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Abstract This paper proposes a harmonic Lanczos bidiagonalization method for com-

puting some interior singular triplets of large matrices. It is shown that the approxi-

mate singular triplets are convergent if a certain Rayleigh quotient matrix is uniformly

bounded and the approximate singular values are well separated. Combining with the

implicit restarting technique, we develop an implicitly restarted harmonic Lanczos

bidiagonalization algorithm and suggest a selection strategy of shifts. Numerical ex-

periments show that one can use this algorithm to compute interior singular triplets

efficiently.
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1 Introduction

The singular value decomposition (SVD) of a matrix A ∈ RM×N ,M ≥ N is given by

A = UΣV T, (1)

where Σ = diag(σ1, σ2, · · · , σN ), U = (u1, u2, · · · , uM ) and V = (v1, v2, · · · , vN ) are

orthogonal matrices of order M and N respectively. (σi, ui, vi), i = 1, 2, · · ·N, are called

the singular triplets of A.
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Consider the (M +N) × (M +N) augmented matrix

Ã =

(

0 A

AT 0

)

. (2)

Then, the eigenvalues of Ã are ±σ1,±σ2, · · · ,±σN and M −N zeros. The eigenvectors

associated with σi and −σi are
1√
2

(

uTi , v
T
i

)T
and 1√

2

(

uTi ,−vTi
)T

respectively. There-

fore, the SVD problems are equivalent to the eigenproblems of augmented matrices.

The SVD methods are widely used in determination of numerical rank, determi-

nation of spectral condition number, least square problems, regression analysis, image

processing, signal processing, pattern recognition, information retrieval, and so on.

At present, computation of largest or smallest singular triplets of large matrices

has been well studied, Lanczos bidiagonalization method and its variants are the most

popular methods. In 1981, Golub et al. [5] firstly designed a block Lanczos bidiagonal-

ization method to compute some largest singular triplets. Larsen [16] discussed the re-

orthogonalization of the Lanczos bidiagonalization process. Jia and Niu [13] proposed a

refined Lanczos bidiagonalization method to compute some largest and smallest singu-

lar triplets. Kokiopoulou et al. [15] used the harmonic projection technique to compute

the smallest singular values. Baglama and Reichel [2,3] used Ritz values and harmonic

Ritz values to approximate the largest and smallest singular values respectively. Her-

nandez et al. [7] provided a parallel implementation of the Lanczos bidiagonalization

method. Stoll [22] developed a Krylov-schur approch to partial SVD. Recently, Jia and

Niu [14] proposed a refined harmonic Lanczos bidiagonalization method to compute

some smallest singular triplets. All of above methods compute the Lanczos bidiagonal-

ization process, build two m−dimensional Krylov subspaces, then extract approximate

singular triplets from these two subspace by different ways. Hochstenbach [8,9] also

give the Jacobi-Davidson type algorithms for SVD problems.

Due to the storage requirement and the computational cost, all the projection meth-

ods must be restarted. The implicit restarting technique [21] proposed by Sorensen is

the most powerful tool and is widely used in many projection methods. The success of

this technique heavily depends on the selection of the shifts, see [10,21]. For eigenvalue

problems, Sorensen [21] used the unwanted Ritz values as the shifts to restart Arnoldi

method, and Morgan [19] used the unwanted harmonic Ritz values as the shifts to

restart harmonic Arnoldi method. Jia [10,11] used the refined shifts and refined har-

monic shifts obtained by the information of the refined Ritz vectors and refined har-

monic vectors to restart refined Arnoldi method and refined harmonic Arnoldi method,

respectively. For SVD problems, Kokiopoulou et al. [15] used the unwanted harmonic

Ritz values as the shifts. Baglama and Reichel [2,3] explicitly augmented the Lanczos

bidiagonalization method with certain Ritz vectors or harmonic Ritz vectors. Jia and

Niu [13,14] gave an refined (harmonic) shift strategy within the implicitly restarted

refined (harmonic) Lanczos bidiagonalization method.

In this paper, we are concerned with the computation of interior singular triplets.

For a given target τ , we want to compute some singular triplets nearest τ . So, we sort

the singular triplets by

|σ1 − τ | ≤ |σ2 − τ | ≤ · · · ≤ |σN − τ |. (3)

We must emphasize that, in this paper, σ1 is the singular value nearest τ rather

than the smallest singular value, meanwhile, σN is the singular value farthest from τ

rather than the largest singular value.
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Since the largest eigenvalues of (Ã−τI)−1 are the eigenvalues of Ã closest to τ , and

the SVD problem of A is equivalent to the eigenproblem of Ã, we can use shift-invert

technique on Ã− τI to compute the interior singular triplets, such as shift-and-invert

Arnoldi method (svds). In this paper, we assume that M and N are large and that A

can not be factorized. The shift-and-invert technique need the factorization of Ã− τI .

Since M and N are large, M +N , the dimension of Ã− τI , is larger. We can not do

any factorizations on Ã− τI . Therefore, the shift-and-invert technique is not suitable

for interior SVD problems.

Another approach for computing interior singular triplets is the harmonic pro-

jection method. The harmonic projection method has been widely used to compute

interior eigenpairs, see [18,19], and has been adopted to combine with Lanczos bidiag-

onalization methods to compute smallest singular triplets [2,3,15,13]. However, if we

use the harmonic projection method explicitly on Ã − τI , the scale of the problem is

increased and this leads to the increasing computational cost. Further, we ignore the

special structure of Ã or Ã − τI , and the projected matrix and the updated process

of implicit restarting may lose this structure. Therefore, we must use the harmonic

projection method implicitly. Until now, no literature has been appeared to compute

interior singular triplets by the harmonic projection method implicitly.

In this paper, we propose a harmonic Lanczos bidiagonalization method for com-

puting interior singular triplets by combining the harmonic projection technique with

the Lanczos bidiagonalization process. We analyze the convergence behavior, show that

the harmonic Ritz approximations converge to the desired interior singular triplets if

some Rayleigh quotient matrix is uniformly bounded and the harmonic Ritz values are

well separated. Then, based on Morgan’s harmonic shift strategy [19] for computing

interior eigenvalues, we give a selection of the shifts within the framework of the implic-

itly restarted harmonic Lanczos bidiagonalization methods. Further, we report some

numerical experiments of computation of interior singular triplets. It appears that the

algorithm we proposed is suitable for computing the interior singular triplets of large

matrices.

Throughout this paper, denote by || · || the spectral norm of a matrix and the vec-

tor 2-norm, by Km(C, v1) = span{v1, Cv1, · · · , Cm−1v1} the m− dimensional Krylov

subspace generated by the matrix C and the starting vector v1, by superscript ’T’ the

transpose of matrix or vector, by em the m−th coordinate vector of dimension m.

2 Harmonic Lanczos bidiagonalization method

2.1 Lanczos bidiagonalization process

Golub et al. [5] proposed a Lanczos bidiagonalization method to compute the largest

singular triplets of A. This method is equivalent to the symmetric Lanczos method on

Ã with a special initial vector. It is based on the Lanczos bidiagonalization process,

which is shown in matrix form as follows:

AQm = PmBm, (4)

ATPm = QmBT
m + βmqm+1e

T
m, (5)
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where

Bm =













α1 β1

α2

. . .

. . . βm−1

αm













(6)

is an upper bidiagonal matrix, Qm = (q1, q2, . . . , qm) and Pm = (p1, p2, . . . , pm) span

the Krylov subspaces Km(ATA, q1) and Km(AAT, p1), respectively.

In finite precision arithmetic, the columns of Pm andQm may lose the orthogonality

rapidly and must be reorthognalized. From the analysis of Simon and Zha [20], we know

that only the columns of one of the matrices Pm and Qm need to be reorthogonalized.

When M ≫ N , Reorthogonalization on Qm only can reduce the computational cost

considerably. So we only perform reorthogonalization on Qm.

2.2 Harmonic Lanczos bidiagonalization method

Given the subspace

E = span

{(

Pm 0

0 Qm

)}

. (7)

Making use of the harmonic projection principle, we compute some approximate eigen-

pairs (θi, ϕ̃i) of Ã nearest τ by requiring
{

ϕ̃i ∈ E ,
(Ã− θiI)ϕ̃i⊥(Ã− τI)E . (8)

From (4) and (5), (8) can be rewritten as the following generalized eigenproblem:
(

−τI Bm

BT
m −τI

)(

xi
yi

)

=
1

θi − τ

(

τ2I +BmBT
m + βmemeTm −2τBm

−2τBT
m τ2I +BT

mBm

)(

xi
yi

)

.

(9)

Assume that θi > 0, i = 1, 2, · · · , k + l, which are sorted by

|θ1 − τ | ≤ |θ2 − τ | ≤ · · · ≤ |θk+l − τ |

and θi < 0, i = k+l+1, k+l+2, · · · , 2m. We can use θi, i = 1, 2, · · · , k and ϕ̃i =
(

Pmxi

Qmyi

)

as the approximation of the desired eigenpair of Ã. Because of the relation between the

singular triplets of A and the eigenpairs of Ã, we use θi, ũi = Pmxi/||xi|| = Pmx̃i, ṽi =

Qmyi/||yi|| = Qmỹi, i = 1, 2, · · · , k as the approximate singular triplets of A nearest τ .

Here we call θi, ũi, ṽi the harmonic Ritz value, the left and right harmonic Ritz vector,

respectively.

From (4) and (5), we have

||Aṽi − θiũi|| = ||Bmỹi − θix̃i||,

||Aṽi − θiũi|| =
√

||BT
mx̃i − θiỹi||2 + β2

m|eTmx̃i|2.
Therefore, if

√

||Bmỹi − θix̃i||2 + ||BT
mx̃i − θiỹi||2 + β2

m|eTmx̃i|2 < tol, (10)

where tol is a prescribed tolerance, then the method is known as convergent. So we

need not form ũi and ṽi explicitly before convergence.
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2.3 Convergence analysis

Set

B̃ =

(

−τI Bm

BT
m −τI

)

and

C̃ =

(

τ2I +BmBT
m + βmemeTm −2τBm

−2τBT
m τ2I +BT

mBm

)

,

then θi, i = 1, 2, · · · , 2m are the eigenvalues of B̃−1C̃. The matrix B̃ is called the

Rayleigh quotient matrix of Ã with respect to the subspace E and the target τ .

The following results are direct from Theorem 2.1, Corollary 2.2 and Theorem 3.2

of [12].

Theorem 1 Assume that (σ, u, v) is a singular triplet of A, define that ǫ = sin 6
((

u
v

)

, E
)

is the distance between the vector
(

u
v

)

and the subspace E . Then there exists a pertur-

bation matrix F such that σ is an exact eigenvalue of B̃−1C̃ + F , where

||F || ≤ ǫ√
1− ǫ2

||B̃−1||(σ||A||+ ||A||2). (11)

Furthermore, there exists an eigenvalue of B̃−1C̃ satisfying

|θ − σ| ≤ (2||A||+ ||F ||)||F ||. (12)

Theorem 1 shows that if ǫ tends to zero and if ||B̃−1|| is uniformly bounded, then

there exists one harmonic Ritz value θ converging to the desired singular value σ.

However, from the interlacing theorem of eigenvalues [6], since

B̃ =

(

Pm 0

0 Qm

)T

(Ã− τI)

(

Pm 0

0 Qm

)

,

we have that the eigenvalues of B̃ are between the largest and smallest eigenvalue of

Ã− τI . Therefore, B̃ may be singular, which leads to arbitrarily large ‖B̃−1‖. Hence,

we must assume ‖B̃−1‖ is uniformly bounded. In fact, this is the inherent defect of the

harmonic projection methods, which can be easily obtained from Jia’s analysis [12].

Similarly to the analysis in [12], if τ is very close to a desired singular value σ of A,

then the method may miss it. We replace θi by the Rayleigh-quotient ρi = ũTi Aṽi =

x̃Ti Bmỹi as the approximate singular value, as was done in [9,14]. In general, ρi is more

accurate than θi.

Theorem 2 Let (θ, z) be an eigenpair of B̃−1C̃, where z =
(

x
y

)

, and assume (z, Z⊥)

to be orthogonal such that

(

zT

ZT
⊥

)

B̃−1C̃(z, Z⊥) =

(

θ gT

0 G

)

. (13)

If

sep(θ,G) = ||(G − θI)−1||−1 > 0, (14)
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then

sin 6
((

u

v

)

,
(

ũ

ṽ

))

≤
(

1 +
2||B̃−1||||A||√
1− ǫ2sep(σ,G)

)

ε

≤
(

1 +
2||B̃−1||||A||√

1− ǫ2(sep(θ,G)− |σ − θ|)

)

ε. (15)

Theorem 2 shows that if ‖B̃−1‖ is uniformly bounded and sep(θ,G) is bounded

below by a positive constant, that is, all harmonic Ritz values are well separated, then

the harmonic Ritz vectors ũ, ṽ converge to the desired left and right singular vector.

3 Implicit restarting technique, shifts selection and an adaptive shifting

strategy

3.1 Implicit restarting technique

Due to the storage requirement and the computational cost, the number of Lanczos

bidiagonalization steps m can not be large. However, for a relatively small m, the

approximate singular triplets do not converge. Therefore, the method must be restarted

generally.

The implicit restarting technique proposed by Sorensen [21] is a powerful restarting

tool for the Lanczos and Arnoldi process, and has been adopted to the Lanczos bidi-

agonalization process [4,13,14,15,17]. After running the implicit QR iteration p steps

on Bm and using the shifts µj , j = 1, 2, · · · , p, we have

{

(BT
mBm − µ2

1I) · · · (BT
mBm − µ2

pI) = P̃R,

P̃TBmQ̃ upper bidiagonal,
(16)

where P̃ , Q̃ are the products of the left and right Givens rotation matrices applied to

Bm.

Performing the above process gives the following relation:

AQ+
m−p = P+

m−pB
+
m−p, (17)

ATP+
m−p = Q+

m−pB
+
m−p

T
+ (βm−pp̃m,m−pqm+1 + β+

m−pq
+
m−p+1)e

T
m−p, (18)

where Q+
m−p and q+m−p+1

are the first m−p columns and the (m−p+1)-th column of

QmQ̃, P+
m−p is the first m−p columns of PmP̃ , B+

m−p is the leading (m−p)× (m−p)

block of P̃BmQ̃, p̃m,m−p is the (m,m − p) element of P̃ . Since βm−pp̃m,m−pqm+1 +

β+
m−pq

+
m−p+1

is orthogonal to Q+
m−p, we obtain a (m− p)-step Lanczos bidiagonaliza-

tion process starting with q+
1
, where

γq+1 =

p
∏

j=1

(ATA− µ2
j I)q1 (19)

with γ a factor making ‖q+
1
‖ = 1. It is then extended to the m-step Lanczos bidiago-

nalization process in a standard way.
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3.2 shifts selection and adaptive shifting strategy

Once the shifts µ1, µ2, . . . , µp are given, we can run the implicitly restarted algorithm

described above iteratively. The success of the implicit restarting technique heavily

depends on the selection of the shifts. As is shown in [13], from (19), it can be easily seen

that the more accurate the shifts approximate to some unwanted singular values, the

more information on the unwanted singular vectors are dampened out after restarting.

Therefore, the resulting subspace contains more information on the desired singular

vectors, and the algorithms may converge faster. For eigenproblems and SVD problems,

Morgan [19] and Kokiopoulou et al. [15] suggested using the unwanted harmonic Ritz

values as shifts. A natural choice of the shifts within our algorithm is the unwanted

approximate singular values θk+j , j = 1, 2, · · · , l, since they are the best approximations

available to some of the unwanted singular values within our framework.

From (19), we see the component along the desired k-th singular vector uk is greatly

damped if a shift µi is very close to σk, so µi is a bad shift and ρk may converge to

σk very slowly or not at all. To correct this problem, Larsen [17] proposed an adaptive

strategy to compute largest singular triplets. He replaces a bad shift by zero shift. Jia

and Niu [13,14] gave a modified form for computing smallest singular triplets. Define

the relative gaps of ρk and all the shifts µi, i = 1, 2, · · · , l by

relgapki =

∣

∣

∣

∣

(ρk − εk)− µi

ρk

∣

∣

∣

∣

, (20)

where εk is the residual norm (10). If relgapki ≤ 10−3, µi is a bad shift and should

be replaced by a suitable quantity. They replace the bad shifts by the largest or the

smallest approximate singular value for computing the smallest or the largest singular

triplets. In this paper, a good strategy is replacing the bad shifts by the approximate

singular value farthest from τ , as this strategy amplifies the components of q+
1

in

vi, i = 1, 2, · · · , k and damps those in vi, i = k + 1, k + 2, · · · , N .

4 Numerical Experiments

Numerical experiments are carried out using Matlab 7.1 R14 on an Intel Core 2 E6320

with CPU 1.86GHZ and 2GB of memory under the Window XP operating system.

Machine epsilon is ǫmach ≈ 2.22× 10−16. The stopping criteria is

stopcrit = max
1≤i≤k

√

‖Aṽi − ρiũi‖2 + ‖ATũi − ρiṽi‖2. (21)

If
stopcrit

‖A‖1
< tol, (22)

then stop. From (10), we need not form ũi, ṽi explicitly before convergence.

For large eigenproblems, in order to speed up convergence, most of the implicitly

restarted Krylov type subspace algorithms, such as ARPACK(eigs), compute k + 3

approximate eigenpairs when k eigenpairs are desired. This strategy has been adopted

to SVD problems, see [2,14]. In this paper, we also compute k+3 approximate singular

triplets and use l − 3 shifts in implicit restarting process.

All test matrices are from [1]. We take tol = 10−6. In all the tables, ’iter’ denotes

the number of restart, ’time’ denotes the CPU timings in second, ’mv’ denotes the
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Fig. 1 Absolute residual norms for WELL1850 for k = 3, m = 20, τ = 0, 0.01, 0.005, 0.001

number of matrix-vector products. Since the matrix-vector products performed on A

are equal to those on AT, we only count the matrix-vector products on A.

4.1 Computation of smallest singular triplets

Obviously, we can compute some smallest singular triplets by taking τ = 0. We com-

pute three singular triplets nearest τ = 0, 0.01, 0.005, 0.001 of WELL1850, respectively.

These three singular values are all the three smallest singular values. The computed

three singular values are

σ1 ≈ 1.611969e − 002, σ2 ≈ 1.911309e − 002, σ3 ≈ 2.315889e − 002.

Table 1 reports the computational results. Fig. 1 plots the absolute residual norms

of the computed singular triplets for m = 15 and m = 20, respectively. From Table

1 and Fig. 1, we see that for all τ , our algorithm can compute three singular triplets

accurately. However, for different τ , the algorithm has a great difference on restart

numbers, matrix-vector products and CPU times. This phenomenon shows a good

choice of target point τ can speed up the convergence considerably.

Table 1 WELL1850 for k = 3, m = 10, 15, 20, 25, τ = 0, 0.001, 0.005, 0.01

m iter time mv stopcrit iter time mv stopcrit
τ = 0 τ = 0.001

10 543 5.15 2178 1.67e-005 178 1.89 718 1.66e-005
15 119 3.20 1077 1.67e-005 74 1.99 672 1.25e-005
20 56 3.48 790 1.50e-005 48 2.81 678 1.62e-005
25 35 3.20 671 1.35e-005 35 3.64 671 1.14e-005

τ = 0.005 τ = 0.01
10 160 1.66 646 1.66e-005 179 1.76 722 1.60e-005
15 68 1.86 618 1.62e-005 64 1.73 582 1.52e-005
20 39 2.31 552 1.08e-005 37 2.23 524 1.45e-005
25 31 3.10 595 1.27e-005 29 2.89 557 1.06e-005
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4.2 Computation of three interior singular triplets nearest different τ

The test matrix is DW2048, a 2048× 2048 matrix. We compute three singular triplets

nearest different τ . The computational results are shown in Tables 2-3. From Table

2, we see that the relative errors of the computed singular values are no more than

O(10−9). The Tables demonstrate that our algorithm can compute the desired singular

triplets accurately.

Table 2 Three computed singular values of DW2048 nearest τ = 0.2, 0.5, 0.6, 0.8 for m = 50

τ = 0.2 τ = 0.5
ρj |ρj − σj |/σj ρj |ρj − σj |/σj

2.0031301e-001 1.55e-014 4.9933773e-001 1.62e-14
1.9939880e-001 5.90e-014 5.0082218e-001 1.04e-12
1.9813769e-001 1.08e-009 4.9764898e-001 8.76e-11

τ = 0.6 τ = 0.8
ρj |ρj − σj |/σj ρj |ρj − σj |/σj

6.0106012e-001 4.29e-12 8.0014466e-001 2.41e-12
6.0193472e-001 4.22e-11 7.9954438e-001 5.46e-12
5.9689466e-001 2.40e-13 7.9932106e-001 1.08e-10

Table 3 DW2048 for k = 3, m = 30, 40, 50, τ = 0.2, 0.5, 0.6, 0.8

τ = 0.2 τ = 0.5
m iter time mv stopcrit iter time mv stopcrit
30 501 109 11655 9.97e-007 255 51.2 6123 9.93e-007
40 298 113 9993 9.81e-007 97 38.2 3271 9.90e-007
50 221 136 9652 9.85e-007 83 50.9 3656 9.10e-007

τ = 0.6 τ = 0.8
m iter time mv stopcrit iter time mv stopcrit
30 125 24.6 3006 9.11e-007 405 78.2 9525 9.87e-007
40 69 27.0 2343 9.47e-007 180 70.4 6079 9.64e-007
50 46 28.1 2012 8.61e-007 136 81.8 5989 9.50e-007

4.3 Computation of interior singular triplets for different k

We compute k = 1, 3, 5, 10 smallest singular triplets nearest τ = 4.5 of LSHP2233, a

2233×2233 matrix. Table 5 reports the results. We see that our algorithm can compute

the desired singular triplets with high precision.

5 Conclusion

In this paper, combining the harmonic projection principle with the implicit restarting

technique, we propose an implicitly restarted harmonic Lanczos bidiagonalization algo-

rithm for computing some interior singular triplets. Based on Morgan’s harmonic shift

strategy for computing interior eigenpairs, we give a selection of the shifts within our
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Table 4 Ten computed singular values of LSHP2233 nearest τ = 4.5 for m = 50

ρ1 |ρ1 − σ1|/σ1 ρ2 |ρ2 − σ2|/σ2

4.4988631 1.58e-15 4.5091282 1.36e-14
ρ3 |ρ3 − σ3|/σ3 ρ4 |ρ4 − σ4|/σ4

4.5113859 1.22e-14 4.4815289 6.54e-15
ρ5 |ρ5 − σ5|/σ5 ρ6 |ρ6 − σ6|/σ6

4.5188882 5.11e-15 4.5210494 1.18e-14
ρ7 |ρ7 − σ7|/σ7 ρ8 |ρ8 − σ8|/σ8

4.4783693 1.07e-14 4.4716358 8.74e-15
ρ9 |ρ9 − σ9|/σ9 ρ10 |ρ10 − σ10|/σ10

4.5331457 5.68e-15 4.4638926 2.03e-10

Table 5 LSHP2233 for k = 1, 3, 5, 10, m = 30, 40, 50, τ = 4.5

k = 1 k = 3
m iter time mv stopcrit iter time mv stopcrit
30 467 108 11920 6.88e-006 560 127 13171 6.95e-006
40 190 83.6 6844 6.86e-006 230 98.1 7826 6.79e-006
50 159 114 7188 6.63e-006 216 140 9404 6.66e-006

k = 5 k = 10
m iter time mv stopcrit iter time mv stopcrit
30 322 64.8 6972 6.99e-006 651 103 10761 6.91e-006
40 207 78.5 6632 6.78e-006 168 61.0 4548 4.70e-006
50 132 83.8 5487 6.40e-006 165 92.4 6003 6.99e-006

algorithm. Numerical experiments show that our algorithm is suitable for interior SVD

problems. The interior singular values can be computed with higher relative precision.

The Matlab code can be obtained from the authors upon request.

Acknowledgements We thank Baglama and Reichel very much for generously providing
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