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Canonical angles and limits of sequences

of EP and co-EP matrices

Julio Benı́tez∗ Vladimir Rakočević†

Abstract

Let A be a square complex matrix. Let P be one of the following properties: a) A is an
EP matrix, b) the column space of A is complementary to the column space of A∗, and c)
the orthogonal complement of the column space of A is the column space of A∗. We study
the canonical angles between the column space of A and the column space of A∗ when A
satisfies property P. Also, we research the following problem: Let {Am}∞

m=1 be a sequence
of matrices satisfying property P that converges to some matrix A. When does A satisfy
property P?

Keywords: Canonical angles of subspaces, EP matrices.
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1 Introduction, notation, and preliminary results

The canonical angles (also called principal angles) between two subspaces provide the best

available characterization of the relative position of two given subspaces. This concept allows

us to characterize or measure, in a natural way, how two subspaces differ, which is the main

connection with perturbation theory. In [1, 2, 3] we can find how these angles were discovered

and rediscovered again several times. Computation of canonical angles between subspaces is

important in many applications including statistics [4, 5], information retrieval [6], and analysis

of algorithms [7].

There are many equivalent definitions of the canonical angles (see [8]). For our purposes,

the most convenient is the following:
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2 J. Benı́tez and V. Rakočević

Definition 1.1. Let X and Y be two nontrivial subspaces of Cn and r = min{dim X, dim Y}. We

define the canonical angles θ1, . . . ,θr ∈ [0, π/2] between X and Y by

cosθi = σi(PXPY), i = 1, . . . , r, (1)

where the real numbers σ1(PXPY), · · · ,σr(PXPY) ≥ 0 are the singular values of the matrix PXPY, and

PS stands for the orthogonal projector onto the subspace S ⊂ Cn.

See for example [8, 9, 10, 11] for a deeper insight into this definition and [12] for the simul-

taneous study of two orthogonal projectors.

Let us remark that the greatest singular value of a matrix X is ‖X‖, where ‖ · ‖ denotes

the matrix 2-norm or the matrix norm induced by the Euclidean vector norm. Accordingly to

Definition 1.1, the minimal angle between nontrivial subspaces X and Y of Cn is defined to be

the number θX,Y ∈ [0, π/2] for which cosθX,Y = ‖PXPY‖. It can be proved the following result

(see [13, Section 5.15]):

Theorem 1.2. Let X, Y be two nontrivial subspaces of Cn. Then X and Y are complementary if and only

if PX− PY is nonsingular, and in this case

sinθX,Y =
1

‖(PX− PY)−1‖ =
1

‖PXY‖
,

where PXY is the oblique projector onto X along Y.

Before establishing the aim of this paper, let us fix some standard notations. Let Cm,n denote

the set composed of m × n complex matrices. Throughout this paper we consider the vectors

of Cn as columns, thus we shall identify Cn with Cn,1. The symbols K∗, rk(K), R(K) will

denote the conjugate transpose, the rank, and the column space, respectively, of K ∈ Cm,n.

Furthermore, K† will stand for the Moore–Penrose inverse of K ∈ Cm,n, i.e., the unique matrix

satisfying the four equations

KK†K = K, K†KK† = K†, (KK†)∗ = KK†, (K†K)∗ = K†K. (2)

It is known that any matrix K ∈ Cn,m has a Moore-Penrose inverse (and trivially, K† ∈ Cm,n).

Moreover, it can be easily proved that KK† is the orthogonal projector onto R(K) and K†K is the

orthogonal projector onto R(K∗).



Canonical angles... 3

A square matrix A ∈ Cn,n is said to be EP when when AA† = A†A. A useful character-

ization of the EP matrices (the name comes from Equal Projection) is the following (see [14,

Chapter 4.4] or [15, Theorem 4.3.1]):

Theorem 1.3. Let A ∈ Cn,n have rank r. The following statements are equivalent:

(i) AA† = A†A.

(ii) There exist a unitary matrix U ∈ Cn,n and a nonsingular matrix K ∈ Cr,r, such that

A = U(K ⊕ 0)U∗. (3)

(iii) R(A) = R(A∗).

In some sense, the subset of Cn,n composed of matrices A such that AA† − A†A is non-

singular is complementary to the subset of EP matrices. Following [16] we say that a matrix

A ∈ Cn,n is co-EP when AA† − A†A is nonsingular. Among several characterizations of the

co-EP matrices, in [16] the authors proved the following result:

Theorem 1.4. Let A ∈ Cn,n and r be the rank of A. The following statements are equivalent:

(i) AA† − A†A is nonsingular.

(ii) R(A)⊕R(A∗) = Cn,1.

(iii) There exist a unitary matrix U ∈ Cn,n, a nonsingular matrix M ∈ Cr,r, and θ1, . . . ,θr ∈]0, π/2]

such that

A = U

[

MC MS
0 0

]

U∗, (4)

where C = diag(cosθ1, . . . , cosθr), and S = diag(sinθ1, . . . , sinθr).

Obviously, we have C2 + S2 = Ir and CS = SC. These two equalities will be used many

times in the sequel. Moreover, let us observe that if A ∈ Cn,n is co-EP matrix, then n must be

even and rk(A) = n/2.

When R(A) = R(A∗)⊥ (see item (ii) of the previous theorem) holds, then we have the

following result [16]:
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Theorem 1.5. Let A ∈ Cn,n and r be the rank of A. The following statements are equivalent:

(i) R(A) = R(A∗)⊥.

(ii) There exist a unitary matrix U ∈ Cn,n, a nonsingular matrix M ∈ Cr,r such that

A = U

[

0 M
0 0

]

U∗.

(iii) AA† + A†A = In.

(iv) There exists a unitary matrix U ∈ Cn,n such that AA† = U(Ir ⊕ 0)U∗ and A†A = U(0 ⊕
Ir)U∗.

We shall say that a matrix A ∈ Cn,n is co-EP⊥ if it satisfies any condition of Theorem 1.5.

The purpose of this paper is twofold: Firstly we study the canonical angles of the EP, co-EP,

and co-EP⊥ matrices. Lastly we get some results concerning limits of sequences of matrices

which are EP, co-EP, co-EP⊥. These last results have a strong relation with the canonical angles

between the column space of some matrices and the column space of their conjugate trans-

poses.

2 EP, co-EP matrices, and their canonical angles

If a co-EP matrix A is represented as in (4), then we can know explicitly the canonical angles

between R(A) and R(A∗).

Theorem 2.1. Let r ∈ N. If A ∈ C2r,2r is represented as

A = U

[

MC MS
0 0

]

U∗,

where U ∈ C2r,2r is unitary, M ∈ Cr,r is nonsingular,

C = diag(cosθ1, . . . , cosθr), S = diag(sinθ1, . . . , sinθr),

and θ1, . . . ,θr ∈ [0, π/2], then the canonical angles between R(A) and R(A∗) are θ1, . . . ,θr.
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Proof. First of all, it is easily checked (by using the four conditions in (2)) that

A† = U

[

CM−1 0
SM−1 0

]

U∗.

Obvious computations show

AA† = U

[

Ir 0
0 0

]

U∗ and A†A = U

[

C2 CS
CS S2

]

U∗.

Since AA† = U(Ir ⊕ 0)U∗ we get dim R(A) = rk(AA†) = r because AA† is the orthogonal

projector onto R(A). Also we have dim R(A∗) = rk(A∗) = rk(A) = r. We shall use (1) in

order to find the canonical angles between R(A) and R(A∗).

PR(A)PR(A∗) = (AA†)(A†A) = U

[

Ir 0
0 0

] [

C2 CS
CS S2

]

U∗ = U

[

C2 CS
0 0

]

U∗.

It is simple to prove that the matrix V ∈ C2r,2r defined by

V = U

[

C −S
S C

]

is unitary. Since

U

[

C2 CS
0 0

]

U∗ = U

[

C 0
0 0

] [

C S
−S C

]

U∗ = U diag(cosθ1, . . . , cosθr , 0, . . . , 0)V∗,

the singular value decomposition of PR(A)PR(A∗) is

PR(A)PR(A∗) = U diag(cosθ1, . . . , cosθr, 0, . . . , 0)V∗ .

Hence the singular values of PR(A)PR(A∗) are cosθ1, . . . , cosθr. The theorem is proved.

In order to prove some results of this paper, let us permit to write the following factorization

valid for all square complex matrix ([17, Cor. 6]).

Lemma 2.2. Any matrix A ∈ Cn,n of rank r can be represented as

A = U

[

ΣK ΣL
0 0

]

U∗, (5)

where U ∈ Cn,n is unitary, Σ = σ1 Ir1
⊕ · · · ⊕σt Irt is the diagonal matrix of singular values of A,

σ1 ≥ σ2 ≥ · · · ≥ σt > 0, r1 + r2 + · · · + rt = r = rk(A), and K ∈ Cr,r, L ∈ Cr,n−r satisfy

KK∗ + LL∗ = Ir. (6)
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It is easily seen that if a matrix A is represented as in Lemma 2.2, then

A† = U

[

K∗Σ−1 0
L∗Σ−1 0

]

U∗.

The following result permits to find the canonical angles between R(A) and R(A∗) when A

is a matrix represented as in Lemma 2.2.

Theorem 2.3. Let A ∈ Cn,n be represented as in Lemma 2.2. Then θ ∈ [0, π/2] is a canonical angle

between R(A) and R(A∗) if and only if cosθ is a singular value of K.

Proof. Let us denote X = PR(A)PR(A∗). Since PR(A) = AA† and PR(A∗) = A†A, using (6) we

easily have

X = (AA†)(A†A)

= U

[

ΣK ΣL
0 0

] [

K∗Σ−1 0
L∗Σ−1 0

] [

K∗Σ−1 0
L∗Σ−1 0

] [

ΣK ΣL
0 0

]

U∗

= U

[

Ir 0
0 0

] [

K∗K K∗L
L∗K L∗L

]

U∗

= U

[

K∗K K∗L
0 0

]

U∗.

It is well known that for every complex square matrix M we have that if σ ≥ 0, then

σ is a singular value of M ⇔ σ2 is an eigenvalue of MM∗ ⇔ σ2 is an eigenvalue of M∗M.

Thus, we shall calculate XX∗. Using (6) leads to

XX∗ = U

[

K∗K 0
0 0

]

U∗.

Let θ ∈ [0, π/2[. The following chain can be easily followed recalling that X = PR(A)PR(A∗),

Definition 1.1, and r = rk(A) and therefore, there are exactly r canonical angles between R(A)

and R(A∗):

θ is a canonical angle between R(A) and R(A∗) ⇔ cosθ is a singular value of X

⇔ cos2 θ is an eigenvalue of XX∗

⇔ cos2 θ is an eigenvalue of K∗K

⇔ cosθ is a singular value of K.

The proof is finished.
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The following result links the EP matrices, co-EP matrices, and co-EP⊥ matrices with the

canonical angles between the column space of these matrices and of their conjugate transposes.

Theorem 2.4. Let A ∈ Cn,n.

(i) A is EP if and only if all the canonical angles between R(A) and R(A∗) are zero.

(ii) If A is co-EP, then none of the canonical angles between R(A) and R(A∗) are zero.

(iii) If A is co-EP⊥, then all the canonical angles between R(A) and R(A∗) are π/2.

Proof. It is well known that PR(A) = AA† and PR(A∗) = A†A. If r is the rank of A, then r =

dim R(A) = dim R(A∗).

(i) Suppose that A is EP. Using the representation (3) of A given in Theorem 1.3 we easily

get AA† = A†A = U(Ir ⊕ 0)U∗. Hence PR(A)PR(A∗) = U(Ir ⊕ 0)U∗. Using (1) proves that all

the r canonical angles between R(A) and R(A∗) are zero.

Suppose that all the r canonical angles between R(A) and R(A∗) are zero. By Theorem 2.3,

the scalar 1 is an eigenvalue of K∗K with multiplicity r; but since K∗K ∈ Cr,r and K∗K is diago-

nalizable, we have K∗K = Ir. This implies that K∗ = K−1 because K is a square matrix. Using

(6) we get L = 0. Representation (5) reduces to A = U(ΣK ⊕ 0)U∗. Recall that Σ and K are

nonsingular, hence item (ii) of Theorem 1.3 yields that A is EP.

(ii) The result follows from Theorem 1.4 and Theorem 2.1.

(iii) If A is co-EP⊥, by item (iv) of Theorem 1.5, we get

PR(A)PR(A∗) = (AA†)(A†A) = 0,

hence all the singular values of PR(A)PR(A∗) are zero and Definition 1.1 entails that all the r

canonical angles between R(A) and R(A∗) are π/2.

Items (ii) and (iii) of the Theorem 2.4 are not equivalences as the following examples show:

Example 1. Let B ∈ Cn,n have rank r and let us define A = B ⊕ 0 ∈ Cn+k,n+k with k > 0.

Obviously, we have rk(A) = rk(B) = rk(B∗) = rk(A∗) and the canonical angles between

R(A) and R(A∗) are equal to the the canonical angles between R(B) and R(B∗).
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If B is co-EP, then none of the r canonical angles between R(B) and R(B∗) are zero. Hence,

none of the r canonical angles between R(A) and R(A∗) are zero. However, A is not co-EP

because AA† − A†A = (BB† − B†B) ⊕ 0 is a singular matrix.

If B is co-EP⊥, all the r canonical angles between R(B) and R(B∗) equal to π/2. Hence, all

the r canonical angles between R(A) and R(A∗) are π/2. However, A is not co-EP⊥ because

AA† + A†A = (BB† + B†B)⊕ 0 = In ⊕ 0 6= In+k (see item (iii) of Theorem 1.5).

3 Limits of EP, co-EP matrices and canonical angles

In this section we shall research the following challenging problem: Let P be the property

of being EP, co-EP, or co-EP⊥ and let {Am}∞

m=1 ⊂ Cn,n be a sequence of matrices satisfying

property P that converges to some matrix A. When does A satisfy property P?

The following simple result is concerned with the above question when the involved ma-

trices are EP. Observe that we must use some kind of continuity of the Moore–Penrose inverse.

Theorem 3.1. Let {Am}∞

m=1 be a sequence of EP matrices that converges to A. If A†
m → A†, then A is

EP.

Proof. Since Am is EP for each m ∈ N we have Am A†
m = A†

m Am, hence

AA† = (lim
m

Am)(lim
m

A†
m) = lim

m
(Am A†

m) = lim
m

(A†
m Am) = (lim

m
A†

m)(lim
m

Am) = A†A.

The proof is finished.

The converse of this result is false as the following example shows:

Example 2. For each natural number, let Am = 1/m ∈ C1,1. Every Am is evidently EP, the

sequence {Am}∞

m=1 is convergent, and limm Am = 0 is obviously EP. However, {A†
m}∞

m=1 does

not converge to 0†.

Contrarily to the usual inverse of a square matrix, it is well known that the Moore–Penrose

inverse is not necessarily a continuous function of the elements of the matrix. The following

classical theorem gives an equivalent condition for the continuity of the Moore–Penrose inverse

of a matrix.
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Theorem 3.2 ([18, 19]). If {Am}∞

m=1 ⊂ Cn,k is a convergent sequence to A ∈ Cn,k, then

A†
m → A† ⇐⇒ ∃m0 ∈ N : rk(Am) = rk(A) ∀m ≥ m0.

The following examples show that the set of n × n co-EP matrices and the set of n × n co-

EP⊥ matrices are not closed in Cn,n.

Example 3. For m ∈ N, let us define

Am =

[

0 1/m
0 0

]

.

All matrices Am are co-EP⊥ and obviously limm Am = 0 is not co-EP⊥.

Example 4. For m ∈ N, let us define

Bm =

[

cos(1/m) sin(1/m)
0 0

]

.

By Theorem 1.4 we have that Bm is co-EP for all m ∈ N. Evidently one has Bm → diag(1, 0).

But limm Bm is not co-EP (by item (ii) of Theorem 1.3),

Example 3 invites to think about the stability of the rank. This assumption is related with

the continuity of the Moore–Penrose inverse.

Let us think about Example 4. Evidently, we have that dim R(Bm) = dim R(B∗
m) = 1 and

R(Bm) ⊕ R(B∗
m) = C2,1 for every m ∈ N (this situation is depicted in Figure 1) and 1/m is the

angle between the lines R(Bm) and R(B∗
m). When m → ∞ it is intuitive that these aforemen-

tioned lines converge to the same line, say r. We have (in a very extremely informal parlance),

by denoting B = limm Bm = diag(1, 0),

R(B) = R( lim
m→∞

Bm) = lim
m→∞

R(Bm) = r = lim
m→∞

R(B∗
m) = R( lim

m→∞

B∗
m) = R(B∗).

Thus it is impossible that B is a co-EP matrix. In fact, B is an EP matrix.

Let us recall the following fact that we will use in Theorem 3.3 below: If {Xm}∞

m=1 is a

sequence of nonsingular matrices in Cn,n converging to X such that {X−1
m }∞

m=1 is bounded,

then X is nonsingular and {X−1
m }∞

m=1 converges to X−1. In fact, the equality ‖X−1
k − X−1

m ‖ =

‖X−1
k (Xm − Xk)X−1

m ‖ implies that the sequence {X−1
m }∞

m=1 is a Cauchy sequence, hence conver-

gent, say to Y. Now, In = XmX−1
m implies In = XY.

The following result establishes precise conditions (and a rigorous argument) in order to

the limit of co-EP matrices is co-EP.
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0 1/m

R(Bm)

R(B∗
m)

Figure 1: The column space of B is span{[1, 0]∗} and the column space of B∗
m is

span{[cos(1/m), sin(1/m)]∗}.

Theorem 3.3. Let {Am}∞

m=1 ⊂ Cn,n be a sequence of co-EP matrices that converges to A. Then the

following statements are equivalent:

(i) A†
m → A† and there exists θ0 > 0 and m0 ∈ N such that the minimal angle between R(Am) and

R(A∗
m) is greater than θ0 for all m ≥ m0.

(ii) A is a co-EP matrix.

Proof. (i) ⇒ (ii): Since Am → A and A†
m → A† we get

Am A†
m − A†

m Am → AA† − A†A. (7)

On the other hand, matrices Am are co-EP for all m ∈ N, and thus Am A†
m − A†

m Am are nonsin-

gular matrices. By using Theorem 1.2

‖(Am A†
m − A†

mAm)−1‖2 =
1

sinθR(Am),R(A∗
m)

≤ 1

sinθ0

holds for m ≥ m0. Therefore, the sequence {(Am A†
m − A†

mAm)−1}∞

m=1 is bounded. The use of

(7) ensures now that AA† − A†A in nonsingular, or in another words, AA† − A†A is co-EP.

(ii) ⇒ (i): Since A and Am are co-EP matrices, we get rk(Am) = rk(A) = n/2 for all m ∈ N.

By Theorem 3.2 we get A†
m → A†, hence Am A†

m − A†
m Am → AA† − A†A. Since AmA†

m − A†
m Am

and AA† − A†A are nonsingular matrices, the continuity of the inverse permits to affirm that

lim
m→∞

(Am A†
m − A†

m Am)−1 = (AA† − A†A)−1,

in particular, the sequence {‖(Am A†
m − A†

m Am)−1‖}∞

m=1 is bounded, say by K. Using Theo-

rem 1.2 we get

sinθR(Am),R(A∗
m) =

1

‖(Am A†
m − A†

m Am)−1‖
≥ 1

K
.
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The proof is completed.

A related result holds when the involved matrices are co-EP⊥:

Theorem 3.4. Let {Am}∞

m=1 ⊂ Cn,n be a sequence of co-EP⊥ matrices that converges to A. Then the

following statements are equivalent:

(i) A†
m → A†.

(ii) A is co-EP⊥.

Proof. (i) ⇒ (ii): By item (iv) of Theorem 1.5 we get Am A†
m + A†

m Am = In for each m ∈ N.

Since Am → A and A†
m → A†, the results follows.

(ii) ⇒ (i): Since A and Am are co-EP⊥, we have rk(A) = n/2 and rk(Am) = n/2 for all

m ∈ N. Theorem 3.2 ends the proof.

The following simple lemmas will be used in the sequel.

Lemma 3.5. Let K ∈ Cr,r and L ∈ Cr,n−r be such KK∗ + LL∗ = Ir, then ‖K‖ ≤ 1, ‖L‖ ≤ 1.

Proof. Let us define

A =

[

K L
0 0

]

.

It is easily checked that AA∗ = Ir ⊕ 0. Hence 1 = ‖Ir ⊕ 0‖ = ‖AA∗‖ = ‖A‖2, and thus

max{‖K‖, ‖L‖} ≤ ‖A‖ = 1 (the norm of a submatrix cannot be greater than the norm of a

whole matrix, see e.g. [20, Lemma 2]).

Lemma 3.6. The set {(A, B) ∈ Cr,r ×Cr,n−r : AA∗ + BB∗ = Ir} is a compact subset of Cr,r ×Cr,n−r.

Proof. Let us prove that H = {(A, B) ∈ Cr,r × Cr,n−r : AA∗ + BB∗ = Ir} is a compact subset

of Cr,r × Cr,n−r. By Lemma 3.5 we get that H is bounded. Now, let us consider the continuous

map Φ : Cr,r × Cr,n−r → Cr,r given by Φ(X, Y) = XX∗ + YY∗. Since H = Φ−1(Ir) we get that

H is closed in Cr,r ×Cr,n−r. This finishes the proof.

Let us recall that the set composed of unitary n × n matrices is compact in Cn,n. Also, let us

recall that any sequence in a compact set has a convergent subsequence.

The following result concerns EP matrices.
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Theorem 3.7. Let {Am}∞

m=1 ⊂ Cn,n be a convergent sequence of matrices such that Am → A and

A†
m → A†. Let φm be the greatest canonical angle between R(Am) and R(A∗

m). The following state-

ments are equivalent:

(i) φm → 0.

(ii) A is EP.

Proof. By Theorem 3.2 there exists m0 ∈ N such that rk(Am) = rk(A) for m ≥ m0. Let us denote

r = rk(A). By Lemma 2.2, we can write for m ≥ m0

Am = Um

[

ΣmKm ΣmLm

0 0

]

U∗
m (8)

where Σm are diagonal and invertible, Um unitary, and

KmK∗
m + LmL∗

m = Ir. (9)

Also, we have

A†
m = Um

[

K∗
mΣ−1

m 0
L∗

mΣ−1
m 0

]

U∗
m,

By passing to a subsequence, we can suppose that {Um}∞

m=1 is convergent to the unitary ma-

trix U. Since the sequences {Am}∞

m=1, {A†
m}∞

m=1, and {Um}∞

m=1, are convergent, from rep-

resentations (8) and (9) we get that the following four sequences {ΣmKm}∞

m=1, {ΣmLm}∞

m=1,

{K∗
mΣ−1

m }∞

m=1, and {L∗
mΣ−1

m }∞

m=1 are convergent, say to X, Y, Z, and T, respectively. Since we

have Am → A and A†
m → A† we get

A = U

[

X Y
0 0

]

U∗, A† = U

[

Z 0
T 0

]

U∗. (10)

We will prove that the sequences Σm and Σ−1
m are bounded: In fact by Lemma 3.5 and recalling

that {ΣmLm}∞

m=1, {K∗
mΣ−1

m }∞

m=1, and {L∗
mΣ−1

m }∞

m=1 are convergent,

‖Σm‖ = ‖ΣmKmK∗
m + ΣmLmL∗

m‖ ≤ ‖ΣmKm‖+ ‖ΣmLm‖

and

‖Σ−1
m ‖ = ‖KmK∗

mΣ−1
m + LmL∗

mΣ−1
m ‖ ≤ ‖K∗

mΣ−1
m ‖ + ‖L∗

mΣ−1
m ‖.
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Thus, denoting by θ1, . . . ,θr the canonical angles between R(A) and R(A∗), from Theorem 2.3

and (9), we have

φm → 0 ⇔ cos2 θi → 1 for all i = 1, . . . , r

⇔ KmK∗
m → Ir ⇔ LmL∗

m → 0 ⇔ Lm → 0 ⇔ ΣmLm → 0 ⇔ Y = 0. (11)

Therefore, to demonstrate this theorem, it is enough to prove that Y = 0 if and only if A is EP.

(i) ⇒ (ii): If Y = 0, then from

Ir = ΣmKmK∗
mΣ−1

m + ΣmLmL∗
mΣ−1

m → XZ + 0 · T = XZ,

we deduce XZ = Ir, hence X is nonsingular and the first representation in (10) and Theorem

1.3 yields that A is EP.

(ii) ⇒ (i): If A is EP, then AA† = A†A. Now, equality (10) implies

XZ + YT = ZX, 0 = ZY, 0 = TX, 0 = TY. (12)

Moreover, since Ir = ΣmKmK∗
mΣ−1

m + ΣmLmL∗
mΣ−1

m , making k → ∞ we get Ir = XZ + YT. Thus,

the first equality of (12) leads to ZX = Ir. Let us remark that both matrices Z and X are square,

thus X and Z are nonsingular and from the second equality of (12) we get Y = 0. The proof is

finished

Let {Am}∞

m=1 ⊂ Cn,n be a convergent sequence to A. Let φm the greatest canonical between

R(Am) and R(A∗
m). If φm → 0, it is reasonable to think that the canonical angles between R(A)

and R(A∗) are 0, or according to Theorem 2.4, A is EP. But, the following example shows that

this intuition is false:

Example 5. Let {am}∞

m=1 be a sequence of numbers in ]0, 1[ converging to 1, and define bm =
√

1 − a2
m,

Km =

[

0 am

am 0

]

, Lm =

[

0 bm

bm 0

]

, Σm =

[

1 0
0 1/m

]

, Am =

[

ΣmKm ΣmLm

0 0

]

.

It is straightforward to prove KmK∗
m = a2

m I2, and thus Km has only one singular value, namely

am. Moreover, LmL∗
m = b2

m I2, and therefore KmK∗
m + LmL∗

m = I2 holds. By Theorem 2.3, the

angle arccos(am) is the unique canonical angle between R(Am) and R(A∗
m). Using the notation
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of Theorem 3.7, one has φm = arccos(am). Since am → 1 we get φm → 0. However, the

sequence {Am}∞

m=1 converges to

A =

[

ΣK 0
0 0

]

, where K =

[

0 1
1 0

]

and Σ =

[

1 0
0 0

]

.

However, matrix A is not EP because if A were EP, then matrix ΣK would be also EP; but since

ΣK =

[

1 0
0 0

] [

0 1
1 0

]

=

[

0 1
0 0

]

,

ΣK is not EP. In fact ΣK is co-EP⊥. Observe that this last statement does not contradict Theo-

rem 2.4.

The following result does not require the continuity of the Moore–Penrose inverse. Let us

remark that any Hermitian matrix is EP.

Theorem 3.8. Let {Am}∞

m=1 ⊂ Cn,n be a convergent sequence to A. Let φm the greatest canonical

between R(Am) and R(A∗
m). If φm → 0 and PR(Am)(Am − A∗

m)PR(Am) → 0, then A is Hermitian.

Proof. Let rm = rk(Am). Since rm ∈ {1, · · · , n} for all m ∈ N, by passing to a subsequence,

we can suppose that {rm}∞

m=1 is constant, say to r. By Lemma 2.2, for every m ∈ N, there

exist a unitary matrix Um ∈ Cn,n, a diagonal and positive matrix Σm ∈ Cr,r, and (Km, Lm) ∈
Cr,r ×Cr,n−r such that

Am = Um

[

ΣmKm ΣmLm

0 0

]

U∗
m (13)

and

KmK∗
m + LmL∗

m = Ir.

Since the subset of unitary matrices is compact and by Lemma 3.6, by passing again to another

subsequence, we can suppose that {Um}∞

m=1, {Km}∞

m=1, and {Lm}∞

m=1 are convergent sequences

to, respectively, U, K, L. These matrices satisfy

UU∗ = U∗U = In, KK∗ + LL∗ = Ir. (14)

By the proof of Theorem 3.7 (see (11)), since φm → 0 we get Lm → 0 i.e., L = 0. From the

second equality of (14) we get KK∗ = Ir. Observe that

[

ΣmKm ΣmLm

0 0

]

= U∗
mAmUm → U∗AU,
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hence {ΣmKm}∞

m=1 and {ΣmLm}∞

m=1 are sequences that converge to X and Y, respectively. More-

over we get
[

X Y
0 0

]

= U∗AU.

Since KK∗ = Ir, in particular K is nonsingular (recall that K is a square matrix) and for big

enough m, one has that Km is nonsingular. Hence, the continuity of the inverse in the subset

composed of nonsingular matrices permits assure that K−1
m → K−1. Now, for big enough m, we

have

Σm = ΣmKmK−1
m → XK−1 (15)

and ΣmLm → XK−10 = 0. Since Y = limm ΣmLm, by the uniqueness of the limit, we get Y = 0.

Thus, we get

A = U

[

X 0
0 0

]

U∗, A† = U

[

X† 0
0 0

]

U∗. (16)

Denote Σ = XK−1. Evidently, we have X = ΣK. From (15), matrix Σ is a limit of diagonal and

real matrices, hence Σ is also diagonal and real. In particular we get Σ∗ = Σ.

Using representation (13) we have

PR(Am)(Am − A∗
m)PR(Am) = Um

[

ΣmKm − K∗
mΣ∗

m 0
0 0

]

U∗
m → U

[

ΣK − K∗Σ 0
0 0

]

U∗

From PR(Am)(Am − A∗
m)PR(Am) → 0 we get ΣK = K∗Σ. Now let us prove that X is Hermitian:

X∗ = (ΣK)∗ = K∗Σ∗ = K∗Σ = ΣK = X.

The representation of A given in (16) proves that A is Hermitian.

Example 6. The following example shows that we cannot remove the condition

lim
m→∞

PR(Am)(Am − A∗
m)PR(Am) = 0

in Theorem 3.8. Let

Am = U

[

1 0
0 1/m

]

, A = U

[

1 0
0 0

]

, U =

[

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]

.

Note that U is unitary. Since Am is nonsingular, the maximal angle between R(Am) and R(A∗
m)

is zero for all m ∈ N. Clearly Am → A. Now, let us compute the maximal angle between R(A)

and R(A∗): Since

PR(A)PR(A∗) = AA†A†A =

[

1/2 0
−1/2 0

]

,
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Definition 1.1 shows that if φ the maximal canonical angle between R(A) and R(A∗) (in fact is

the only canonical angle between R(A) and R(A∗)), then cos2 φ = 1/2, i.e., φ = π/4.

Since Am is nonsingular for each m, we have that PR(Am) = PR(Am) = I2. Thus

PR(Am)(Am − A∗
m)PR(Am) = U

[

1 0
0 1/m

]

−
[

1 0
0 1/m

]

U∗ → U

[

1 0
0 0

]

−
[

1 0
0 0

]

U∗ 6= 0.

Example 7. Let {Am}∞

m=1 be a sequence of matrices converging to A. The following conditions

(a) limm→∞ A†
m = A†.

(b) limm→∞ PR(Am)(Am − A∗
m)PR(Am) = 0.

are independent, as the following examples show.

Let Am = 1/m ∈ C1,1 and A = 0. Obviously, the sequence {Am}∞

m=1 satisfy condition (b)

and does not satisfy condition (a).

Now let B ∈ Cn,n be any nonsingular and non Hermitian matrix. For any m ∈ N let

us define Bm = B. The sequence {Bm}∞

m=1 satisfy condition (a). However, this sequence

does not satisfy condition (b): Observe that PR(Bm) = In since Bm is nonsingular, therefore,

limm→∞ PR(Bm)(Bm − B∗
m)PR(Bm) = B − B∗ 6= 0.
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