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Abstract

We consider the problem of covering hypersphere by a set of spherical hypercaps. This sort of prob-
lem has numerous practical applications such as error correcting codes and reverse k-nearest neighbor
problem. Using the reduction of non degenerated concave quadratic programming (QP) problem, we
demonstrate that spherical coverage verification is NP hard. We propose a recursive algorithm based
on reducing the problem to several lower dimension subproblems. We test the performance of the
proposed algorithm on a number of generated constellations. We demonstrate that the proposed al-
gorithm, in spite of its exponential worst-case complexity, is applicable in practice. In contrast, our
results indicate that spherical coverage verification using QP solvers that utilize heuristics, due to
numerical instability, may produce false positives.
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1 Introduction

We consider the problem of determining whether a hypersphere is completely covered by a set of hyper-
spherical caps. An equivalent problem is whether the given set of hyperspherical cones centered in the
origin, covers the whole space Rd. A three dimensional version of the problem can be solved using the
approach from [9], but a solution to a generalized problem in arbitrary dimensional space has not, to the
best of our knowledge, been proposed yet. The generalized problem of hyperspherical coverage by a set
of hypercaps arises in areas such as coding theory [21] and multidimensional queries [19].

Covering problems are important in computational geometry and have been extensively studied re-
cently. Elbassioni and Tiwary [15] considered the following problem: Given a set of polyhedral hypercones
C1, C2, . . . , Ck and a convex set D ⊂ Rd, check whether cones cover the set D or not. They proved NP
completeness in several cases and connected it to the problem of determining whether a union of the
convex sets is convex. Also in [6] the authors considered covering a given set of points with a given
polygon, whether in [10] authors considered covering the set of points with two disjoint disks and two
disjoint squares. Papers [14] and [35] consider covering a sphere (ball) with other spheres (balls).

Recently, development of algorithms for incremental density-based outlier detection [22, 25] have
motivated the need to efficiently apply techniques for reverse k-nearest neighbor search. The minimal
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number of hypercaps that can completely cover a hypersphere is related to the theoretical upper bound for
the number of reverse k-nearest neighbors of a given point and hence the complexity of incremental outlier
detection algorithms [24]. Also, the sets of hypercaps that can completely cover the hypersphere are basis
for practical algorithms for reverse k-nearest neighbors. In this paper, we consider hyperspherical coverage
verification: for a given set of hypercaps on a hypersphere we determine whether the set completely covers
the hypersphere. We are, however, not concerned how to determine the set of hypercaps that completely
covers the hypersphere.

Using the reduction of concave quadratic programming (QP) problem, we demonstrate that spherical
coverage verification is NP hard. As a consequence, an algorithm with non-polynomial worst-case com-
plexity may still be viable and practical. We provide a generalized recursive algorithm that can perform
coverage verification task for arbitrary dimension d. The proposed algorithm is based on reducing the
problem to several lower dimension subproblems. In addition, we provide a method that can identify a
point on a hypersphere not covered by any hypercap, if such a point exists.

We test the performance of the proposed algorithm on a number of generated constellations with
different dimensionality. We demonstrate that the proposed algorithm, in spite of its exponential worst-
case complexity, is applicable in practice, with acceptable average-case performance. In contrast, our
results indicate that spherical coverage verification using heuristics-based QP solvers, may produce false
positives and suffer from numerical instability.

2 Spherical coverage verification

In this section, we formally define a spherical coverage verification problem and demonstrate that the
considered problem SphCovVer can be described as a system of non-linear equations and inequalities.
Subsequently, we demonstrate that the problem at hand can be represented as quadratic programming
problems with linear constraints.

2.1 Problem formulation

Suppose that we have n cones C1, . . . , Cn in d-dimensional space Rd, d ≤ 2 centered at point O = (0, . . . , 0)
and defined by

Ci = C(ti; θi) =

{
x ∈ Rd | (x, ti)

∥x∥∥ti∥
≥ θi

}
.

Note that each cone Ci is defined by point ti ∈ Rd and real number −1 < θi < 1. There holds
cos∠xOti ≥ θi for each x ∈ Ci and x ̸= O.

For any two given points x, y ∈ Rd, with (x, y) we denote usual scalar product as (x, y) =
∑d

i=1 xiyi
and with ∥x∥ we denote the Euclidian norm ∥x∥ =

√
(x, x).

Problem 1. (SphCovVer) Check if cones Ci cover the whole space Rd. Equivalently, check if hypercaps
Ki = Ci ∩ Sd(1) cover an unit hypersphere Sd(1) = {x ∈ Rd | ∥x∥ = 1}.

Without loss of generality, we can assume that all points ti belong to unit hypersphere Sd(1), i.e.,
which holds ∥ti∥ = 1. Let ti = (ti1, . . . , tid). If x ∈ Sd(1) then:

x ∈ Ki ⇐⇒
d∑

j=1

xitij ≥ θi

Observe that point x on the unit hypersphere Sd−1(1) is not covered by any of the cones C1, . . . , Cn if
and only if (x, ti) < θi for all i = 1, . . . , n. Therefore cones C1, . . . , Cn cover the unit hypersphere Sd−1(1)
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if and only if the following non-linear system of equations and inequities does not have a solution

x21 + x22 + . . .+ x2d = 1

t11x1 + t12x2 + . . .+ t1dxd < θ1
...

tn1x1 + tn2x2 + . . .+ tndxd < θn.

(1)

2.2 Spherical coverage verification as quadratic optimization problem

Denote by S the solution space of the linear system of inequalities obtained by dropping the first equation
in (1). Obviously S is the convex set. Denote by S̄ the closure of S i.e., the solution space of the
inequalities from (1) when each < is replaced by ≤. The set S̄ is also convex. Let f(x) = ∥x∥2,
m = f(x̃) = min{f(x) | x ∈ S̄} and M = f(x∗) = max{f(x) | x ∈ S̄} (if S̄ is unbounded, then
M = +∞). In other words, x̃ and x∗ (i.e., m and M) are solutions of the following QP problem:

(min /max) f(x) = ∥x∥2 = x21 + x22 + . . .+ x2d

s.t. t11x1 + t12x2 + . . .+ t1dxd ≤ θ1
...

tn1x1 + tn2x2 + . . .+ tndxd ≤ θn.

(2)

If S̄ is unbounded (M = +∞) then let x∗ ∈ S̄ be any feasible point so that ∥x∥ > 1. We say that set
S̄ specified by constraints from (QP problem (2)) is degenerated if it is contained in some hyperplane H.
Note that hyperplane H has to be of the form (x, ti) = θi, i.e. there have to exist two constraints i and
j from eq. (2) where tik = −tjk, k = 1, . . . , d and θi = −θj . In such case, the system of equations (1)
obviously has no solutions.

The following lemma shows the connection between problem SphCovVer (i.e., the system (1)) and
the QP problem (2):

Lemma 1. The system of equations and inequities (1) has solutions if and only if M > 1, m < 1 and S̄
is non-degenerated.

Proof.

(⇐:) Let M > 1, m < 1 and S̄ be non-degenerated. Assume that x∗ is a boundary point of S̄ and
consider a ball Bd(x

∗, ρ) where ρ < ∥x∗∥ − 1. Since S̄ is a non-degenerated polytope, there exists an
internal point x∗1 ∈ S ∩Bd(x

∗, ρ). If x∗ is an internal point, we just set x∗1 = x∗. Note that ρ < ∥x∗∥ − 1
implies ∥x∗1∥ > 1.

The same way, we consider a boundary point x̃ of S̄ and construct a new point x̃1 ∈ S so that‘
∥x̃1∥ < 1 (here we take ρ < 1− ∥x̃∥).

Since [x̃1, x
∗
1] ⊂ S (S is convex), function f(x) = ∥x∥2 is continuous on [x̃1, x

∗
1] and f(x̃1) < 1 < f(x∗1),

there exists point u ∈ (x̃1, x
∗
1) ⊂ S so that f(u) = 1. In other words, u is the solution of system (1).

(⇒:) Let u be one solution of system (1). Hence u ∈ S and f(u) = 1. Since S is an open set, there
exists a ball Bd(u; ρ) ⊂ S. Denote by u1 and u2 the intersection points of Bd(u; ρ) and line Ou, so
that u ∈ (Ou1). Obviously holds f(u1) = (1 + ρ)2 and f(u2) = (1 − ρ)2. Now u1, u2 ∈ Bd(u; ρ) ⊂ S̄
and f(u1) > 1 > f(u2) directly implies M ≥ f(u1) > 1 > f(u2) ≥ m. Non-degeneracy of S̄ follows
immediately from the fact that (1) has solutions. �
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3 Spherical coverage verification is NP-hard

In this section, we prove that the spherical coverage verification problem (SphCovVer) is an NP hard
problem. First, we demonstrate that the concave non degenerated quadratic programming decision prob-
lem (ConNDQPd) defined below can be polynomially reduced to SphCovVer. Then we demonstrate
that the problem ConNDQPd is NP complete.

Note that the variant of the problem ConNDQPd without the non-degeneracy assumption is con-
sidered by Freund and Orlin in [17] (HB problem) where its NP completeness is proven. The degeneracy
assumption makes the problem ConNDQPd considered here more restrictive than the one considered in
[17], implying that we need a different proof of NP completeness. It will be given in the next subsection.

3.1 Polynomial reduction of ConNDQPd to SphCovVer

Consider the following concave quadratic programming (QP) problem.

Problem 2. (ConNDQPd) Check whether exist x1, x2, . . . , xd ∈ R so that

x21 + x22 + . . .+ x2d > 1

a11x1 + a12x2 + . . .+ a1dxd ≤ b1
...

an1x1 + an2x2 + . . .+ andxd ≤ bn.

(3)

where aij , bi ∈ R for i = 1, . . . , n, j = 1, . . . , d and the polytope specified by ≤ constraints from (3) is
non-degenerated.

Also consider the following algorithm:

Algorithm 1. QP-SphCovVer
Input: An instance of the problem ConNDQPd, i.e., matrix A = [aij ] ∈ Rn×d and vector b = [bi] ∈
Rn×1.

1. Normalize each constraint, i.e compute

tij =
aij∑d

j′=1 a
2
ij′

, θi =
bi∑d

j′=1 a
2
ij′

, i = 1, . . . , n; j = 1, . . . , d. (4)

2. Solve the minimization problem (2) (a convex optimization problem) in polynomial time and denote
its minimum by m. If m ≥ 1, then output True. If the problem is infeasible, output False.
Otherwise continue.

3. Drop each constraint which satisfies θi > 1.

4. Form the instance of the problem SphCovVer from the remaining constraints and solve it. Output
the complementary result.

The following theorem proves the correctness of Algorithm QP-SphCovVer.

Theorem 2. Algorithm QP-SphCovVer polynomially reduces the problem ConNDQPd to the problem
SphCovVer.

Proof. Note that by (4) we form the equivalent problem of form (2) so that ∥ti∥ = 1.
First assume that m > 1. Then all the feasible points satisfy ∥x∥2 > 1 and hence the output of

problem ConNDQPd is True. Assume that m = 1. By assumption, the feasible set of the problem
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(3) is a non-degenerated polytope. Hence it cannot belong to the unit hypersphere (otherwise, it would
reduce to the single point) and there is a feasible point x′ so that ∥x′∥ > 1. It implies that the answer of
ConNDQPd is True.

Now assume that m < 1. Let x̃ be the solution of minimization problem (2). Then the following
holds

|ti1x̃1 + ti2x̃2 + . . .+ tidx̃d| = |(ti, x̃)| ≤ ∥x̃∥∥ti∥ = ∥x̃∥ = m < 1. (5)

Equation (5) implies θi > −1, since x̃ is a feasible point. Without loss of generality, assume that
θ1, θ2, . . . , θp ≤ 1 and θp+1, θp+2, . . . , θn > 1. We can consider cones

C1 = C(t1; θ1), C2 = C(t2; θ2), . . . , Cp = C(tp; θp),

since −1 < θi ≤ 1 and ∥ti∥ = 1 for all i = 1, 2, . . . , p. Also consider the corresponding system of first
p+ 1 equations from (1):

x21 + x22 + . . .+ x2d = 1

t11x1 + t12x2 + . . .+ t1dxd < θ1
...

tp1x1 + tp2x2 + . . .+ tpdxd < θp.

(6)

If cones C1, C2, . . . , Cp cover Rd, it implies that the system (6) (and also (1)) does not have a solution.
According to Lemma 1, there must holdM ≤ 1, which implies that the answer of ConNDQPd is False.

Assume that cones do not cover Rd and denote by x̄ the solution of the system (6). Now, since the
following relation holds for i = p+ 1, p+ 2, . . . , n:

ti1x̄1 + ti2x̄2 + . . .+ tidx̄d = (ti, x̄) ≤ ∥x̃∥∥ti∥ = 1 < θi,

we conclude that x̄ is also a solution of (1). According to Lemma 1, there holds M > 1 and the answer
of ConNDQPd is True. This completes the proof. �

3.2 NP completeness of ConNDQPd and SphCovVer

We prove that the problem ConNDQPd is NP hard by reducing it to the k-clique decision problem.
Recall that, for a given graph G = (V,E), set Cl ⊆ V is a clique, if for every u, v ∈ Cl holds {u, v} ∈ E.
In other words, a clique is every set Cl of vertices, so that each two vertices from Cl are adjacent. Clique
Cl is called k-clique, if it contains exactly k vertices. The k-clique decision problem (see e.g., [12]) can
be formulated as follows:

Problem 3. (k-Clique) Given a graph G = (V,E), check if there exists k-clique.

It is known, ([12]) that the problem k-Clique is NP complete. The following lemma demonstrates that
it can be polynomially reduced to the problem ConNDQPd.

Lemma 3. Problem k-Clique can be polynomially reduced to problem ConNDQPd.

Proof. For a given graph G = (V,E) with the vertex set V = {1, 2, . . . , n}, consider the following
instance of problem ConNDQPd:

x21 + x22 + . . .+ x2n > n− ϵ

−1 ≤ xi ≤ 1

xi + xj ≤ 0, ∀{i, j} /∈ E

x1 + x2 + . . .+ xn ≥ 2k − n

(7)

5



Here 0 < ϵ < 1 and its value will be determined later. If there exists a clique Cl of length k in graph G,
then by setting

x∗i =

{
1, i ∈ Cl

−1, i /∈ Cl

we obtain one feasible solution (x∗1, x
∗
2, . . . , x

∗
n) of the problem (7) satisfying (x∗1)

2 +(x∗2)
2 + . . .+(x∗n)

2 =
n > n− ϵ.

Now assume that there is no clique of length k in graph G. We show that the decision problem (7)
does not have the solution. Consider the following auxiliary optimization problem

max x1 + x2 + . . .+ xn

s.t. − 1 ≤ xi ≤ 1, i = 1, 2, . . . , n

xi + xj ≤ 0, ∀{i, j} /∈ E

x21 + x22 + . . .+ x2n > n− ϵ.

(8)

Let (x1, x2, . . . , xn) be an arbitrary feasible solution. It can be easily checked that x2i > 1 − ϵ (due to
the quadratic condition in (8)) for i = 1, 2, . . . , n implying that xi ∈ [−1,−

√
1− ϵ) ∪ (

√
1− ϵ, 1]. Let

xi1 , xi2 , . . . , xip ∈ (
√
1− ϵ, 1] and xq ∈ [−1,−

√
1− ϵ) for q /∈ {i1, i2, . . . , il}. For arbitrary 1 ≤ r < s ≤ p

there holds {ir, is} ∈ E, according to xir + xis ≥ 2
√
1− ϵ > 0. In other words, vertices i1, i2, . . . , ip form

a clique of length p in graph G.
According to our assumption that there is no clique of length k in G, it must hold that p < k.

Furthermore it holds that

f = x1 + x2 + . . .+ xn =

p∑
j=1

xij +
∑

q /∈{i1,i2,...,ip}

xq ≤ p− (n− p)
√
1− ϵ

< p− (n− p)(1− ϵ) = 2p− n+ ϵ(n− p).

(9)

Now by choosing ϵ = 2/n and by using k > p and (9), we obtain

f < 2p− n+
2

n
(n− p) < 2p− n+

2(k − p)

n− p
(n− p) = 2k − n.

According to the previous expression, each feasible solution of (8) satisfies f < 2k− n implying that the
system (7) has no solutions. �

As a direct consequence of the Lemma 3 and the NP completeness of the problem k-Clique, and
since a verification of a solution for the eq. (3) is possible in polynomial time, the following corollary
holds:

Corollary 4. Problem ConNDQPd is NP complete.

Now Corollary 4 and Theorem 2 directly imply:

Theorem 5. Spherical coverage verification, i.e., the problem SphCovVer, is NP hard.

4 Algorithms for spherical coverage verification

The simplest method for spherical coverage verification is to apply a non-deterministic Monte-Carlo
approach. The idea is to generate a large number N (for example N = 1010) of pseudo-random points
x distributed uniformly on the sphere. For each generated point x we check if there is hypercap Ki

containing the point. If the answer for any point is negative, the algorithm outputs False. If the system
of hypercaps Ki, i = 1, . . . , n covers the unit sphere, this method always outputs the correct answer True.

6



If there is no coverage, this method will output the correct answer False with probability that increases
with N . However, there is no guarantee that the algorithm will not return false positives (thus providing
answer True for a non-covering system of hypercaps). Hence, in the subsequent subsections, we discuss
algorithms for spherical coverage verification based on application of quadratic programming, and on the
reduction of the given problem to lower dimensional subproblems.

4.1 QP-based verification

According to Section 2.1, cones Ci, i = 1, . . . , n cover the space Rd if an only if the system (1) has no
solutions. According to Lemma 1, to check whether the system (1) has solutions, we need to solve the
QP problems (2) and to determine whether the minimal value m and maximal value M of the objective
function satisfy m < 1 < M . The following algorithm for solving problem SphCovVer arises from the
aforementioned discussion:

Algorithm 2. Cover-QP
Input: Caps Ki, i = 1, . . . , n defined by ti ∈ Sd(1) and θi ∈ (−1, 1).

1. Return True if QP problems (2) are degenerated. Otherwise, solve both problems.

2. If any of the problems is not feasible, or m < 1 < M does not hold, return True. Otherwise return
False.

To apply algorithm Cover-QP we need appropriate QP problem solvers. Note that the minimization
problem can be solved in polynomial time, since it is convex. Since concave QP is NP complete (see
Section 3.2), one of known heuristics can be applied ([34]).

4.2 Recursive algorithm

In this section, we describe our recursive algorithm for solving the problem SphCovVer. The main idea
is to reduce the initial d-dimensional problem to several d − 1-dimensional problems. More precisely,
using d-dimensional inversion, hypercaps are mapped into regions consisting of hyperspheres in d − 1
dimensional plane and their exteriors/interiors depending on the position of the center of inversion w.r.t.
a hypercap. As proven in the next subsection, a d-dimensional sphere is covered by the hypercaps if and
only if the resulting d− 1 plane is completely covered by the d− 1 dimensional regions. In turn, this may
be true if a boundary of each region (which is itself a d−1 dimensional hypersphere) is completely covered
by d − 1 dimensional hypercaps defined by corresponding regions. Thus, the coverage of d-dimensional
sphere reduces to coverage of d− 1 dimensional spheres. The following subsections provide the rationale
for the algorithm and discuss the algorithm formally.

4.2.1 Rationale of the algorithm

We restate the well-known definition of the inversion in Rd.

Definition 1. Let c ∈ Rd be a given point, and let R be a positive real number. Inversion ψc,R(x) is a
function ψc,R : Rd → Rd that maps every point x ∈ Rd to a point y so that:

y = c+
R2

∥x− c∥2
(x− c). (10)

Point c is called the center of inversion ψc,R and R is the radius of inversion.

Let us apply inversion ψ = ψ(1,0,...,0),1 on caps Ki and unit hypersphere Sd(1). It is well-known that
an image of a hypersphere, by inversion whose center belongs to the hypersphere is a hyperplane. Thus,
the image of the unit hypersphere is hyperplane x1 = 1/2.
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Denote by ∂X the boundary of a given set X, Particularly, we denote by Di = ∂Ki the boundary of
cap Ki. Also, for a given hypersphere S denote by intS its interior and by extS its exterior. Images of
caps Ki, i = 1, . . . , n consist of d − 1-dimensional hyperspheres, belonging to hyperplane x1 = 1/2 and
their exteriors or interiors, depending whether the center of inversion is outside or inside the cap. More
precisely, the following Lemma holds:

Lemma 6. Let c = (1, 0, . . . , 0) ∈ Rd and assume that c /∈ Di for every i = 1, . . . , n. Image of Di, by
an inversion ψc,1 is a d − 1-dimensional hypersphere Si with center βi = (βi1, . . . , βid) and radius ri.
Moreover, the image of Ki is Ri = Si ∪ extSi, if c ∈ Ki and Ri = Si ∪ intSi, if c /∈ Ki. Values βi and ri
are given by the following expressions:

βi1 =
1

2
, βij =

tij
2(θi − ti1)

, ri =

√
1− θ2i

2(θi − ti1)
. (11)

Proof. Translate the coordinate system to the center of inversion, i.e., to point c = (1, 0, . . . , 0). The
equation describing cap Ki becomes (x′ = x− c):

ti1x
′
1 + . . .+ tidx

′
d ≥ θi − ti1. (12)

Let ψ(x) = y. By the involution property of inversion, we can conclude that ψ(y) = x or in other words:

x′i =
1∑d

j=1 y
′2
j

y′i.

By replacing the last expression into (12) we obtain:

d∑
j=1

tijy
′
j ≥ (θi − ti1)

d∑
j=1

y′2j . (13)

Replacing y = y′ + c finally yields:

Ri :

d∑
j=2

(yj − βij)
2

{
≥ r2i , θi − ti1 > 0
≤ r2i , θi − ti1 < 0

, 2 ≤ i ≤ d, y1 =
1

2
. (14)

Here condition θi − ti1 > 0 is equivalent to c ∈ Ki. In (14) we denote:

βi1 =
1

2
, βij =

tij
2(θi − ti1)

, r2i =

(
1

2(θi − ti1)

)2 d∑
j=2

t2ij +
ti1(y1 − 1)

θi − ti1
− (y1 − 1)2. (15)

The last expression (15) can be further simplified using
∑d

j=2 t
2
ij = 1− t2i1 and y1 =

1
2 into (11). �

In Fig. 1 we illustrate Lemma 6 for three spherical caps Di, i = 1, 2, 3 and their images. Observe
that c ∈ D3, hence D3 maps to the exterior of sphere S3.

Due to Lemma 6, problem SphCovVer reduces to the following hyperplane cover verification (Hp-
CovVer) problem:

Problem 4. (HpCovVer) For given d − 1-dimensional hyperspheres Si, with center βi and radius ri
belonging to the hyperplane x1 = 1/2, and sets Ri so that Ri = Si∪ intSi or Ri = Si∪extSi (i = 1, . . . , n),
check if sets Ri cover the whole hyperplane.
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Figure 1: Three spherical caps and their images under the inversion ψ for d = 3.

To simplify further discussion, if Ri = Si∪intSi set Ri is called internal; otherwise we call it external. If
all the sets Ri are internal, then we can immediately conclude that the answer to the problem HpCovVer
is False. This holds obviously from the fact that all sets Ri are bounded and hence is also their union∪n

i=1Ri.
Suppose, in contrast, that at least one set Ri is external. If all sets R do not cover the whole

hyperplane, there exists one hypersphere Si and point x ∈ Si so that it is uncovered by other sets Rj ,
j ̸= i. In other words, the following theorem holds:

Theorem 7. Sets R1, . . . , Rn with different boundaries Si = ∂Ri cover the whole hyperplane x1 = 1/2 if
and only if every hypersphere Si is covered by other sets Rj, j ̸= i, i.e.,

Si = ∂Ri ⊂
∪
j ̸=i

Rj . (16)

Proof.

(⇐:) If sets R1, . . . , Rn cover the whole hyperplane x1 = 1/2, each hypersphere, Si as a subset of the
hyperplane will be covered.

(⇒:) Denote an uncovered region of the hyperplane x1 = 1/2 with Q. The boundary ∂Q consists of the
union of spherical caps. Denote by A one of those caps and by Si the hypersphere which A belongs to.
Since Si ̸= Sj for i ̸= j, interior intA cannot be covered by remaining hyperspheres Sj , j ̸= i. In other
words, there exists a point x ∈ intA \

∪
i̸=j Sj . Point x is covered by some set Rk and since x /∈ Sk, there

holds x ∈ intRk. Hence, there exists a ball Bd−1(x; δ) ⊆ intRk and holds Bd−1(x; δ) ∩Q = ∅. This is the
contradiction with the fact that x ∈ A is a boundary point of Q.

�

If Si = Sj for i ̸= j then either Ri and Rj cover the hyperplane (if one of them is internal and the
other is external) or Ri = Rj . In the second case, we can eliminate one of them and continue.
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According to Theorem 7 we need to check whether each hypersphere Si is covered by sets Rj , j ̸= i.
We distinguish the following cases, depending on whether the pairs of hyperspheres Si and Sj = ∂Rj are
disjoint:

Case 1. Hyperspheres Si and Sj have a nonempty intersection. In such a case Si ∩Rj is a hypercap Ki
j

defined as:

Ki
j =

{
x ∈ Si |

(x− βi, x
i
j)

∥x− βi∥∥xij∥
≥ θij

}
, i ̸= j, (17)

where we define:

θij ,


r2i+d2ij−r2j

2ridij
, Rj is internal

− r2i+d2ij−r2j
2ridij

, Rj is external
, xij ,

{
d−1
ij (βj − βi), Rj is internal

−d−1
ij (βj − βi), Rj is external

, dij , ∥βi − βj∥, i ̸= j.

(18)
Observe that for the points xij from eq. (18), xij = ((xij)2, . . . , (x

i
j)d) ∈ Rd−1, since (xij)1 = 0 for every i

and j. Case 1 is illustrated in the Fig. 2.

Figure 2: Intersection of d− 1-dimensional hyperspheres Si and Sj .

Case 2. Hyperspheres Si and Sj are disjoint. The equivalent condition is θij /∈ (−1, 1), where θij is defined
by eq. (18). In such case either Si ⊂ Rj (Case 2a) or Si ∩Rj = ∅ (Case 2b) holds. Which of these two
sub cases holds can be determined e.g., by choosing the arbitrary point (for example xj + (rj , 0, . . . , 0))
on ∂Sj and checking the inequality (14) for hypersphere Si.

For fixed i, if for any j the condition Si ⊂ Rj (Case 2a) is satisfied, then eq. (16) holds and Si is
covered. Therefore, the algorithm may continue with another value of i. Otherwise, it is sufficient to
determine whether the sphere Si is covered by those hypercaps Kj defined by eq. (17) and corresponding
to the pairs of spheres (Si, Sj) satisfying Case 1 (note that pairs (Si, Sj) satisfying Case 2b do not
need be considered due to disjointness of Si and Rj). This is an instance of problem SphCovVer, for
dimension d− 1. Hence, we reduce original problem SphCovVer to at most n− 1 equivalent problems
of dimension d− 1.
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4.2.2 Base case of the algorithm

When d = 2, the inversion from Lemma 6 maps a 2D sphere (a circle) into a straight line and 2D caps
(arcs) degenerate into intervals. Hence, as the base case, we choose case d = 2 of problem HpCovVer.
We omit the first coordinate (which is equal to 1/2) of each point from sets Si and Ri. Hence, we assume
that there are given sets Ri so that Ri = [ci, di] (Ri is internal) or Ri = R \ (ci, di) (Ri is external) for
some real numbers ci < di. Here ci = βi2 − ri and di = βi2 + ri. The problem is to check if sets Ri cover
the whole real line R, i.e.,

∪n
i=1Ri = R. Without loss of generality we can assume that R1, . . . , Rs be

external and Rs+1, . . . , Rn internal. Let us define:

c′ = max
i=1,...,s

ci, d′ = min
i=1,...,s

di.

Obviously, if c′ ≥ d′, R is covered by the sets Ri. Otherwise,

(c′, d′) = R \
s∪

i=1

Ri,

and we need to check if the interval (c′, d′) is covered by [cs+1, ds+1], . . . , [cn, dn]. This can be performed
by sorting segments [cs+1, ds+1], . . . , [cn, dn] with respect to ci and sequentially shortening the target
interval (c′, d′). Let us assume that the segments are sorted so that cs+1 ≤ cs+2 ≤ . . . ≤ cn. If c′ < cs+1

then the interval (c′, cs+1) is uncovered (since cs+1 is minimal); hence R is also uncovered. Otherwise, we
need to check if [c′′, d′], where c′′ = max{c′, ds+1} is covered by segments [cs+2, ds+2], . . . , [cn, dn]. This
leads to the following algorithm for solving the base case.

Algorithm 3. Cover2-2D (d = 2 case of problem HpCovVer)
Input: Values βi2, ri (ri ≥ 0) and outi for i = 1, . . . , n. We assume that outi = True if Ri is external
and otherwise outi = False.

1. Let ci = βi2 − ri and di = βi2 + ri

2. Reorder the sets Ri so that outi = True for i = 1, . . . , s and outi = False for i = s+ 1, . . . , n.

3. Sort sets Ri, i = 1 + s, . . . , n so that cs+1 ≤ . . . ≤ cn.

4. Let c′ := maxi=1,...,s ci and d
′ := mini=1,...,s di

5. For every i = s+ 1, . . . , n do the following:

5.1. If c′ ≥ d′ return True. Otherwise continue.

5.2. If ci > c′ then return False. Otherwise set c′ := max{c′, di} and continue.

6. If c′ ≥ d′ return True, otherwise return False.

Note that the complexity of the Algorithm Cover2-2D is O(n log n) if an asymptotically optimal
sorting algorithm is used for intervals sorting.

4.2.3 Algorithm outline

Next, we formulate complete recursive Algorithm Cover for solving the general case of problem Sph-
CovVer.

Algorithm 4. Cover
Input: Caps Ki, i = 1, . . . , n defined by ti ∈ Sd(1), (d ≥ 2), and θi ∈ (−1, 1).

1. If n = 1 then return False.
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2. Let c = (1, 0, . . . , 0) ∈ Rd. Check if c ∈ ∂Ki for some i. In such a case, rotate the whole hypersphere
in plane x1x2 by a small angle δ so that c /∈ ∂Ki, i = 1, . . . , n (condition of Lemma 6).

3. Compute vectors βi and values ri using eq. (11). If ti1 > θi (c ∈ Ki) set outi = True, otherwise
set outi = False. If there holds outi = False for every i = 1, . . . , n then return False.

4. If d = 2 apply Algorithm Cover2-2D for βi2, ri and outi, i = 1, . . . , n and return the obtained
value. Otherwise continue.

5. For every i = 1, . . . , n do the following:

5.1 Determine xij and θij (relations (18)), for every j ̸= i, j = 1, . . . , n.

If θij /∈ (−1, 1), let A = xij + (ri, 0, . . . , 0). If point A belongs to Rj (check the relation (14)),
set i = i+ 1 and go to step 5. Otherwise continue.

If θij ∈ (−1, 1), form cap Ki
j, eq. (17). If outj = True then set xij = −xij and θij = −θij.

5.2 Apply Algorithm Cover on the set of all formed caps Ki
j.

Step 1 of Algorithm Cover implicitly covers the case when the number of caps n is smaller than the
number of dimensions d. In step 2, we introduce the rotation by a small angle δ. We may set δ to an
arbitrary value, for example δ = 0.01. If, after the rotation, point c is again on arc Ci, angle δ needs
to be changed. One possibility is to exponentially decrease it by setting δ = pδ, where 0 < p < 1 (we
used p = 0.9) and to repeat the same procedure until the point c is not on any arc Ci. Step 3 performs
inversion and checks whether the caps map into external or internal regions. If all regions are internal,
as discussed earlier, the coverage is False. After this, we check whether the base case of recursion is
achieved. Otherwise, Step 5 checks whether the conditions of the Theorem 16 are satisfied and, when
needed, performs recursive calls of Cover.

The worst-case time complexity of algorithm Cover is exponential in terms of d and polynomial in
terms of n as shown by the following theorem:

Theorem 8. The time complexity of Algorithm Cover is T (n, d) = O
(
nd−1 log n

)
.

Proof.

Algorithm Cover, Step 5, reduces d-dimensional problem SphCovVer to at most n problems of
size n − 1 and dimension d − 1. The complexity of reduce operations (including inversion, eq. (11),
and checking conditions from Step 5), is O(n2 · d). Hence, the following recursive relationship holds
T (n, d) = O(n2 · d) + nT (n− 1, d− 1). Since time complexity of the base case, Algorithm Cover2-2D,
is O(n log n), this leads to the statement of the theorem. �

4.3 Localization of uncovered point

When the solution to SphCovVer problem is False, it may be of interest to identify a point on a
hypersphere not covered by any of the caps. We demonstrate how this could be accomplished using
results of Algorithm Cover.

The main idea of the proposed method is as follows. If unit hypersphere Sd(1), is not completely
covered by caps K1, . . . ,Kn, then angles of the corresponding cones Ci can be slightly widened so that
the resulting system of cones still does not cover the space. Further, as demonstrated in this section, it is
possible to find a point on the boundary of the region covered by the enlarged cones, which corresponds
to an uncovered point of the original problem.

Namely, when the output of Algorithm Cover is False, we can determine a point u ∈ Sd(1) on the
boundary of the covered region. Moreover, such a point belongs to an intersection of several boundaries
Di = ∂Ki, but u /∈ intKi for every i = 1, . . . , n. If such a point belongs to exactly l boundaries Di, we
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call it (l, d)-boundary point. We propose a method for computation of the (l, d)-boundary point and then
extend it to the computation of uncovered point. An example is illustrated in Fig. 3. The main idea is
to identify a boundary point in a lower dimensional space (during recursive steps of Cover) and connect
it with the boundary point of the original problem.

Let the output of Algorithm Cover be False. Define recursively the sequence of points um ∈ Sm(1)
and vm ∈ Rm by

um = ψcm,1(v
m), vm = βmi + rmi (0, um−1)

where m = m0,m0 + 1, . . . , d, m0 = max{d− l, 2} and i is the index of uncovered hypersphere in step 5
of m-th recursion call of Algorithm Cover. Also we denoted cm = (1, 0, . . . , 0)︸ ︷︷ ︸

m

and

l =

{
d− 1, False is returned by Algorithm Cover2-2D (step 4 of Cover),

h− 1, False is returned at steps 1 or 3 of h-th recursion call of Cover.

while βmi and rmi are corresponding values βi and ri obtained from m-th recursion call of Algorithm
Cover. In the first case (l = 1), initial point u1 is equal to −1 or 1, depending of whether ci or di is
uncovered by sets Rj . Otherwise it is given by

ud−h+1 =

{
−td−h+1

1 , False is returned by Step 1 of Cover,

cd−h+1, False is returned by Step 3 of Cover.
(19)

Lemma 9, stated below, proves that ud is (l, d)-boundary point of the initial problem.

Lemma 9. Every point um,m = m0,m0+1, . . . , d, m0 = min{d− l, 3} is a (m−d+ l,m)-boundary point
of the corresponding m-dimensional SphCovVer problem in m-th recursion call of Algorithm Cover.

Proof. We first identify a boundary point in the base case when the False answer of Algorithm
Cover is detected. Then we prove by induction that each recursive call (step 5.2 of Cover) results in an
additional boundary to which the point belongs. There are two possibilities for the base case of induction:

1. Let the answer False be generated by Algorithm Cover2-2D. Define u1 as follows

u1 =

{
−1, point ci is uncovered

1, point di is uncovered

It is not difficult to observe that v2 = (1/2, ci) in the first and v2 = (1/2, di) in the second case.
This point corresponds to point u2 = ψc2,1(v

2) ∈ S2(1) (c2 = (1, 0)) which is a boundary point of
some arc Ki and uncovered by other arcs Kj , j ̸= i. Hence, point u2 is a required (1, 2)-boundary
point for the case d = 2.

2. Now let the answer False be generated by steps 1 or 3 of Algorithm Cover at recursion level h.
Point ud−h+1 defined by eq. (19) does not belong to any hypercap (interior or boundary) and hence
is uncovered. Therefore, ud−h+1 is a (0, d− h+ 1)-boundary point.

We prove the inductive step now. Consider the recursive call of Algorithm Cover on m-th level. If
it is not otherwise stated, all notation corresponds to the SphCovVer problem being solved on m-th
recursive level.fs

Assume that the recursive call in step 5.2 returned False on the i-th subproblem (i.e., covering of
Sm−1(1) by caps Ki

j , j = 1, . . . , l). Also assume (by induction hypothesis) that returned point um−1 is

a (m− 1− d+ l,m− 1)-boundary point. Point vm = βi + ri(0, u
m−1) belongs to hypersphere Si. Since
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um−1 is a (m − 1 − d + l,m − 1)-boundary point, vm does not belong to the interior of any cap Kk
i

and hence does not belong to the interior of Rj (i.e., set Rj \ Sj) for any j. This directly implies that
um = ψcm,1(v

m) is not contained in the interior of any hypercap Kj .
Since point um is, by assumption, contained in the boundary of m − 1 − d + l hypercaps Ki

j , there
exist spheres Si1 , . . . , Sim−1−d+l

so that vm ∈ Sij for j = 1, . . . , l − 1. Obviously, point um is contained
within the boundary of l hypercaps Ki,Ki1 , . . . ,Kim−1−d+l

. This completes the proof by induction that
um is a (m− d+ l,m)-boundary point.

�

a) b)

c=(1,0,0)

u
3

uncovered
region

v
3

S
2

c)
v

2

Figure 3: a) Spherical caps corresponding to cones Ci with θ =
√
3/2 (boundaries denoted by solid

line) do not cover S3(1) and sperical caps (denoted by colored dashed lines) corresponding to cones Cα
i

that also do not cover S3(1). b) Inversion ψ(1,0,0),1 of spherical cap boundaries; c) Inversion ψ(1,0),1 of
2D sphere S2. Point v2 is boundary point detected in Algorithm Cover2-2D corresponding to (1, 2)
boundary point u2 and also to point v3 ∈ S2 and an uncovered point u3 of S3(1).

The following Lemma 10 formalizes the fact that given cones Ci, i = 1, . . . , n which do not completely
cover space Rd, can be enlarged (by increasing the central angle for a sufficiently small value) so that the
resulting system of cones still does not cover the space.

Lemma 10. If solution of SphCovVer problem is False for instance of cones Ci = C(ti; θi), i =
1, . . . , n, then there exists sufficiently small value α so that‘ the solution of SphCovVer problem for
cones Cα

i = C(ti; θi − α), i = 1, . . . , n, is also False.

Proof. Note that U = Rd \
∪n

i=1Ci is an open set and there exists at least one internal uncovered point
x ∈ U . Hence there exists a ball Bd(x; ρ) so that Bd(x; ρ) ⊂ U . Let γi = arccos θi. All angles γi can be
enlarged by value ∆γ = 2arcsin(ρ/(2∥x∥)) and corresponding enlarged cones will not contain point x.
Hence it is sufficient to set α = cos(∆γ). �

Note that (l, d)-boundary point ud,α of the enlarged coverage problem (from Lemma 10) is an internal
uncovered point of the original problem. This holds since the distance between point ud,α and arbitrary
cone Ci is at least

2∥ud,α∥ sin
(
arccos(θi − α)− arccos(θi)

2

)
.
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Hence, to find an uncovered point, it is sufficient to determine α (from Lemma 10), resolve the
enlarged coverage problem and compute the boundary point (from Lemma 9). In practice, value α can
be computed similarly as rotation angle δ (see step 2 of Algorithm Cover). E.g., we can set α = 0.01
and check if cones Cα

1 , . . . , C
α
n cover the space Rd. If the result is True, we can exponentially decrease α

(e.g., by setting α = pα where 0 < p < 1) and repeat the same procedure until the result is False. In
our implementation, we choose p = 0.9.

Due to considerations above, the complete algorithm for computing an internal uncovered point can
be formulated as follows:

Algorithm 5. FindUncoveredPoint
Input: Caps Ki, i = 1, . . . , n defined by ti ∈ Sd(1) and θi ∈ [−1, 1].

1. Apply Algorithm Cover with values ti and θi. If the result is True, return True. Otherwise continue.

2. Set α = 0.01.

3. Set θαi = θi − α. Apply Algorithm Cover with values ti and θ
α
i and compute (l, d)-boundary point

ud.

4. If the result is True, set α = 0.9α and go to step 2. Otherwise return False and point ud.

5 Numerical examples

In this section, we compare performance of proposed recursive algorithm Cover for spherical coverage
verification, Section 4.2, with an algorithm based on quadratic programming Cover-QP, Section 4.1.
We demonstrate that the application of Cover-QP could lead to false positives (coverage incorrectly
verified) while the proposed recursive algorithm Cover does not suffer from such a problem. Moreover,
we demonstrate that the performance of Cover is satisfactory in practice, in spite of its worst-case
exponential complexity.

Algorithm Cover is implemented in programming language C. To implement Cover-QP, we utilized
the programming packages Mathematica and Matlab. To test the influence of different non-convex QP
solvers on the results of the algorithm, we also created an AMPL model [16] for the Algortihm Cover-QP
and tested it using MINOS and FortMp solvers.

Implementations are tested on several test examples. In the experiments, hypercaps are determined
by constellations ti, i = 1 . . . , n of points and cones have a constant angle, i.e., θi = θ. This stipulation
comes from applications in methods for finding inverse k-nearest neighbors. Namely, an algorithm for
reverse k-nearest neighbor problem from [3, 24] requires the covering constellation with minimal n and
θ = cos(π/6) =

√
3/2.

Test constellations are generated by the relaxation algorithm from [23]. This algorithm produces
near-uniform placement of the points on d-dimensional hypersphere. It starts with a randomly generated
set of initial points, where points interact through generalized electromagnetic interactions and each point
has equal charge. The algorithm seeks the solution of the d-dimensional generalization of the Thomp-
son’s problem [4], and searches iteratively for the equilibrium state (the state with minimal electrostatic
energy).

5.1 Accuracy of algorithms

Our experimental results indicate that Algorithm Cover-QP, which utilizes solvers for concave QP
problems, can be numerically very unstable. As a consequence, the result is a potentially large number
of false positives (an algorithm falsely indicates that a sphere is covered by caps).

Consider constellation four D 85 obtained by relaxation algorithm for d = 4 and n = 85 (the whole
constellation is given in the Appendix and can be found at tesla.cis.desu.edu/data/Constellations).
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Matlab implementation of the Algorithm Cover-QP returns True. We tested Mathematica implementa-
tions for different working precisions (double precision, 20 digits, 50 digits and 100 digits). In all testings,
result was True, but the corresponding optimal point and objective function values were different (see
the following table). Results of testing AMPL model were similar.

Objective Optimal point
function value x1 x2 x3 x4

Matlab: double precision 0.9756 0.9477 -0.0063 -0.0004 0.2314

Mathematica: double precision 0.935851 0.172452 0.898297 -0.158036 -0.272394

Mathematica: 20 digits 0.891469 -0.390757 0.136777 0.77625 0.342789

Mathematica: 50 digits 0.946319 0.652345 -0.476475 0.236943 0.487436

Mathematica: 100 digits 0.958959 -0.901428 0.034657 -0.231813 0.302405

MINOS 0.953615 0.628285 0.469643 0.426044 -0.39597

FortMP 0.947382 0.037172 0.869515 0.0528789 0.224396

This example clearly shows the instability of Algorithm Cover-QP. One reason for such instability
may be the fact that optimization heuristics embedded in the QP solver traps into the local maximum and
do not achieve the global maximum. Such a conclusion is supported by the fact that the optimal solution
found by the solver changes when simple variable transformation x = x′+ c (c ∈ Rd is a constant vector)
is applied. For example, if we put c = (0.1, 0.4,−0.7,−0.3) (this choice comes from the uncovered point
shown in the next paragraph) all solvers return objective function value 1.000409053 and the optimal
point (0.134335, 0.4576476,−0.7915343,−0.3826162). Since the objective function value is greater than
1, in such a case algorithm returns False.

Note that Algorithm Cover-QP can have only false positives (for a non-covering constellation, pro-
viding answer True), not false negatives. This can be explained by the fact that a point returned from
the QP solver is always a feasible solution and the objective function value in this point cannot be larger
than the global maximum.

UnlikeCover-QP, AlgorithmCover is not based on heuristics and randomized initial conditions, but
on relatively simple and numerically stable algebraic operations. During our experiments, we could not
identify any case where Cover would return incorrect results. Particularly, on the same test example as
above (the constellation four D 85) Cover correctly returns False, and detects the following uncovered
point:

xuncovered = (0.134309, 0.457496,−0.791181,−0.383002).

Since max1≤i≤85(x
uncovered, ti) = 0.865901 < cos(π/6) (see the Appendix for vectors ti of the constellation

four d 85) we can verify that xuncovered is indeed uncovered.
Note that the result of the Monte-Carlo based approach method (see Section 4) on four D 85 with

N = 1010 pseudo-random points was also incorrect (i.e., True). This again demonstrates why Algorithm
Cover seems to be the only reliable method for spherical coverage verification.

5.2 Performance of recursive algorithm

We test the working time of the Algorithm Cover. Implementation is compiled by a GNU C compiler and
runs on the machine with AMD Phenom II CPU on 3.0 GHz and CentOS 5.2 (Linux) operating system.
Testing is performed for d = 3, 4, 5 and 200 ≤ n ≤ 500. Results are shown in the Fig. 4. Execution
times shown are obtained by averaging through 20 runs of the program on different constellations of the
same dimensionality. All testing constellations corresponded to a sphere covered by caps (output of the
Algorithm Cover was True). This restriction is added since the working time on constellations without
coverage is considerably smaller due to the fact that Algorithm Cover does not complete recursion.

As it can be seen from the graph, Algorithm Cover is practically applicable and does not reach
its theoretically obtained complexity. This can be explained by the fact that not all d − 1-dimensional
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Figure 4: Average running time of Algorithm Cover for d = 3, 4, 5.

hyperspheres Si intersect (Case 1 of subsection 4.1 holds). Practically, the number of hyperspheres
intersecting Si is drastically smaller than n, which implies that the corresponding subproblems have a
lower dimensionality.

The applicability of Algorithm Cover made possible to determine the upper bound Mu(d) of minimal
number M(d) of hypercaps with θ = cos(π/6), covering the unit hypersphere. In [24], it is proved that
M(d) is at least Ml(d) = Θ(2d

√
d), i.e., it is exponential as the function of d. In order to obtain Mu(d),

we generate several constellations for fixed value n. If the covering constellation is found, n is decreased
by 1 and the whole procedure is repeated. Otherwise we put Mu(d) := n. The following table shows the
values of Mu(d) for d = 3, 4, 5, 6:

d 3 4 5 6

Mu(d) 22 81 234 715

However, the closed-form expression for upper bound Mu(d) is still unknown and its existence is left
as an open question.

6 Conclusion

We have considered the spherical coverage problem: given a set of hypercaps in d-dimensional space,
determine whether a d-dimensional hypersphere is completely covered by the hypercaps. We have demon-
strated that the considered problem is NP hard by reducing concave quadratic programming (QP) prob-
lem to it. We have discussed two algorithms to resolve the spherical coverage problem: the first method
(Algorithm Cover-QP) is based on the utilization of quadratic programming. The second method (Algo-
rithmCover) is recursive and based on the reduction of the main problem on O(n) problems of dimension
d− 1. The recursive algorithm also provides a method to determine an uncovered point (if such a point
exists).

While the worst-case time complexity of the proposed recursive method is O
(
nd−1 log n

)
, it is of

practical interest, due to NP hardness of the considered problem (note also that the asymptotic complexity
could be improved if, as the base case, we choose the case d = 3 of problem HpCovVer and utilize
a method proposed in [9] to resolve it). However, numerical experiments indicate that the recursive
algorithm almost never reaches maximal complexity and hence typically does not require prohibitive
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execution time. In contrast, Algorithm Cover-QP, with heuristics-based concave QP problem solvers,
can be numerically unstable resulting in false positive detection (indicating false coverage of the sphere)
and hence having limited practical application.

Our results indicate that the recursive algorithm may be the best algorithm for the problems having a
relatively small dimension d. For the high values of d, where direct application of the recursive algorithm
may be too time consuming, quadratic programming method still could be used as a presolve method,
since it does not have false negatives.

We conclude the paper with the following open problem:

Problem 5. Develop an efficient algorithm for construction of the covering constellation of minimal
size, for a given dimension d and angle θ.
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A Constellation four D 85

t1 t2 t3 t4
0.911722 0.083517 -0.402106 0.009974

0.581301 -0.242364 0.278539 -0.725096

0.218664 0.316284 0.287611 0.877172

0.117213 0.928431 -0.32201 0.143484

-0.737931 -0.158832 -0.035717 0.654946

0.36765 -0.515669 -0.616088 0.468352

0.76061 0.150628 -0.006887 0.631456

-0.321449 -0.24082 0.870032 0.285869

0.344644 0.293037 0.546223 -0.704976

-0.412761 0.540358 0.013305 -0.73312

0.816541 -0.164327 0.467615 0.295963

-0.245525 -0.585043 -0.116853 0.76406

0.338649 -0.178681 -0.219111 0.89743

-0.69018 -0.518921 0.382654 0.328555

0.740476 0.306078 0.049102 -0.596322

-0.706023 -0.187694 0.659171 -0.178316

-0.055919 -0.589895 -0.805087 -0.027052

0.328685 -0.068095 0.878784 0.339218

0.943282 -0.273977 0.075663 -0.171553

-0.159834 0.605736 0.643967 -0.43914

0.059374 0.684132 0.716063 0.125265

0.562506 0.316235 0.756618 -0.105413

0.526948 -0.692313 -0.153046 -0.468621

0.585505 -0.29157 0.718579 -0.236252
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t1 t2 t3 t4
-0.339912 -0.865955 -0.293451 0.220156

0.504902 0.689107 -0.350765 -0.383627

-0.418404 0.437219 0.203124 0.769752

0.498145 -0.17126 -0.337765 -0.780023

-0.19152 -0.885608 -0.106055 -0.409599

-0.216553 0.126561 -0.29997 0.920383

0.060341 0.820685 0.197331 0.532819

-0.736942 -0.41477 -0.460301 0.270194

-0.547833 -0.450474 -0.569484 -0.415501

0.204308 -0.777431 0.433251 -0.407619

-0.983534 -0.127577 0.121635 0.039876

-0.106398 0.780104 -0.465982 -0.403706

-0.824089 0.406231 0.311938 -0.241967

0.925197 0.302318 0.226185 -0.038143

0.582566 0.128159 -0.589217 0.544991

0.622845 -0.704481 0.326492 0.095782

-0.836308 0.452032 -0.011796 0.310027

-0.309656 0.548631 -0.775807 0.035212

-0.225897 -0.143505 0.308569 0.912777

0.656179 -0.438453 -0.607877 -0.087605

-0.12433 -0.638736 0.476572 0.591132

-0.425256 0.298745 0.854262 -0.012046

0.480447 0.819603 0.259428 -0.173544

-0.514513 0.096686 0.503361 -0.687428

0.267199 0.5784 -0.305584 0.707585

-0.018035 -0.020976 -0.880919 -0.472457

-0.736443 -0.653951 -0.063084 -0.161308

0.033759 -0.030823 0.959959 -0.276386

-0.471801 0.343863 -0.601331 -0.545493

-0.349645 0.727398 -0.321563 0.495215

0.004942 -0.96662 0.232848 0.106783

0.111029 -0.625644 0.768139 0.078766

0.060656 -0.490269 -0.013342 -0.869356

0.588121 0.537068 0.416267 0.438626

0.338081 -0.727789 0.016177 0.596458

-0.342943 -0.152519 -0.336818 -0.863529

-0.868041 0.131346 -0.46866 -0.098029

0.084497 -0.533808 -0.58593 -0.603817

0.555933 0.174623 -0.695937 -0.419663

0.409128 -0.265222 0.414691 0.768312

-0.398058 -0.719619 0.526168 -0.216435

-0.230651 -0.326573 -0.707467 0.582787

-0.629986 0.173969 -0.5524 0.517404

-0.389677 -0.043493 -0.919642 0.0228

-0.013034 0.298631 -0.792652 0.531369

0.186482 0.689421 0.091131 -0.693987

0.814852 -0.386301 -0.176673 0.39443

0.275837 -0.088184 -0.946315 0.143616

-0.497203 -0.491744 0.211614 -0.682786

-0.11172 0.959906 0.17654 -0.186902

-0.028234 0.117661 0.115501 -0.98591

0.083739 0.314023 -0.444543 -0.834721

-0.805373 -0.010126 -0.060896 -0.589545

-0.125314 0.270743 0.737091 0.606376

0.690523 0.637669 -0.183595 0.287835

-0.481723 0.736347 0.436683 0.1872

-0.719834 0.10622 0.559014 0.397567

0.38002 0.543697 -0.745668 0.062905
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t1 t2 t3 t4
-0.653788 0.707026 -0.192191 -0.189048

0.013797 -0.290263 0.625477 -0.72411

0.303814 -0.890275 -0.328701 0.084045

B Pseudocode of Algorithm Cover

Here we give the complete pseudo-code description of Algorithm Cover.
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Algorithm 1 Cover(n; d;X; θ) - Spherical coverage verification

Require: Centers and angles of cones: X = [tT1 · · · tTn ]T ∈ Rn×d and θ = (θ1, . . . , θn)
1: if d = 2 then
2: return Cover2(n;X; θ)
3: end if
4: S := (1, 0, . . . , 0) ∈ Rd

5: if (S, ti) = θi for some i = 1, 2, . . . , n then
6: X := Rot(n; d;X; θ) (rotates by small angle δ).
7: end if

8: ri :=

√
1−θ2i

2(θi−ti1)
for i = 1, . . . , n (radii of the spheres in d− 1-dimensional hyperplane)

9: βij :=
tij

2(θi−ti1)
for i = 1, . . . , n and j = 2, . . . , d (centers of the spheres in d−1-dimensional hyperplane)

10: outi := ((S, ti) < θi) (True if S belongs to the interior of cap Ki and False otherwise)
11: for i := 1 to n do
12: k := 0
13: Coveri := False

14: for j := 1 to n do
15: if i ̸= j then
16: k := k + 1
17: t1k,l−1 := βjl − βil for l = 2, 3, . . . , d

18: dij := ∥t1k∥

19: θ1k :=
r2i + d2ij − r2j

2ridij
20: if −1 ≤ θ1k ≤ 1 then
21: if outj then
22: θ1k := −θ1k
23: t1kl := −t1kl for l = 1, 2, . . . , d− 1
24: end if
25: else

26: s :=
√

(βi2 + ri − βj2)2 +
∑d

l=3(βil − βjl)2

27: if (s ≤ rj and not outj) or (s ≥ rj and outj) then
28: Coveri := True (j-th hypersphere completely covers i-th)
29: break
30: else
31: k := k − 1 (j-th hypersphere is disjoint from i-th)
32: end if
33: end if
34: end if
35: end for
36: if not Coveri then
37: if k = 0 then
38: return False

39: else
40: X1 := [(t11)

T · · · (t1n)T ]T ∈ Rk×d−1

41: θ1 := (θ11, . . . , θ
1
k)

42: Coveri := Cover(k; d− 1;X1; θ1)
43: if not Coveri then
44: return False

45: end if
46: end if
47: end if
48: end for
49: return True
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