
+ 2℘(z, g1, g2) + h0

(3.10)
where g2, g3 are defined by (3.7).

The elliptic solution (3.6) degenerates to simple periodic solutions at the fol-

7



lowing values of µ

µ =
ν3

476
, µ =

17ν3

1372
, µ =

ν3

686
, µ =

ν3

56
(3.11)

In the case of µ = ν3

476
we obtain the following simple periodic solution from

solution (3.6)

y =
ν2
(

7− 14 cos2
{√

119νz
476

}

+
√
119 sin

{√
119νz
238

})

13328 cos2
{√

119νz
476

}

sin2
{√

119νz
476

} (3.12)

In this case parameters A, h0, β, C0 can be written as

h0 = A =
ν2

2856
, β = −178ν2

833
, C0 =

705ν4

1586032
(3.13)

At µ = 17ν3

1372
solution (3.6) degenerates to

y =
ν2

49

e
3νz

14

(e
νz

7 − 1)2
(3.14)

Parameters A, h0, β, C0 are defined by the following relations

h0 = A = − ν2

1176
, β = −2ν2

7
, C0 = −15ν4

5488
(3.15)

In the case of µ = ν3

686
from (3.6) we have

y =
ν2(e

νz

7 + 2e
νz

14 − 1)

392(e
νz

14 − 1)2
(3.16)

In this case parameters A, h0, β, C0 can be written as

h0 = A =
ν2

2352
, β = −41ν2

196
, C0 =

15ν4

19208
(3.17)

At µ = ν3

56
solution (3.6) degenerates to

y =
ν2
(

7− sin
{√

14νz
28

})

1568 cos2
{√

14νz
56

} (3.18)

Parameters A, h0, β, C0 are defined by the following relations

h0 = A = − ν2

672
, β = −127ν2

392
, C0 = −15ν4

5488
(3.19)
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In the case of ν = 0, the elliptic solution of type (3.6) degenerates to a simple
periodic as well.

Let us construct elliptic solutions of equation (3.2) that correspond to one of
the series (3.4). We see from (3.4) that the necessary condition for existence
of an elliptic solution is ν = 0. In this case the possible elliptic solution of Eq.
(3.2) corresponding to the first series from (3.4) is the following

y = ℘(z, g2, g3) + h0 (3.20)

Comparing the Laurent expansion for (3.20) with the first expansion (3.4) at
ν = 0 we have

h0 = − β

60
, µ = 0, g2 =

10C0 − β2

180
, g3 =

5C0β − 450C1 − β3

5400
(3.21)

The coefficient a8 is defined by the following relation

a8 =
(10C0 − β2)2

38880000
(3.22)

Substituting g2, g3 and h0 from (3.21) into (3.20) we obtain the elliptic solution
of Eq.(3.2) at µ = ν = 0

y = ℘

(

z,
10C0 − β2

180
,
5C0β − 450C1 − β3

5400

)

− β

60
(3.23)

This solution was previously obtained in work [2].

Thus we see that equation (3.2) has elliptic solutions corresponding to one of
the series (3.4) only at ν = µ = 0. Elliptic solutions of Eq.(3.2) at ν = µ =
β = 0 can be obtained form the formulae (3.23).

Note that Eq.(3.2) possesses the symmetry

y(z,−C1) = −y(z, C1) (3.24)

Thus the elliptic solution corresponding to the second series from (3.4) can be
obtained from solution (3.23).
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4 Meromorphic solutions of the equation studied at m=4.

Let us construct elliptic solutions of Eq.(1.2) at m = 4. In this case from
Eq.(1.1) we obtain

C1 − C0 y +
α

5
y5 + µ yz + β yzz + ν yzzz + δ yzzzz = 0 (4.1)

Without loss of generality we assume that δ = −1 and α = 120 in Eq.(4.1).
Thus from Eq.(4.1) we have

C1 − C0 y + 24 y5 + µ yz + β yzz + ν yzzz − yzzzz = 0 (4.2)

Eq. (4.2) possesses four different expansions in the Laurent series in a neigh-
borhood of the first order moveable pole. The Fuchs indices corresponding to
these expansions are the following

j1 = −1, j2 = 6, j3,4 =
1

2
(5± i

√
39) (4.3)

We see that the coefficient a6 in the Laurent series has to be arbitrary. Oth-
erwise the Laurent expansions do not exist.

Expansions of solution of Eq.(4.2) in a neighborhood of the moveable pole are
the following

y(1,2) = ±1

z
± ν

20
∓ 1

600

(

3ν2 + 10β
)

z + . . .+ a
(1,2)
6 z5 + . . . (4.4)

y(3,4) = ± i

z
± iν

20
∓ i

600

(

3ν2 + 10β
)

z + . . .+ a
(1,2)
6 z5 + . . . (4.5)

The compatibility conditions for series (4.4) to exist are the following

± 189ν6

100000
± νβ (10νβ + 35µ+ 9 ν3)

750
± µ (99ν3 + 100µ)

3000
−

−ν (5C1 ± C0ν)

10
= 0

(4.6)

In the case of series (4.5) the compatibility conditions have the form

± 189iν6

100000
± iνβ (10νβ + 35µ+ 9 ν3)

750
± iµ (99ν3 + 100µ)

3000
−

−iν (−5iC1 ± C0ν)

10
= 0

(4.7)
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Using the necessary condition (2.2) for elliptic solutions to exist we see that
Eq.(4.2) may admit three types of elliptic solutions. There are elliptic solutions
corresponding to both of the series (4.4) or to both of the series (4.5). Also
Eq.(4.2) may admit elliptic solutions corresponding to series (4.4) together
with series (4.5).

Let us construct elliptic solutions of Eq.(4.2) corresponding to expansions
(4.4). The general form of possible elliptic solution of Eq.(4.2) is the following
[1, 2]

w = − ℘
′

(z, g2, g3) +B

2(℘(z, g2, g3)−A)
+ h0 (4.8)

Compatibility conditions (4.6) are the same at C1 = 0 or at ν = 0. In the
case of C1 = 0, the algebraic system of equations for parameters µ, β, ν, C0

is inconsistent. Thus we have to consider the case of ν = 0. Comparing the
Laurent expansion of (4.8) with series (4.4) we find

µ = h0 = B = C1 = 0, A = − β

60
, g2 =

β2 − 10C0

120
,

g3 =
β(13β2 − 150C0)

108000

(4.9)

Coefficients a
(1,2)
6 are defined by the relations

a
(1,2)
6 = ∓β(18C0 − β2)

302400
(4.10)

Substituting A,B, h0 from (4.9) into formulae (4.8) we obtain an elliptic so-
lution of Eq.(4.2) at µ = ν = C1 = 0

w = − ℘
′

(z, g2, g3)

2(℘(z, g2, g3) +
β

60
)

(4.11)

where g2, g3 are defined by (4.9). Solution (4.11) was obtained in [2].

In the case of series (4.5), the compatibility conditions (4.7) are the same at
C1 = 0 or at ν = 0 as well. In the case of C1 = 0 algebraic system of equations
for parameters µ, β, ν, C0 is inconsistent again. For obtaining elliptic solutions
corresponding to series (4.5) we take into account the following symmetries of
Eq.(4.2)

y(z,−C1) = −y(z, C1), y(z, iC1) = −iy(z, C1) (4.12)

Using (4.9) and (4.11) we have

w = − i℘
′

(z, g2, g3)

2(℘(z, g2, g3) +
β

60
)

(4.13)
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where g2, g3 are defined by (4.9) again. Coefficients a
(3,4)
6 are given by the

following relations

a
(3,4)
6 = ∓iβ(18C0 − β2)

302400
(4.14)

In the case of elliptic solutions with poles of four different type, the algebraic
system for the parameters is inconsistent.

We can consider the case of µ = β = ν = 0. However while this condition is
satisfied elliptic solutions of type (4.8) degenerate to simple periodic solutions.

5 Conclusion

In this paper we have studied elliptic traveling wave solutions for the family
of fifth order nonlinear evolution equations. We have presented a classification
of elliptic solutions of this family in the cases of m = 1, m = 2 and m = 4.
The explicit form of the elliptic solutions is given as well. In the case of m = 1
we have obtained a new elliptic solution with one pole in the parallelogram of
periods. At m = 2 a new elliptic solution with two poles in the parallelogram
of periods is presented. We have shown that elliptic solution with one pole in
the parallelogram of periods exists only in the case ν = µ = 0. In the case of
m = 4 we have given elliptic solutions with two poles in the parallelogram of
periods. As well, for elliptic solutions with four poles in the parallelogram of
periods the corresponding algebraic system is inconsistent.
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