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Abstract. The paper introduces new types of nonlinear correlations between bivariate data sets and
derives nonlinear auto-correlations on the same data set. These auto-correlations are of different types to
match signals with different types of nonlinearities. Examples are cited in all cases to make the definitions
meaningful. Next correlogram diagrams are drawn separately in all cases; from these diagrams proper time
lags/delays are determined. These give rise to independent coordinates of the attractors. Finally three
dimensional attractors are reconstructed in each case separately with the help of these independent
coordinates. Moreover for the purpose of making proper distinction between the signals, the attractors so
reconstructed are quantified by a new technique called ‘ellipsoid fit’.
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1. Introduction

More than four decades ago, the concept of classical time-continuous chaos was introduced [1].
Since its inception, the interest in this field of research has risen rapidly and several attempts have
been made to integrate this fascinating topic [2–15]. However, insights into the experimentally
observed irregular behavior of systems are predominantly obtained solely with computer
simulations of appropriate Mathematical models. For example we may mention the well known
Mathematical model like Lorenz system [16] possessing a unique three dimensional attractor.
This approach undermines the trustworthiness of the whole chaos paradigm, since it leads to
suspect that chaos is nothing more than a Mathematical artifact, a phenomenon non-existing
outside the simulations of the computer. As a remedy to this problem, methods of nonlinear time
series analysis were introduced to reconstruct the attractor from the time series itself. Most of
these methods were basically developed from the methods of nonlinear dynamics introduced
during the late 1970s and 1980s. This reconstruction of the attractor from time series data is
useful in order to capture the underlying structure as much as possible. This reconstruction [17-
26] of the dynamics of the system on the basis of the given data is of paramount importance, as it
ensures that under certain generic conditions such a reconstruction [17-26] is equivalent to the
original phase space. This equivalence ensures that differential information is preserved and
enables us to proceed hopefully for both qualitative and quantitative analysis. Now we may
remember that the fundamental problem in attractor reconstruction [17-26] is to ascertain whether
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the given time series is chaotic or not. It is known that for a nonlinear time series a positive
Lyapunov exponent [27-29] is a strong indicator of chaos. So, first of all we check whether the
series is nonlinear or not. In fact, the problem becomes difficult if the series is nonlinear. To test
the nonlinearity of a time series, very often the Surrogate data test [30] is used. After checking for
nonlinearity and chaotic nature of the signal, we proceed for phase space reconstruction. The
most important problem of phase space reconstruction [17-26] is the determination of the time-
delay ( ) and the embedding dimension (m). As we are interested in geometrical forms of the
attractors, so for the sake of visualization we restrict our attractor reconstruction [17-26] to three
dimensions only. Hence we do not go into further discussions on how to determine the proper
embedding dimension.
Now there are several methodologies to determine the proper time-delay. But very often the only
measure, which is used in attractor reconstruction [17-26], of real-life problems is either the linear
auto-correlation method [31-33] or the Average Mutual Information method [25], the latter being
a general measure. However, it should be kept in mind that the proper time-delay for attractor
reconstruction must be of moderate magnitude. In fact, it is stated in [34] that if the time-delay is
too large, then the chaotic attractors are folded. This may lead to self-intersections of the
reconstructed attractors and create a loss of one-to-one property of the reconstruction [17-26]. It
is also stated in [34] that if the time-delay is too small, then the reconstructed states do not differ
much and the points are scattered around a straight line.
Let us now look back at the actual scenario. Deterministic chaos was observed in many different
real-life phenomena that include some Hindustani classical music, some bio-medical signals like
ECG [35] and EMG signals, etc. Recently, deterministic chaos was observed in systems as
diverse as insects [36-37], reptiles [38] and by laser droplet generation [39]. Most of these real-
life signals are non-stationary, and nonlinear with different types of nonlinearities. In case of such
time series, we observe that the aforesaid linear measure sometimes gives time-delay, which is
too large. In this situation, the notion of Average Mutual Information function [25] is of some
help. But we see that same Mutual Information function [25] is used, whatever may be the type of
nonlinearity. As a result sometimes we get time-delay that is too small. Hence in both cases, the
analysis of the nonlinear time series loses its precision.
Obviously the analysis would be more precise if different types of nonlinear auto-correlations
could be chosen to match different types of nonlinearities. These would help in obtaining proper
time-delays for the purpose of attractor reconstruction [17-26]. In this connection, it may be
mentioned that the new nonlinear auto-correlation is basically taken between a part of the given
time series and the corresponding series obtained from curve of best fit of nonlinearity. This is
why we prefer to name this process a nonlinear auto-correlation of bivariate data. We are able to
show that the value of the time-delay obtained by our newly proposed notion of nonlinear auto-
correlation is neither too high nor too small. Consequently our attractor is always found to be
better compared to the earlier ones. Naturally the quantification measures on such better forms of
three dimensional attractors are expected to distinguish the signals more precisely. As the
attractors are now three dimensional, so the earlier method of ‘ellipse fit’ [40] is no longer
applicable. For this purpose, a new type of quantification measure called “ellipsoid fit” is also
developed. As an illustration, this newly introduced measure has been applied to obtain proper
quantification of the three dimensional attractors.

2. Different nonlinear auto-correlations of bivariate data with specific nonlinear
trends

In signal analysis, most of the time series encountered in real life have different types of
nonlinearities. Since our intention is to find time-delay of moderate magnitude for the purpose of
attractor reconstruction [17-26], so without loss of generality we take a small segment (length



varies from 150 to 500) of the time signal. This small segment of the signal is then approximated
with a nonlinear curve f that gives the best fit. Thus we get two data series, one corresponds to
the suitable smaller segment of the time signal and the other one is what is generated through the
nonlinear curve f .

2.1. Some new definitions
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Remark.2.1.1
It might appear that the value of auto-correlation would differ significantly if longer part of the
signal could be chosen for curve of best fit. But auto-correlation is a ratio. With inclusion of
longer part of the signal, both the numerator and the denominator in the expression of auto-
correlation change relatively. So the result is self adjusting in nature. Hence it may be stated that
there is no loss of generality in taking smaller segment of the signal for suitable curve fit. As a
matter of fact, when we consider auto-correlation of a signal, it is basically the correlation
between two segments of the signal of finite length differing by one unit only. So there is no need
of trying to have nonlinear fit with the whole signal. Again we see that by considering a suitable
small segment we ultimately get a time delay, which is not too large or too small and the shape of
the attractor also improves. So there is no problem if for accommodating a curve of best fit, we
consider that part of the signal which is longest for the purpose. Of course, if no such best



nonlinear fit is available for any part of the time signal, then it is not possible to determine the
suitable moderate time-delay by using equation (2) for the reconstruction [17-26] purpose. This
could happen had the signal been highly non-stationary, because in that case the trend of the
signal would vary randomly. But this is a very rare case. So we expect that in most of the cases
our new notion of auto-correlation work satisfactorily.

3. Determination of nonlinear independent coordinates for attractor reconstruction

We assume that a nonlinear curve of best fit exists for the given time signal. Since the signal is
nonlinear, the nonlinear auto-correlation given by (2) is used to determine the auto-correlations
between two groups   1 1
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.The time-delay m is determined from the two

dimensional correlogram diagram [32]. This gives ( ), ( ), ( 2 )x k x k m x k m  ( 1,2,3,...., 2 )k N m 
as the independent coordinates for attractor reconstruction [17-26]. Finally the attractor is
reconstructed with these independent coordinates.

4. Correlogram diagram in two dimensional spaces

For the purpose of reconstruction of the attractor [17-26] in three dimensional spaces, the
nonlinear auto-correlation function ( )xR m is calculated for different values of m by using (2).
The values of ( )xR m are then plotted against m . This is known as Correlogram diagram [32] in
two dimensional spaces. Finally, the reconstruction of the attractor [17-26] is carried out by
choosing that value of m for which ( )xR m comes nearer to zero for the first time in the two
dimensional correlogram diagram [32].

5. Attractor reconstruction of Lorenz system by using traditional methods and
Newly proposed method of nonlinear auto-correlation

5.1. Traditional methods

In order to see that our newly proposed method of nonlinear auto-correlation gives better results
compared to the traditional ones, we first consider standard methods for the attractor
reconstruction [17-26] of the known Lorenz system [1,16] given by the following differential
equations:

                       = s(y x)

                       = r              (3)

                        = -bz +xy

dx
dt
dy x y xz
dt
dz
dt



 

with the initial condition (1) 8 ,  (1) 9 ,  (1) 2 5x y z   and 81 0 , 2 8 ,
3

s r b   .

Its chaotic attractor is given in fig.1.



Fig.1: Attractor of the Lorenz system given by (3).

Now it is known that the time delay m for its attractor reconstruction [17-26] is found to be
63m  and 16m  measured under standard auto correlation and Average Mutual Information

respectively.
The first time delay is not accepted as it is too high. Now for 16m  , the attractor is given by
fig.2.

Fig.2: Reconstructed attractor of the Lorenz system (3) for the time-delay 16m  , obtained under
the nonlinear measure – Average Mutual Information.

5.2. Newly proposed nonlinear auto correlation methods

We now apply our own methodology [as discussed in section 2] for reconstruction of the attractor
[17-26] of the above Lorenz system [16] to a single component 5000
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possible nonlinear curve fit f, which is given by
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This is shown in fig.3.



Fig.3. Best nonlinear curve fit for a smaller segment of the solution component 5000
1{ ( )}tx t  of Lorenz’s

system of length 200.

We then use equation (2) to determine the nonlinear auto-correlation between   200
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Thus we obtain ( )XR m for different values of the time-delay m. The suitable time-delay m is
determined from the two dimensional correlogram diagram [32] given by fig.4.

Fig.4: Two dimensional correlogram diagram (plot of ( )R mX against m) for one of the solution

component   5000

1
x t

t
of the Lorenz system. Here ( )R mX comes nearer to zero for the first time

when m=15.

It is evident from the above correlogram diagram that ( )XR m comes nearer to zero for the first
time, when 1 5m  . Corresponding to this time-delay the reconstructed attractor is shown in
fig.5.



Fig.5: Attractor of the Lorenz system (3) reconstructed from the solution component   5000

1
x t

t
for

the time-delay 15m  . The independent coordinates for this reconstruction are taken as
( ), ( ), ( 2 ).x t x t m x t m 

Remark 5.1

If we compare Fig.5 and Fig.2 with Fig.1, we see that Fig.5 is more similar to Fig.1 than Fig.2.
Thus it is established that using our new methodology it is possible to reconstruct the attractor of
the Lorenz system [1, 16] properly, if not better compared to the traditional ones.

6. Attractor reconstruction of some real physical signal with different types of
Non-linearity

To carry out the reconstruction of the attractor [17-26], we consider some physical signals like
music signals due to three reasons: (1) it is easier for us to collect data of a music signal by
available software, (2) music signals are basically nonlinear and are always found to possess
different types of nonlinearities, (3) primary detection of differences of the signals can be judged
by the musicians. This helps us indirectly to check our scientific predictions about the signals
regarding their quantitative differences. Though the signals are basically non-stationary as a
whole, yet the smaller segments (length varies between 150 and 500) of those signals seem to
have some definite form [41]. Hence there exists best nonlinear curve fits for each of them. But
these fitted nonlinear curves are different for different music signals. We consider music signals
with their time series plot, their smaller segments along with their best nonlinear curve fits and
apply our newly proposed methodology for the reconstruction of the attractors [17-26] for each of
them. In each case of such signals we also establish separately that our new methodology is better
than the traditional ones.

6.1. Music signal of a Hindustani Classical Sarod recital based on raga ‘Anandi’

6.1.1. Methodology of collecting data

Source- Recorded north Indian Classical Music (Sarod)
Artist- Ustad. Amjad Ali Khan
Rag- Anandi
Software- Adobe Audition 1.5
Samples: 10000
Bits per Samples: 16



Sample rate: 44100
Normalized: False

6.1.2. Test of nonlinearity of the signal

The Surrogate data test [30] with 0.01 significant level and the statistical parameter AMI
 1  (Average Mutual Information with time-lag 1) of the music signal of raga ‘Anandi’ is
given in Fig.6.

Fig.6 : Plot of AMIAnandi and AMI SUR(Anandi) for 1  against signal number, where the first 99
signals are surrogates. Here AMI of the original signal is greater than that of the surrogates.
So, the null hypothesis H0 : AMI Anandi ( 1  )=AMI SUR (Anandi) ( 1  ) fails in this case.

In this connection, we take the null hypothesis    0 Anandi (Anandi): 1 1SURH AMI AMI    . If the

equality does not hold, we say that null hypothesis fails and alternative AH holds. From Fig.6, it
is seen that in this case the AMI of surrogate data series is not equal to AMI of the given signal.
Hence the null hypothesis    0 Anandi (Anandi): 1 1SURH AMI AMI    is rejected. Thus,
nonlinearity of the present signal of raga ‘Anandi’ is established through Surrogate data test [30].

6.1.3. Test for deterministic chaos

Since the music signal of raga ‘Anandi’ is found to be nonlinear by Surrogate data test [30], we
now test whether the signal possesses chaotic attractor. To do this, we compute Lyapunov
exponent ( ) [27-29] of the signal. We find that the Lyapunov exponent ( ) [27-29] for this
music signal is positive, which indicates that the present signal possesses chaotic attractor.

6.1.4. Time series plot of the music signal and the best nonlinear curve fit

Let 10000
1{ ( )}kx k  be 10000 samples of the recorded north Indian Classical Music (Sarod) based on

raga ‘Anandi’. The time series plot of this signal is given by fig.7.



Fig:7. Time series plot of the music signal based on raga ‘Anandi’.

We next consider a smaller segment of the above music signal of length 200 and find its best
non-linear curve fit, which is given by
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This is shown in fig.8.

Fig.8: Best nonlinear curve fit for a smaller segment of the music signal 10000
1{ ( )}kx k  of raga

‘Anandi’ of length 200.



6.1.5. Attractor reconstruction of the aforesaid music signal using traditional
methods - standard auto-correlation, Average Mutual Information

(a) (b)

Fig.9: (a) Plot of auto-correlation against time-delay (m) gives m=18, (b). Plot of Average mutual
information against time-delay (m) gives m=19.

From the correlogram diagram- fig.9 (a) and fig.9 (b) under auto-correlation and Mutual
Information methods, we get 18m  and 19m  respectively. The corresponding reconstructed
attractor is given by fig.10.

((aa)) ((bb))

Fig.10: Reconstructed three dimensional attractor of the music signal of raga ‘Anandi’ with
(a) m= 18 under the notion of auto-correlation, (b) m= 19 under the notion of Average
mutual information.

6.1.6. Attractor reconstruction of the aforesaid music signal using our own
methodology

We now apply our own methodology [as discussed in section 2.2.] for the reconstruction of the
attractor [17-26] of the aforesaid music signal based on raga ‘Anandi’. For this, we use equation

(2) to determine the nonlinear auto-correlation ( )XR m between   200
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1
( ( ))
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
, where f is the best nonlinear fit available for a smaller segment of the present

music signal, given by equation (5).

Fig.11: Two dimensional correlogram diagram for the music signal based on raga ‘Anandi’. Here
( )XR m comes nearer to zero for the first time, when m=6.

From the correlogram diagram [32] given by fig.11, we get 6m  and the corresponding
reconstructed attractor is given by fig.12.

Fig.12: Reconstructed three dimensional attractor of the music signal based on raga ‘Anandi’ with
m= 6 under our newly proposed notion of nonlinear auto-correlation.

Remark 6.1

Three dimensional attractor of fig.10 under standard notion of auto-correlation [31-33] and the
notion of Average Mutual Information, shows lack of density in the orbits, and hence they can not
be considered as attractors in the proper sense of the term. However the three dimensional
attractor reconstructed under our newly proposed methodology, given by fig.12 shows significant
improvement over those given by fig.10. In fact, the three dimensional attractor of fig.12 exhibits
orbits, which are almost dense except for some outliers. Hence it may be considered as an
approximate attractor for the present music signal based on raga ‘Anandi’. This claims superiority



of attractor reconstruction [17-26] under our newly proposed method of nonlinear auto-
correlation over those reconstructed under the traditional methods.

6.2. Music signal of a Hindustani Classical Sarod recital based on raga ‘Bhairavi’

6.2.1. Methodology of collecting data

Source- Recorded north Indian Classical Music (Sarod)
Artist- Ustad. Amjad Ali Khan
Raga- Bhairavi
Software- Adobe Audition 1.5
Samples: 5000
Bits per Samples: 16
Sample rate: 44100
Normalized: False

6.2.2. Test of nonlinearity of the signal

The Surrogate data test [30] with 0.01 significant level and the statistical parameter AMI
 1  (Average Mutual Information with time-lag 1) of the present music signal is given in
Fig.13.

Fig.13: Plot of AMIBhairabi and AMI SUR(Bhairabi) for 1  against signal number, where the first 99
signals are surrogates. Here AMI of the original signal is greater than that of the surrogates.
So, the null hypothesis H0 : AMI Bhairavi ( 1  )=AMI SUR (Bhairavi) ( 1  ) fails in this case.

Again, we take the null hypothesis    0 ( ): 1 1Bhairavi SUR BhairaviH AMI AMI    .If the equality does

not hold, we say that null hypothesis fails and alternative AH holds good. From Fig.13, it is seen
that in this case the AMI of surrogate data series is not equal to AMI of the given signal. Hence
the null hypothesis    0 ( ): 1 1Bhairavi SUR BhairaviH AMI AMI    is rejected. Thus, nonlinearity of
the present signal is established through Surrogate data test [30].



6.2.3. Testing for Chaos

It is evident from Surrogate data test [30] of the music signal of raga ‘Bhairavi’ that the
underlying dynamics of the music signal is nonlinear. Also the Lyapunov exponent ( ) [27-29]
of this music signal is positive. These together imply that the music signal of raga ‘Bhairavi’
possesses chaotic attractor. So we try for proper attractor reconstruction for this present music
signal.

6.2.4. Time series plot of the music signal and the best nonlinear curve fit

Let 5000
1{ ( )}kx k  be 5000 samples of the recorded north Indian Classical Music (Sarod) based on

raga ‘Bhairavi’. The time series plot of this signal is given by fig.14.

Fig.14: Time series plot of the music signal based on raga ‘Bhairavi’.

We next consider a smaller segment of the above music signal of length 150 and find a best
nonlinear curve fit for it, which is given by
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This is shown in fig.15.



Fig.15: Best nonlinear curve fit for a shorter segment of the music signal 5000
1{ ( )}kx k  of raga

‘Bhairavi’ of length 150.

6.2.5. Attractor reconstruction of the aforesaid music signal using Traditional
methods - Minimum auto-correlation, Average Mutual Information

(a) (b)

Fig.16: (a) Plot of auto-correlation against time-delay (m) gives m=22, (b). Plot of Average mutual
information against time-delay (m) gives m=21.

From the correlogram diagrams - fig.16 (a) and fig.16 (b) under auto-correlation and Mutual
Information methods, we get 22m  and 21m  respectively. The corresponding reconstructed
attractors are given by fig.17 (a) and fig.17 (b) respectively.



((aa)) ((bb))

Fig.17: Reconstructed three dimensional attractor of the music signal of raga ‘Bhairavi’ with
(a) m= 22 under the notion of auto-correlation, (b) m= 21 under the notion of Average
mutual information.

6.2.6. Attractor reconstruction of the aforesaid music signal using our own
methodology

We now apply our newly proposed methodology [as discussed in section.2.2.] for the
reconstruction of the attractor of the aforesaid music signal based on raga ‘Bhairavi’. For this, we
use equation (6) to determine the nonlinear auto-correlation ( )xR m between   150

1

m

k
x k m






and 150

1
( ( ))

k
f x k


, where f is the best nonlinear fit available for a smaller segment of the

present music signal, given by equation (6). The values of ( )xR m , thus obtained are then plotted
against the corresponding values of the time-delay m to form the two dimensional correlogram
diagram, from where the suitable time-delay m is determined.

This is shown in fig.18.

Fig.18. Two dimensional correlogram diagram for the music signal based on raga ‘Bhairavi’.
Here ( )R mx comes nearer to zero for the first time when m=3.



From the correlogram diagram given by figure.18, we get 3m  and the corresponding
reconstructed attractor is given by figure.19.

Fig.19: Reconstructed three dimensional attractor of the music signal based on raga ‘Bhairavi’ with
m= 3 under our newly proposed notion of nonlinear auto-correlation.

Remark.6.2.

Three dimensional attractors under standard notion of auto-correlation and the notion of Average
Mutual Information given by fig.17 (a) and 17(b) respectively possess many outliers and show
lack of density in the orbits and hence they cannot be considered as attractors in the proper sense
of the term. But the three dimensional attractor reconstructed under this newly proposed
methodology as given by fig.19 is far better than the three dimensional attractors of fig.17 (a) and
(b) in the sense that it exhibits orbits, which are almost dense except for very few outliers. Hence
it may be considered as the best attractor ever constructed for the present music signal based on
raga ‘Bhairavi’. This claims superiority of attractor reconstruction under our newly proposed
method of nonlinear auto-correlation over those reconstructed under the traditional methods.

6.3. EMG signal with tremor

6.3.1. Methodology of collecting data

Electromyogram signal (with noise) in analog form of the experimental subjects with
tremor were recorded in lead-1 and lead-2 configurations and collected in data accusation
device available in the School of BioScience and Engineering, Jadavpur University,
Kolkata-32, India in which it is converted to digital form. This digitized data was then
processed in a laptop by using LAB VIEW software to remove noise. Finally, the recorded
data was analyzed using a MATLAB program.

6.3.2. Testing for Nonlinearity and Chaos

It is worthy to mention that the underlying dynamics of EMG signal with tremor is nonlinear.
This is evident from Surrogate data test [30].



It is also found that the Lyapunov exponent ( ) [27-29] of this EMG signal is positive. These
together imply that the EMG signal with tremor possesses chaotic attractor. So we try for proper
attractor reconstruction for this present EMG signal.

6.3.3. Time series plot of the EMG signal and the best nonlinear curve fit

Let 5000
1{ ( )}kx k  be 5000 samples of the EMG signal with tremor.. The time series plot of this

signal is given by fig.20.

Fig.20: Time series plot of the EMG signal with tremor.

We next find a best nonlinear curve fit for a smaller segment of the above EMG signal of length
500, which is given by

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

6 6 6 7 7 7 8 8 8

( ) sin( ) sin( ) sin( ) sin( ) sin( )
           sin( ) sin( ) sin( ), ...............................................(7 )
           w here
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            1 .191,  0.1198,  0.2275,  0.02456,  0.02608, 2.795,
            0 .03214,  0.1359,  1.364,  0.016
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91,  0.0519, 1.371.
            0 .01595,  0.03953,  0.7243,  0.01447,  0.09144, 0.9973 .

b c
a b c a b c

  

      

This is shown in fig.21.



Fig.21: Best nonlinear curve fit for a shorter segment of the EMG signal 5000
1{ ( )}kx k  with tremor

of length 500.

6.3.4. Attractor reconstruction of the aforesaid EMG signal with tremor using
Traditional methods - Minimum auto-correlation, Average Mutual
Information

(a) (b)

Fig.22: (a) Plot of auto-correlation against time-delay (m) gives m=55, (b). Plot of Average mutual
information against time-delay (m) gives m=56.

From the correlogram diagrams - fig.22 (a) and fig.22 (b) under auto-correlation and Mutual
Information methods, we get 55m  and 56m  respectively. The corresponding reconstructed
attractors are given by fig.23 (a) and fig.23 (b) respectively.



Fig.23: Three dimensional reconstructed attractor of the above EMG signal with (a) m= 55 under
the notion of auto-correlation, (b) m= 56 under the notion of Average mutual information.

6.3.5. Attractor reconstruction of the aforesaid EMG signal with tremor using our
own methodology

We now apply our newly proposed methodology [as discussed in section.2.2.] for the
reconstruction of the phase space of the aforesaid EMG signal with tremor. For this, we use
equation (7) to determine the nonlinear auto-correlation ( )xR m between   200

1

m

k
x k m






and 200

1
( ( ))

k
f x k


, where f is the best nonlinear fit available for a smaller segment of the

present EMG signal, given by equation (7). The values of ( )xR m , thus obtained are then plotted
against the corresponding values of the time-delay m to form the two dimensional correlogram
diagram, from where the suitable time-delay m is determined.

This is shown in fig.24.

Fig.24: Two dimensional correlogram diagram for the EMG signal with tremor. Here ( )R mx comes
nearer to zero for the first time when m=15.

From the correlogram diagram given by figure.25, we get 15m  and the corresponding three
dimensional reconstructed attractor is given by figure.25.



Fig.25: Three dimensional reconstructed attractor of the above EMG signal with m= 15 under our
newly proposed notion of nonlinear auto-correlation.

Remark.6.3.

It is evident from fig.23 (a) and fig.23 (b) that the three dimensional attractors under the standard
notion of auto-correlation and the notion of Average Mutual Information possess many outliers
and show lack of density in the orbits. Hence they cannot be considered as attractors in the proper
sense of the term. However, the three dimensional attractor reconstructed under this newly
proposed methodology as given by fig.25 show much improvement over the previous ones, in the
sense that number of outliers gets remarkably decreased in the later case. In fact, the attractor
given by fig.25, exhibits orbits that are almost dense except for very few outliers. This again
establishes the supremacy of our newly proposed method of nonlinear auto-correlation for
attractor reconstruction over the traditional methods.

7. Quantifications of the three dimensional Reconstructed attractor

Clustering of points of the reconstructed attractor in three dimensions is a newly proposed
quantification technique, which is used to distinguish two different attractors in three dimensions.
In this section, we first extend the notion of clustering in two dimensions [40] for any continuous
signal with same time-delay.
Let us consider a continuous signal    1

N

k
x k


obtained from any system. Also let that the three

dimensional attractor is reconstructed by sub-dividing this signal into three groups as , ,x x x  

with same delay , where
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This co-ordinate system is transformed by a three dimensional rotation with same angle
4
 ( as

the distribution of the points of maximum density on the attractor is along roughly lying with
inclination

4
 , so we consider the principal axis of the ellipsoid along that line) with respect to X

Y and Z axis, which is given by                     .
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Thus a new co-ordinate system ( , , )m n px x x is formed.

Let      , ,m m n n p px Mean x x Mean x x Mean x   and 1 ( ) ,mS D V a r x

2 3( )  ,  ( )n pS D V a r x S D V a r x  .

Finally, an ellipsoid centered at ( , , )m n px x x with three axes of length 1SD , 2SD and 3SD is fitted
to the existing reconstructed attractor.
As an example, we have applied this quantification technique to quantify the chaotic attractors for
the above two music signals and the EMG signal with tremor. The quantification results are
summarized in table.1. However, for the purpose of distinction we consider only the above two
music signals.

Table.1. Quantification parameters SD1, SD2, SD3 and volume of the three dimensional reconstructed
attractors of the above two different music signals and the EMG signal with tremor.

It is observed from table.1 that our newly introduced quantification measure can distinguish the
Hindustani classical music of different ragas properly.

8. Result and discussion

i) The idea of nonlinear auto-correlation introduced in this paper is completely new compared to
the earlier ones. In fact this is the first time when attempt has been made to obtain nonlinear auto-
correlation according to the type of nonlinearity of the signal. Previously, Average Mutual
Information method was applied for the signals irrespective of the nonlinearity of the signals.

ii) It gives better result for nonlinear signal analysis compared to the earlier results. Thus it may
be claimed that, so far as the reconstruction of three dimensional attractor [17-26] is concerned,
possibly this is the best form of the attractor till now.

iii) Naturally the interpretation of the signals based on these best forms of the attractors is
expected to be most satisfactory.

Reconstructed  Attractor of SD1 SD2 SD3 Volume  (Ellipsoid)

Signal of a Hindustani
Classical music of raga
‘Anandi’

7358.6 8153 3370.5 6.3527 1011

Signal of a  Hindustani
Classical music of raga
‘Bhairavi’ 2031.7 2156 686.75 9.4545  109

EMG signal with  tremor 1.5689 1.5697 0.2718 2.10255



iv) Quantifying parameters for distinguishing the signals are any one of three lengths of the three
axes of the ellipsoid, namely 1SD , 2SD and 3SD and also its volume V. In fact, all these
parameters vary from signal to signal.

v) As the music signals are apparently of different types and as they can be distinguished by the
musicians properly, so our methodology is tested to be workable in such situations. More
precisely, if signals are taken, which are not apparently distinguishable and not even
differentiated by the musicians so easily, then also our methodology is of much help in proper
distinction of the music signals. Examples are classical Hindustani music compositions based on
different ragas, where it is very difficult to establish scientifically that the music compositions are
different. But our methodology can be suitably applied in such cases.

vi) Our methodology is applicable to any continuous physical signal with different nonlinear
trends, not necessarily a music signal alone. It follows from section.6.3, where we have
successfully reconstructed the attractor of the continuous EMG signal.
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