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1. Introduction

In finance one of the most debated issues is the optimal asset allocation, which is particularly relevant both by a theo-
retical and a practical perspective.

The pioneer of portfolio theory is [10], which proposes a single period model with normally distributed risky returns and
absence of transaction costs. The architecture of the Markowitz’s model has been reviewed in a more realistic fashion by the
Markowitz’s followers.

Samuelson [19] extends the original uniperiodal framework to a multiperiod setting, while [12,13] deal with a continuous
time portfolio model.

Continuous time portfolio models have been improved by the introduction of random jumps in the dynamics of the risky
assets (see [1,8]) where, in some cases, the presence of jumps depends on transaction costs (see [9]).

In this paper, the optimal consumption/investment problem is addressed in a mixed continuous-discrete-time model, in
order to consider rarely traded assets.

The frequency of trade is a measure of the stock liquidity, so that an infrequently traded stock is associated to low liquid-
ity. Hereafter, we refer to thin or light stocks as synonymous of rarely traded assets.

The problem discussed here is relevant both by a theoretical and a financial point of view. By a financial perspective, the
presence of thin securities is a widespread phenomenon which becomes even more relevant when risky assets of emerging
economies are considered. In this regard, it is worth noting that significant relations between low trading volumes and low
market quality (i.e. wide bid/ask spreads, high volatility, low informative efficiency, high adverse selection costs), docu-
mented by several empirical studies (see [7]), become even more important in times of financial crisis. By a mathematical
perspective, continuous-time hypothesis may realistically describe the dynamics of a high-liquidity risky asset, but it be-
comes unreasonable when thinly traded assets are taken into account. Therefore the introduction of discrete-time random
. All rights reserved.
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dynamics for the returns of thin stocks is required. In this paper random trading times are considered, and this leads to a very
complex model.

Some other papers discuss the problem highlighted above. Matsumoto [11] introduces trades at random times following a
Poisson law, but consumption is not taken into account. Rogers [17] introduces discrete random times, but consumption is
assumed to be constant between trading dates. In the stochastic optimal control problem of [18], the authors introduce con-
sumption with a rate changing between trading dates, but the optimal consumption policy is not derived in a closed form.
Cretarola et al. [4] limits its analysis to the case of choice between illiquid assets and consumption.

The contribution of this paper relies on the presence of a time dependent stochastic consumption, in a financial setting
with riskless bonds, frequently traded risky assets and thin stocks. In doing so, the papers quoted above are extended in
many directions. According with [4], we adopt the model developed by Pham and Tankov [15] for describing the dynamics
of infrequently traded assets. In particular, jumps are modeled by using a Levy process, which is particularly appropriate for
this purpose (see [2,3,5,6,20]).

Stochastic control theory, in a dynamic programming framework with jump diffusions, is the followed approach. For a
survey on stochastic control theory with state variables driven by jump diffusions, see [14].

The value function of the control problem is given by the maximized discounted expected utility of the investor. The
problem is first theoretically solved in a very general setting; then, focusing on a particular power-type utility function,
the optimal strategies in explicit closed form are derived. The solving strategy is in line with the approach adopted by Shin
et al. [21], which solves a general consumption/investment problem with downside constraints and uses a CRRA utility func-
tion to deal with the numerical validation of the theoretical model.

The optimal strategies are then compared to the ones of the classical [13]’s model. Such a comparison is particularly inter-
esting, since Merton’s seminal work deals with an optimal consumption/investment problem where there are not opportu-
nities to invest in low-liquidity stocks. The numerical validation of the theoretical model provides insights on the optimal
strategies and paths in relation to the frequency of the trading dates in the thin stock.

The paper is organized as follows. Next section presents the development of the model in a general framework. Section 3
provides the analysis of the optimal strategies with a power-type utility function. Section 4 is devoted to some numerical
experiments and presents the comparison between the proposed theoretical model and Merton’s one. Last section concludes.

2. Model development in a general setting

In this section the economic framework of the model is presented. All the random quantities defined throughout the pa-
per are assumed to be contained in a probability space with filtration ðX;F ; fF tgtP0; PÞ, where the filtration F t is assumed to
reflect the whole set of information provided by the market up to time t. The investor shares her/his wealth among three
assets, i.e. a risk free bond, a liquid risky asset and a light stock:

� the price of the riskless bond Bt evolves according to the following ordinary differential equation:
dBt ¼ rðtÞBtdt; t P 0; ð1Þ
where r(t) is the deterministic continuously compounded risk free interest rate at time t;
� the price of the risky liquid asset St evolves as follows:
dSt ¼ l1Stdt þ r1StdW1
t ; t P 0; ð2Þ
where the expected rate of return l1 is greater than r(t), for each t P 0, and r1 is the instantaneous standard deviation of the
rate of return; W1 is a standard 1-dimensional Brownian Motion;
� the price of the thin stock Ht is assumed to follow a geometric Brownian Motion:
dHt ¼ l2Htdt þ r2HtdW2
t ; t P 0; ð3Þ
where the expected rate of return l2 is greater than r(t), for each t P 0, and r2 is the instantaneous standard deviation of the
rate of return of the light stock; W2 is a standard 1-dimensional Brownian Motion.

By definition of thin stock, it is realistically assumed that l2 > l1 and r2 > r1.
The financial characteristics of the thin stock imply that the dynamics of its returns should be modeled by a jump-type

process. The model proposed by Pham and Tankov [15] is adopted, and it is assumed that investors can trade the thin stock
only at random times fskgkP0, with s0 ¼ 0 < s1 < � � � < sk < � � �. We denote by Zk the stochastic return of the light stock in the
random time interval sk � sk�1, for each k 2 N:
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Zk ¼
Hsk
� Hsk�1

Hsk�1

: ð4Þ
In this market, the agent holds a capital to be shared among the above described three assets. Moreover, a part of the capital
goes to consumption. The choices of the agent change with time. More specifically, we denote by g; h; f; c four stochastic
processes representing the shares of capital invested on the riskless bond, the risky asset and the thin stock and the amount
of consumption, respectively. Since the thin stock faces discrete random returns, also f should have realizations in the dis-
crete times s’s. More precisely, ft ¼ 0, for t R fsngn2N. We will denote fsi

¼: fi, for i 2 N

Assuming that gt þ ht þ ft ¼ 1, for each t P 0, the portfolio is determined by a self-financing trading strategy with con-
sumption. Hence, the portfolio wealth Xt of the agent at time t P 0 can be written as follows:
Xt ¼ xþ
Z t

0
fXs½ð1� hs � fsÞrðsÞ þ l1hs� � csgdsþ

Z t

0
r1XshsdW1

s þ
Xþ1
i¼1

Xsi
fiZi1fsi6tg; ð5Þ
where X0 ¼ x > 0 is the initial wealth. The point process fðsi; ZiÞgi is assumed to be given by the jumps of a Lévy process Ct .
We do not lose of generality by assuming that Ct is cadlag. In this sense, a jump at time t is described by DCt ¼ Ct � Ct�.

Consider a Borel set B in R. The number of jumps occurring in the period [0, t] with size in B can be written as follows:
Nðt;BÞ ¼
Xþ1
i¼1

]BðDCsi
Þ1fsi<tg; ð6Þ
where, for each i 2 N, we define
]BðDCsi
Þ :¼

1; if DCsi
2 B;

0; otherwise:

�
ð7Þ
By substituting the discrete process Z with the continuous version C, we can rewrite (5) as follows:
Xt ¼ xþ
Z t

0
fXs½ð1� hs � fsÞrðsÞ þ l1hs� � csgdsþ

Z t

0
r1XshsdW1

s þ
Z t

0

Z þ1

�1
XsfszNðds; dzÞ; ð8Þ
where Nðds; dzÞ is the differential of Nðt;BÞ.
The following assumption holds true hereafter.

Assumption 1. fsigi2N is a sequence of jumps of a Poisson process with intensity k.

Since the point process fðsi; ZiÞgi is a Levy process, then Zk is independent from fðsi; ZiÞgi<k. We denote its distribution as
pðt; dzÞ, where t ¼ sk � sk�1 > 0.

The following result is particularly important for the development of the model. For the proof, we refer to [16, Theorem
1.35].

Theorem 2. Consider a Borel set B in R and define
YðtÞ :¼
Xþ1
i¼1

Zi1fsi6tg:
The Levy measure m of Y(t) is given by
mðBÞ ¼ E½Nð1;BÞ� ¼ kpð1;BÞ; ð9Þ
where E is the usual expected value operator.
The following assumption will stand in force hereafter:

Assumption 3
Z þ1

�1
ð1 ^ jzjÞmðdzÞ < þ1: ð10Þ
The validity of Assumption 3 implies that jumps have finite variation.

Let us define the admissible control processes.

Definition 4. An admissible control policy is a triplet ðh; f; cÞ of continuous Markovian time processes such that
h : ½0;þ1Þ �X! R such that ht 2 F t ;

f : ½0;þ1Þ �X! R such that ft 2 F t;

c : ½0;þ1Þ �X! ½0;þ1Þ such that ct 2 F t:
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The admissible control policies live in the admissible region, which depends on the initial data x. We denote it as AðxÞ.
The investor aims at searching for the best consumption/investment combination to pursue the maximization of her/his

discounted expected utility. The objective functional J is defined as follows:
Jðx; h; f; cÞ :¼ Ex

Z þ1

0
e�qtUðctÞdt

� �
; x > 0; ð11Þ
where e�q is an unitary discount factor, U is the utility function defined in ½0;þ1Þ and Ex indicates the conditional expec-
tation given X0 ¼ x.

The value function of the optimal consumption/portfolio problem is written as the maximization of the expected dis-
counted utility as follows:
VðxÞ :¼ sup
ðh;f;cÞ2AðxÞ

Ex

Z þ1

0
e�qtUðctÞdt

� �
; x > 0: ð12Þ
We now state some conditions on the utility function U.

Assumption 5. U 2 C1ð0;þ1Þ, it is strictly increasing, strictly concave, Uð0Þ ¼ 0 and the Inada conditions are satisfied, i.e.
lim
c!0þ

U0ðcÞ ¼ þ1; lim
c!þ1

U0ðcÞ ¼ 0:
As also argued in [4], Assumption 5 does not provide a strong restriction on the choice of the utility function U, since the
most common utility functions satisfy it.

To develop the model, it is necessary to investigate the properties of the value function.
A direct consequence of Assumption 5 is stated in the next result (see [14, Re mark 3.3]).

Proposition 6. V is strictly concave in ð0;þ1Þ.
By using the concavity of V, we derive the following:

Proposition 7. V is continuous in ð0;þ1Þ.
For the proof, see the Appendix.
Since ðh; f; cÞ is a triple of Markov controls, then the generator of the diffusion Levy process Xt is
Ah;f;c/ðxÞ ¼ fx½ð1� h� fÞr þ l1� � cg/0ðxÞ þ r2
1x2h2

2
/00ðxÞ þ

Z þ1

�1
f/ðxþ zxfÞ � /ðxÞ � zxf/0ðxÞgmðdzÞ; ð13Þ
where the Levy measure m describes the jumps of the process X.
The Hamilton Jacobi Bellman equation (HJB) can be stated by applying Ito’s Lemma.

Theorem 8 (HJB). Assume that V 2 C2ð0;þ1Þ. Then
qVðxÞ ¼ sup
ðh;f;cÞ2R2�½0;þ1Þ

½UðcÞ þ Ah;f;cVðxÞ�: ð14Þ
Theorem 8 assures that the value function is a formal solution of the HJB (14): indeed, we have to impose the right reg-
ularity of the value function in order to derive Eq. (14). In most of the cases, the value function is not smooth enough. Further
discussions on this topic will be addresses in the next section.

The optimal strategy and trajectory can be theoretically identified by using a Verification Theorem. We do not need to
provide an original formulation for this result, since the proposed model is a particular case of the very general setting
proved in [14, Theorem 8.1]. Therefore, the adaptation of the Verification Theorem to this framework is enunciated, while
details are left to the quoted reference.

Theorem 9 (Verification Theorem). Assume that u 2 C2ðð0;þ1ÞÞ is a classical solution of the HJB (14).
Then we have

(a) uðxÞP VðxÞ; 8x 2 ð0;þ1Þ.
(b) Let us consider ðh�; f�; c�Þ an admissible triple and X� a trajectory starting at x such that
ðh�; f�; c�Þ 2 argmaxh;f;cfUðcÞ þ Ah;f;cuðxÞg:
Then ðh�; f�; c�Þ is optimal, with optimal path X�ðtÞ at x, if and only if uðxÞ ¼ VðxÞ; 8x 2 ð0;þ1Þ.

The next step of this work is to provide an explicit form for the optimal strategies and trajectories. By separating the con-
trol parameters, Eq. (14) can be rewritten as follows:
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qVðxÞ � xrV 0ðxÞ þ
Z þ1

�1
VðxÞmðdzÞ � sup

c2½0;þ1Þ
½UðcÞ � cV 0ðxÞ� � sup

h2R
xhðl1 � rÞV 0ðxÞ þ r2

1x2h2

2
V 00ðxÞ

" #

� sup
f2R

�xrfV 0ðxÞ þ
Z þ1

�1
fVðxþ zxfÞ � zxfV 0ðxÞgmðdzÞ

� �
¼ 0: ð15Þ
The value optimizing the operator appearing in the right-hand side of (14) is formalized in the next result.

Proposition 10. Fix x 2 ð0;þ1Þ and define:
c�ðxÞ :¼ arg max
c2R
½UðcÞ � cV 0ðxÞ� ¼ IðV 0ðxÞÞ; ð16Þ
where I is the inverse1 of the first derivative of U;
h�ðxÞ :¼ arg max
h2R

xhðl1 � rÞV 0ðxÞ þ r2
1x2h2V 00ðxÞ

2

" #
¼ �xðl1 � rÞV 0ðxÞ

r2
1x2V 00ðxÞ

; ð17Þ

f�ðxÞ :¼ arg max
f2R

�xrfV 0ðxÞ þ
Z þ1

�1
fVðxþ zxfÞ � zxfV 0ðxÞgmðdzÞ

� �
: ð18Þ
The triple ðh�ðxÞ; f�ðxÞ; c�ðxÞÞ fulfils the maximization in Eq. (14), i.e.
sup
ðh;f;cÞ2R2�½0;þ1Þ

½UðcÞ þ Ah;f;cVðxÞ� ¼ Uðc�ðxÞÞ þ Ah�ðxÞ;f�ðxÞ;c�ðxÞVðxÞ: ð19Þ
Proof. The proof is straightforward, and moves from the concavity of the function V (see Proposition 6). h

The connection between (16)–(18) and the couple (optimal control, optimal trajectory) can be observed through the intro-
duction of the closed loop equation:
Xt ¼ xþ
Z t

0
fXs½ð1� hðXsÞ � fðXsÞÞrðsÞ þ l1hðXsÞ� � cðXsÞgdsþ

Z t

0
r1XshðXsÞdW1

s þ
Xþ1
i¼1

Xsi
fðXsi

ÞZi1fsi6tg: ð20Þ
In the next result, the significance of the closed loop equation is shown, together with the optimal strategies and the optimal
trajectory.

Proposition 11. Consider x 2 ð0;þ1Þ and the admissible controls c�ðxÞ; h�ðxÞ; f�ðxÞ formalized in Proposition 10.
Denote as X the solution of the closed loop equation
Xt ¼ xþ
Z t

0
Xs ð1� h�ðXsÞ � f�ðXsÞÞrðsÞ þ l1h

�ðXsÞ
� �

� c�ðXsÞ
� �

dsþ
Z t

0
r1Xsh

�ðXsÞdW1
s þ

Xþ1
i¼1

Xsi
f�ðXsi

ÞZi1fsi6tg: ð21Þ
Then, setting �ct ¼ c�ðXtÞ; �ht ¼ h�ðXtÞand �ft ¼ f�ðXtÞ, we have Jðx; �c; �h;�fÞ ¼ VðxÞ, and the triple ð�c; �h;�fÞ is optimal for the control
problem. The optimal path is Xt.

As stressed above, generally, the value function is not twice differentiable, and the HJB (14) does not admit a classical
solution. Therefore, the problems related with the existence and uniqueness of the solution of the integro–differential equa-
tion (14) and the regularity properties of the value function need to be addressed. This is the subject of the next section.

3. Explicit derivation of the optimal strategies with power-type utility function

Rather than discussing the regularity of the value function only by a theoretical perspective, we solve this issue by using a
particular power-type utility function U, in order to compare the proposed model to the classical [13]’s one.

Assume a power-type utility function U satisfying Assumption 5, i.e. there exists c 2 ð0;1Þ such that
UðcÞ ¼ cc

c
: ð22Þ
Then we try a value function of power-type, with the same exponent:
VðxÞ ¼ Kxc; ð23Þ
with an opportune value of K 2 ½0;þ1Þ.
Since V 2 C2ð0;þ1Þ, Theorem 8 guarantees that V satisfies Eq. (14), which can be rewritten as:
existence of I is assured by the hypothesis of strict increasingness and concavity of U.
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qKxc ¼ sup
ðh;f;cÞ2R2�½0;þ1Þ

cc

c
þ Kcxc�1f½ð1� h� fÞr þ l1h�x� cg þ Kcðc� 1Þr2

1h
2xc

2
þ Kxc

Z þ1

�1
fð1þ zfÞc � 1� czfgmðdzÞ

" #
:

ð24Þ
Denote as Hðh; f; cÞ the argument of the sup operator in squared brackets, in the right hand side of (24).
To obtain the optimal strategies, we move in accord to (16)–(18). Since H is a concave operator, the stationary points of H

are the optimal strategies, and only the first order conditions are needed.
@Hðh;f;cÞ
@c ¼ cc�1 � Kcxc�1 ¼ 0;

@Hðh;f;cÞ
@h ¼ Kc½l1 � r þ ðc� 1Þr2

1h�xc ¼ 0;
@Hðh;f;cÞ

@f ¼ Kcxc �r þ
R þ1
�1 zfð1þ zfÞc�1 � 1gmðdzÞ

h i
¼ 0:

8>>><
>>>:

ð25Þ
Now, define the function
KðfÞ ¼ �r þ
Z þ1

�1
zfð1þ zfÞc�1 � 1gmðdzÞ: ð26Þ
Note that K is continuous. Moreover,
Kð0Þ ¼ �r < 0; lim
f!þ1

KðfÞ ¼ þ1:
Therefore, there exists f� 2 ð0;þ1Þ such that Kðf�Þ ¼ 0. Hence, fixed x 2 ð0;þ1Þ, by (25), the optimal strategies are
ðc�ðxÞ; h�ðxÞ; f�ðxÞÞ, where
c�ðxÞ ¼ ðKcxc�1Þ
1

c�1;

h�ðxÞ ¼ h� ¼ r�l1
ðc�1Þr2

1
;

f�ðxÞ ¼ f� such that � r þ
Rþ1
�1 zfð1þ zf�Þc�1 � 1gmðdzÞ ¼ 0:

8>><
>>: ð27Þ
By substituting the optimal strategies of (27) into (24) we obtain the value of K as:
K ¼
q� c ð1� h� � f�Þr þ l1h

�� �
� cðc�1Þr2

1ðh
�Þ2

2 �
Rþ1
�1 fð1þ zf�Þc � 1� czf�gmðdzÞ

c
c

c�1ð1c � 1Þ

8<
:

9=
;

c�1

: ð28Þ
Therefore, the power-type value function (23), with K given by (28), satisfies (24).
The system of optimal control-optimal trajectory may be derived by Proposition 11 through the closed loop equation gi-

ven in (20).

Proposition 12. Consider x 2 ð0;þ1Þ and the optimal strategies c�ðxÞ; h�ðxÞ; f�ðxÞ given in (27).
Denote as X the solution of the closed loop equation
Xt ¼ xþ
Z t

0
Xs ð1� h�ðXsÞ � f�ðXsÞÞrðsÞ þ l1h

�ðXsÞ
� �

� c�ðXsÞ
� �

dsþ
Z t

0
r1Xsh

�ðXsÞdW1
s þ

Xþ1
i¼1

Xsi
f�ðXsi

ÞZi1fsi6tg: ð29Þ
Then, setting �ct ¼ c�ðXtÞ; �ht ¼ h�ðXtÞ and �ft ¼ f�ðXtÞ, we have Jðx; �c; �h;�fÞ ¼ VðxÞ, and the quadruple ðX; �c; �h;�fÞ is optimal for the
control problem.

By Proposition 12 we can write explicitly the optimal strategies:
�ct ¼ ðKcXc�1
t Þ

1
c�1;

�h ¼ r�l1
ðc�1Þr2

1
;

�f such that � r þ
Rþ1
�1 zfð1þ z�fÞc�1 � 1gmðdzÞ ¼ 0:

8>><
>>: ð30Þ
4. Numerical analysis

The purpose of this section is to provide, via numerical analysis, insights on the optimal strategies and paths which are
explicitly stated for the power-type utility function described in Section 3.

The analysis of several cases is provided. Firstly, the frequency of the jumps in thin stock returns is taken into account, in
order to state the relationship between optimal paths and trading dates characterizing the low-liquidity asset. Secondly, the
relationship between the optimal consumption and the optimal portfolio wealth is investigated. Thirdly, the comparison
between the proposed model and the one in [13] is performed.
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The general setting of the application can be synthesized as follows: the investment horizon is 1 year, i.e. T = 252 business
days; the constant relative coefficient of risk aversion is 1� c ¼ 0:1, i.e. c = 0.9; the investor allocates funds in a liquid and
continuously traded risky asset with expected rate of return l1 ¼ 0:08 and volatility r1 ¼ 0:15, in a light stock not contin-
uously traded (illiquid) with expected rate of return l2 ¼ 0:2 and volatility r2 ¼ 0:3 and in a riskless bond with constant rate
of return r = 0.03; the Poisson law parameter k is alternatively set to 5, 15, 30, 60 and 100. It is worth to notice that the aver-
age frequency of the jumps in light stock returns is inversely proportional to the magnitude of k.

The first building block of the numerical procedure is represented by the simulation of the random returns, at random
times, of the thin stock, according to Eqs. (3) and (4).

The general iterative method for simulating random times and random returns of the thin stock consists of the following
steps:

� set t0 ¼ 0 and H0 ¼ 0:40;
� for j ¼ 1;2; . . ., generate a random variable Rjþ1 from the exponential distribution with mean 1=k;
� set tjþ1 ¼ tj þ Rjþ1;
� generate Bjþ1 � Nð0;1Þ;
� set Hjþ1 ¼ Hjð1þ l2Rjþ1 þ r2

ffiffiffiffiffiffiffiffiffi
Rjþ1

p
Bjþ1Þ;

� set zjþ1 ¼
Hjþ1�Hj

Hj
;

� if tjþ1 > 1, stop. We denote the last index as j�, i.e. tj� 6 1 and tj�þ1 > 1.

The procedure described above is replicated n = 10,000 times. Obviously, the value of j� depends on the replication index,
i. Denote as j�ðiÞ the value of the last index j� for the ith replication. The returns of the thin stocks can be allocated in an
incomplete matrix Z ¼ ðzðiÞj Þj¼1;...;j�ðiÞ;i¼1;...;n, corresponding to an incomplete matrix of random times T ¼ ðtðiÞj Þj¼1;...;j�ðiÞ;i¼1;...;n.
The returns of the thin stock are computed as a particular mean of the values obtained with n replications as follows: first,
the elements of the matrix T are clustered in the T = 252 time-intervals, representing the business days; second, the corre-
sponding returns are accordingly clustered; third, the returns of the thin stocks are obtained as weighted average of the re-
turns falling in each cluster. More formally, we obtain a return vector Z ¼ ðZ1; . . . ; ZTÞ, where:
Zj ¼
1
n

Xn

i¼1

zðiÞk � 1tðiÞ
k
2 j�1

T ;
j
T½ �; j ¼ 1; . . . ; T:
The second building block of the application consists in writing the optimal control triple of the problem as stated in (27). At
this aim, we set the value of the portfolio at time 0 as x ¼ 1. While h� and c�ðxÞ are defined as in the first and the second
formulas of (27), the value of f� is derived from the solution of the third equation in (27). To find the optimal f�, a grid search
algorithm is implemented as follows:

� set the range of f� as [�1,1];
� discretize the range [�1,1] with step 1

10;000;
� set the vector ðf�1; . . . ; f�mÞ, with m ¼ 2� 10;000, where f�h ¼ �1þ h � 1

10;000;
� set the range of the returns of the thin stock as [�1,2];
� discretize the range [�1,2] with step 1

100 and obtain ½�1;2� ¼ I1 [ . . . [ I l, where l ¼ 3� 100 and I k ¼ �1þ k�1
l ;�1þ k

l

� �
;

� take the returns zðiÞj computed in the first building block, with i ¼ 1; . . . ;n and j ¼ 1; . . . ; j�ðiÞ;
� for each replication i, discretize the differential term mðdzÞ as:
mðiÞðI kÞ ¼
Xj�ðiÞ
j¼1

]Ik
ðzðiÞj Þ;
where the operator ]� is defined as in (7);
� compute the weighted average with respect to the number of replications i and the z’s, and define:
mðI kÞ ¼
1
n

Xn

i¼1

mðiÞðI kÞ
and X

zk ¼

1
n

i;j

zðiÞj 1
zðiÞ

j
2Ik ;
� define the vector of discretized integral as ðC1; . . . ;CnÞ, where:
Ch ¼
Xl

k¼1

zk½ð1þ zkfhÞc�1 � 1�mðIkÞ;
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� find the optimal f� ¼ fh� , where h� is selected to have:
Table 1
Optima

n�ðxÞ
h�ðxÞ
ð1�

Mert
h�Mðx
ð1�

⁄⁄ Aver
jCh� � rj ¼ min
h¼1;...;m

jCh � rj:
The third building block of the application is related with the substitution of the optimal strategies c�ðxÞ; h� and f� into
the dynamics of the portfolio wealth, accordingly to the closed loop equation (29). Then, by using Proposition 12, the optimal
control triple and the optimal path are derived.

We perform n = 10,000 replications of the following algorithm:

� set x ¼ 1;
� set l ¼ ð1� h� � f�Þr þ l1h

�;
� set r ¼ r1h

�;
� for i ¼ 1; . . . ;n; k ¼ 1; . . . ; T , generate W ðiÞ

k � Nð0;1Þ;
� simulate XðiÞkþ1 ¼ XðiÞk þ ðlXðiÞk � c�ðxÞÞ 1

T þ rXðiÞk

ffiffi
1
T

q
W ðiÞ

k þ f�XðiÞk Zk, where the Z’s are the returns of the thin stocks obtained
with the first building block;
� compute the optimal path X ¼ ðX1; . . . ;XTÞ of the portfolio value, where
Xk ¼
1
n

Xn

i¼1

XðiÞk ; 8k ¼ 1; . . . ; T;
� set c ¼ ð�c1; . . . ; �cTÞ, where
�ch ¼ c�ðXhÞ; h ¼ 1; . . . ; T:
The fourth building block consists in the comparison between the solutions of the proposed model and the classical Mer-
ton’s portfolio. Firstly, using the same set of parameters, the optimal Merton’s portfolio value XðMÞt , with f� ¼ 0, is simulated
and, then, the difference process Dt ¼ XðMÞt � Xt is computed for each k-level. The Merton’s optimal controls are denoted as h�M
and c�M .

We perform n = 10,000 replications of the following algorithm:

� set lðMÞ ¼ ð1� h�MÞr þ l1h
�
M;

� set r ¼ r1h
�
M;

� XðM;iÞ
kþ1 ¼ XðM;iÞ

k þ ðlXðM;iÞ
k � c�MðxÞÞ 1

T þ rXðM;iÞ
k

ffiffi
1
T

q
W ðiÞ

k , where W ðiÞ
k � Nð0;1Þ are the same set of random draws generated in the

third building block;
� compute the optimal path XM ¼ ðXðMÞ1 ; . . . ;XðMÞT Þ of the portfolio value, where
XðMÞk ¼ 1
n

Xn

i¼1

XðM;iÞ
k ; 8k ¼ 1; . . . ; T;
� compute the optimal path cM ¼ ð�cðMÞ1 ; . . . ; �cðMÞT Þ of the consumption, where
�cM;h ¼ c�MðX
ðMÞ
h Þ; h ¼ 1; . . . ; T;
� set DXk ¼ XðMÞk � Xk and Dck ¼ �cðMÞk � �ck for each k ¼ 1; . . . ; T.

The optimal controls resulting from the application synthesized above are reported in Table 1. The results show that an
investor with relative risk aversion ð1� cÞ ¼ 0:1 and in presence of an asset characterized by low liquidity should allocate
her/his wealth on the risky asset and assume a short position on the thin stock and risk-free bond. It is worth to notice that
the level of the short position on thin stock decreases as the average frequency of the jumps increases. At the same time, the
wealth invested in the liquid asset is constant as expected. Even though the short position on the risk free asset is quite sta-
l control triple by different levels of k.

k = 5 k = 15 k = 30 k = 60 k = 100

�0.507⁄⁄ �0.361⁄⁄ �0.174⁄⁄ �0.083⁄⁄ �0.050⁄⁄

22.222 22.222 22.222 22.222 22.222
h�ðxÞ � n�ðxÞÞ �20.715 �20.861 �21.048 �21.139 �21.172

on’s Portfolio
Þ 22.222
h�MðxÞÞ �21.222

age estimation error = 1.69E�06.
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ble, it can be noticed a slight decrease in the share of wealth short on the riskless bond, with respect to the frequency of the
jumps in thin stock. These results are due to the assumed high degree of the investor’s relative risk aversion.

The comparison with Merton’s portfolio shows that the wealth allocated in the risky asset is constant and remains un-
changed with respect to the proposed model. Therefore, the introduction of a light stock affects only the optimal level of allo-
cation in the risk free asset.

In Figs. 1 and 2 the difference processes, DXk and Dck, for k = 5, 15, 30 are depicted. They show that, in this cases, Merton’s
model performs slightly better than the model with thin stock even though it is worth to notice that the differences are not
so relevant.

In Figs. 3 and 4 the optimal paths of wealth and consumption are reported, both for Merton’s model and the proposed one
in the case of k = 100. By visual inspection it is clear that the proposed model performs much more better than the Merton’s
one. This result overturns the ones shown in Figs. 1 and 2 for lower levels of k. The inversion is essentially due to the reduc-
tion in the short position on the thin stock and the higher level in the frequency of jumps that let the dynamics of the thin
stock be closer to those of the frequently traded risky asset.
Fig. 1. Portfolio difference processes with k = 5, 15, 30.

Fig. 2. Consumption difference process with k = 5, 15, 30.



Fig. 3. Optimal wealths with k = 100.

Fig. 4. Optimal consumptions with k = 100.
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5. Conclusion

This paper deals with optimal consumption/investment choices in presence of thin stocks. Since the main characteristic of
thin stocks is given by low-liquidity, a jump-type process with random times is particularly suited to describe their returns
and provide a realistic model.

After developing the model in a very general framework, by assuming a power-type utility function an explicit closed
form solution for the stochastic control problem is provided. In doing this, we ensure that the proposed model can be con-
sistently compared with the classical [13]’s one.

Numerical analysis shows that the results of the proposed model are rather in line with the ones of the Merton’s portfolio.
Moreover the portfolio model with thin stock performs better than the Merton’s one in cases of frequent jumps in light asset
returns.

Probably, the most challenging extension of the proposed model is related with the analysis of the regularity of the value
function in the general setting through the introduction of the HJB solution in viscosity sense. However, this could imply
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sophisticated functional analysis techniques making difficult the comparison with other standard asset allocation models.
We leave this topic to future research.

Appendix A. Proof of Proposition 7

Consider x 2 ð0;þ1Þ and fxkgk2N # ð0;þ1Þ such that
lim
k!þ1

xk ¼ x: ð31Þ
Since ð0;þ1Þ is an open set, then 9r > 0 such that BrðxÞ ¼ ðx� r; xþ rÞ 2 ð0;þ1Þ. Consider a 2 ð0; rÞ and A 	 BrðxÞ defined as:
A ¼ fz 2 ð0;þ1Þ : jz� xj ¼ ag:
Since xk converges to x as k! þ1, then 9K large enough such that
8k > K ) jxk � xj < a:
Therefore, for each k > K and hk 2 ð0;1Þ, there exists zk 2 A such that
xk ¼ hkxþ ð1� hkÞzk: ð32Þ
Since jzk � xj ¼ a > 0, by (31) and (32) we obtain
lim
k!þ1

hk ¼ 1: ð33Þ
The concavity of V implies
VðxkÞ ¼ Vðhkxþ ð1� hkÞzkÞP hkVðxÞ þ ð1� hkÞVðzkÞ: ð34Þ
Therefore, by (33):
lim inf
k!þ1

VðxkÞP 1 � VðxÞ ¼ VðxÞ: ð35Þ
On the other hand, for each k > K and kk 2 ð0;1Þ, there exists xk 2 A such that
x ¼ kkxk þ ð1� kkÞxk: ð36Þ
Also in this case, since jxk � xj ¼ a > 0, by (31) and (36) we obtain
lim
k!þ1

kk ¼ 1: ð37Þ
The concavity of V implies
VðxÞ ¼ Vðkkxk þ ð1� kkÞxkÞP kkVðxkÞ þ ð1� kkÞVðxkÞ: ð38Þ
Therefore, by (37):
VðxÞP lim sup
k!þ1

VðxkÞ: ð39Þ
By (35) and (39) we obtain
lim
k!þ1

VðxkÞ ¼ VðxÞ; ð40Þ
i.e. the continuity of V on ð0;þ1Þ.
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