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Abstract

The approximate analytical solutions of the Dirac equations with the reflectionless-type and

Rosen-Morse potentials including the spin-orbit centrifugal (pseudo-centrifugal) term are obtained.

Under the conditions of spin and pseudospin (pspin) symmetry concept, we obtain the bound state

energy spectra and the corresponding two-component upper- and lower-spinors of the two Dirac

particles by means of the Nikiforov-Uvarov (NU) method in closed form. The special cases of the

s-wave κ = ±1 (l = l̃ = 0) Dirac equation and the non-relativistic limit of Dirac equation are

briefly studied.
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I. INTRODUCTION

When a particle is exposed to a strong potential field, the relativistic effect must be

considered which gives the correction for nonrelativistic quantum mechanics. Taking the

relativistic effects into account, a spinless particle in a potential field should be described

with the Klein-Gordon (KG) equation. The solution of the Dirac equation is considered

important in different fields of physics like nuclear and molecular physics [1,2]. Within

the framework of the Dirac equation the spin symmetry arises if the magnitude of the

spherical attractive scalar potential S and repulsive vector V potential are nearly equal such

that S ∼ V in the nuclei (i.e., when the difference potential ∆ = V − S = C− = C∆,

with C∆ is an arbitrary constant). However, the pseudospin (pspin) symmetry occurs if

S ∼ −V are nearly equal (i.e., when the sum potential Σ = V + S = C+ = CΣ, with

CΣ is an arbitrary constant) [3]. The spin symmetry is relevant for mesons [4]. The pspin

symmetry concept has been applied to many systems in nuclear physics and related areas

[3-7] and used to explain features of deformed nuclei [8], the super-deformation [9] and

to establish an effective nuclear shell-model scheme [5,6,10]. Recently, the spin and pspin

symmetries have been widely applied on several physical potentials by many authors [11-26].

For example, the Dirac equation has been solved for the deformed generalized Poschl-Teller

(PT) potential [27], modified PT potential [28,29], Manning-Rosen (MR) potential [30], well

potential [31], modified Rosen-Morse (RM) potential [32] and class of potentials including

harmonic oscillator, Morse, Hulthén, Scarf’ Eckart, MR, Trigonometric RM potentials and

others [33] in the framework of the approximation to the spin-orbit centrifugal term using

the proper quantization rule, algebraic methods, Ladder operators and su(2) algebra.

The exact solutions of the Dirac equation for the exponential-type potentials are possible

only for the s-wave (κ = ±1 case) when the spin-orbit coupling term will get suppressed

[34]. However, for l-states an approximation scheme has to be used to deal with the spin-

orbit centrifugal κ(κ+1)/r2 (pseudo-centrifugal, κ(κ− 1)/r2) term. In this direction, many

works have been done to solve the Dirac equation with large number of potentials to obtain

the energy equation and the two-component spinor wave functions [35-42]. It has been

concluded that the values of energy spectra may not depend on the spinor structure of the

particle [43], i.e., whether one has a spin-1/2 or a spin-0 particle. Also, a spin-1/2 or a spin-0

particle with the same mass and subject to the same scalar S and vector V potentials of
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equal magnitude, i.e., S = ±V (∆ = Σ = 0 or C± = 0), will have the same energy spectrum

(isospectrality), including both bound and scattering states [43]. It has been shown that for

massless particles (or ultrarelativistic particles) the spin- and pspin spectra of Dirac particles

are the same for the harmonic oscillator potentials [44].

Recently, we obtained the spin symmetric and pspin bound state solutions of the Dirac

equation with the standard RM well potential model [20,45]:

V (r) = −V1 sec h
2αr + V2 tanhαr, (1)

where the coupling constants V1 and V2 denote the depth of the potential and α is the range

of the potential that has an inverse of length dimension. We use the computer software

MATLAB and plot the potential (1) for three different set of parameters V1 and V2. It is

plotted in Fig. 1.

The aim of the present paper is to extend the s-wave solutions by solving the Dirac equa-

tion with some physical potentials given in Ref. [34] in the framework of the Nikiforov-Uvarov

(NU) method [46-50] by taking an approximation to deal with the centrifugal (pseudo-

centrifugal) potential term [20,51]. The approximation scheme used to deal with the spin-

orbit centrifugal barrier κ(κ+1)/r2 holds for values of spin-orbit coupling quantum number

κ that are not large and vibrations of the small amplitude [51]. In the presence of spin sym-

metry S ∼ V and pspin symmetry S ∼ −V , we calculate bound state energy eigenvalues

and their corresponding upper and lower spinor wave functions. We also show that the spin

and pspin symmetry Dirac solutions when ∆ = C− and Σ = C+ can be reduced to the exact

spin symmetry and pspin symmetry limitation ∆ = 0 and Σ = 0, respectively. These are

found to be identical to the KG solution for the V = ±S cases. Furthermore, the bound

state solutions of the Schrödinger equation are also obtained from the nonrelativistic limit

of the Dirac equation if an appropriate mapping of parameters is used.

The paper is organized as follows: Section 2 is mainly devoted to the basic spin and

pspin Dirac equation. In sect. 3, the approximate analytical bound state solutions of the

(3 + 1)-dimensional Dirac equation with the reflectionless-type and the RM potentials are

obtained in the presence of the spin and pspin limits using a parametric generalization of the

NU method. In sect. 4, special cases like the s-wave κ = ±1 (l = l̃ = 0) and nonrelativistic

limit are studied. Section 5 gives the relevant conclusion.
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II. BASIC SPIN AND PSPIN DIRAC EQUATIONS

The Dirac equation for fermionic massive spin-1/2 particles subject to vector and scalar

potentials is [1]

[
cα · p+ β

(
Mc2 + S(r)

)
+ V (r)− E

]
ψnκ(r) = 0, ψnκ(r) = ψ(r, θ, φ), (2)

where E is the binding relativistic energy of the system, M is the mass of a particle, p =

−i~∇ is the momentum operator, and α and β are 4×4 Dirac matrices [3,12,20]. The spinor

wave functions take the form

ψnκ(r) =
1

r



 Fnκ(r)Y
l
jm(θ, φ)

iGnκ(r)Y
l̃
jm(θ, φ)



 , (3)

where Fnκ(r) and Gnκ(r) are the radial wave functions of the upper- and lower-spinor compo-

nents, respectively, and Y l
jm(θ, φ) and Y

l̃
jm(θ, φ) are the spherical harmonic functions coupled

to the total angular momentum j and it’s projection m on the z axis.

In the presence of spin symmetry ( i.e., ∆ = C− = C∆), one obtains a second-order

differential equation for the upper-spinor component [12,20,52,53]:

F ′′
nκ(r)−

(
κ (κ + 1)

r2
+ A2

s +BsΣ

)
Fnκ(r) = 0, (4)

where

A2
s =

1

~2c2
[
M2c4 − E2

nκ −
(
Mc2 − Enκ

)
C−

]
, Bs =

1

~2c2
(
Mc2 + Enκ − C−

)
, (5)

and κ (κ + 1) = l (l + 1) , κ = l for κ < 0 and κ = − (l + 1) for κ > 0. Further, the

lower-spinor component can be obtained as

Gnκ(r) =
1

Mc2 + Enκ − C−

(
d

dr
+
κ

r

)
Fnκ(r), (6)

where Enκ 6= −Mc2 when C− = C∆ = 0 (exact spin symmetric case). It means that only

positive energy spectrum is permitted.

Overmore, in the presence of pspin symmetry ( i.e., Σ = C+ = CΣ), one obtains a

second-order differential equation for the lower-spinor component,

G′′
nκ(r)−

(
κ (κ− 1)

r2
+ A2

ps −Bps∆

)
Gnκ(r) = 0, (7)

4



where

A2
ps =

1

~2c2
[
M2c4 −E2

nκ +
(
Mc2 + Enκ

)
C+

]
, Bps =

1

~2c2
(
Mc2 − Enκ + C+

)
. (8)

The upper-spinor component Fnκ(r) can be obtained by means of

Fnκ(r) =
1

Mc2 − Enκ + C+

(
d

dr
−
κ

r

)
Gnκ(r), (9)

where Enκ 6= Mc2 when C+ = CΣ = 0 (exact pspin symmetric case). It means that only

negative energy spectrum is allowed for this case. From the above equations, the energy

eigenvalues depend on the quantum numbers n and κ, and also the pseudo-orbital angular

quantum number l̃ according to κ(κ − 1) = l̃(l̃ + 1), which implies that j = l̃ ± 1/2 are

degenerate for l̃ 6= 0. The quantum condition for bound states demands the finiteness of the

solution at infinity and at the origin points.

It is known that Eqs. (4) and (7) can be solved exactly only for the case of κ = −1

(l = 0) and κ = 1 (l̃ = 0), respectively when the spin-orbit coupling centrifugal and pseudo-

centrifugal terms will get suppressed. In the case of nonzero l or l̃ values, we can use the

approximation scheme to deal with the spin-orbit centrifugal (pseudo-centrifugal) term when

κ is not large and when vibrations of the small amplitude near the minimum point r = re

[17,51]

1

r2
≈

1

r2e

[
D0 +D1

− exp(−2αr)

1 + exp(−2αr)
+D2

(
− exp(−2αr)

1 + exp(−2αr)

)2
]
, (10)

where Di is the parameter of coefficients (i = 1, 2, 3) given by

D0 = 1−

(
1 + exp(−2αre)

2αre

)2(
8αre

1 + exp(−2αre)
− (3 + 2αre)

)
, (11a)

D1 = −2 (exp(2αre) + 1)

[
3

(
1 + exp(−2αre)

2αre

)
− (3 + 2αre)

(
1 + exp(−2αre)

2αre

)]
, (11b)

D2 = (exp(2αre) + 1)2
(
1 + exp(−2αre)

2αre

)2(
3 + 2αre −

4αre
1 + exp(−2αre)

)
, (11c)

and higher order terms are neglected.

A. Spin symmetric solution

We take the sum potential in Eq. (4) in the form of standard RM well potential (1), i.e.,

Σ = V (r) = −4V1
exp(−2αr)

(1 + exp(−2αr))2
+ V2

(
1− exp(−2αr)

1 + exp(−2αr)

)
. (12)
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Upon introducing the new variable z(r) = exp(−2αr) and substituting the above sum

potential into Eq. (4) which then can be cast into the form

F ′′
nκ(z) +

(1 + z)

z (1 + z)
F ′
nκ(z) +

(−a2z
2 + a1z − a20)

z2 (1 + z)2
Fnκ(z) = 0, (13)

where at boundaries we require that Fnκ(0) = Fnκ(−1) = 0 and the parameters ai (i = 0, 1, 2)

take the forms:

a0 =
1

2α

√
κ (κ+ 1)

r2e
D0 +BsV2 + A2

s > 0,

a1 =
1

4α2

(
κ (κ+ 1)

r2e
(D1 − 2D0) + 4BsV1 − 2A2

s

)
,

a2 =
1

4α2

(
κ (κ+ 1)

r2e
(D0 −D1 +D2) + A2

s − BsV2

)
. (14)

We begin the application of the NU method [46-50] by comparing Eq. (13) with the hyper-

geometric differential equation

ψ′′
n(r) +

τ̃(r)

σ(r)
ψ′
n(r) +

σ̃(r)

σ2(r)
ψn(r) = 0, (15)

where

ψn(r) = φ(r)yn(r), (16)

to identify the parameters,

τ̃(z) = 1 + z, σ(z) = z (1 + z) , σ̃(z) = −a2z
2 + a1z − a20, (17)

and further calculate the function π(z) as

π(z) =
1

2
[σ′(r)− τ̃ (r)]±

√
1

4
[σ′(r)− τ̃ (r)]2 − σ̃(r) + kσ(r)

=
z

2
±

1

2

√
[1 + 4 (a2 + k)] z2 + 4 (k − a1) z + 4a20. (18)

Now we also seek for a physical value of k that makes the discriminant of the expression

under square root in Eq. (18) to be zero, that is

k = a1 + 2a20 ± 2a0q,

q =

√
1 +

κ (κ+ 1)D2

α2r2e
+

4V1Bs

α2
. (19)
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Upon the substitution of the value of k into Eq. (18), we obtain the following convenient

solutions:

π(z) = −a0 −
1

2
(2a0 + q − 1) z, (20)

and

k = a1 + 2a20 + a0q. (21)

With regard to Eqs. (17) and (20), we can calculate the function τ(z) = τ̃(z)+2π(z), taking

into consideration the bound state condition which has to be established when τ ′(z) < 0, as

τ(z) = 1− 2a0 − (2a0 + q − 2) z, τ ′(z) = − (2a0 + q − 2) < 0, (22)

where prime denotes the derivative with respect to z. According to the method [46-50], in or-

der to find the energy equation from which one calculates the energy eigenvalues, we need to

find the values of the parameters: λ = k+π′(s) and λ = λn = −nτ ′(s)− 1
2
n (n− 1)σ′′(s), n =

0, 1, 2, · · · , as

λ =
1

2
+ a1 + 2a20 − a0 +

(
a0 −

1

2

)
q, (23)

and

λn = −n2 − n+ n (2a0 + q) , n = 0, 1, 2, · · · , (24)

respectively. Using the relation λ = λn and the definitions of variables in Eqs. (14) and

(19), we obtain the transcendental energy equation of relativistic spin-1/2 particles in the

presence of vector and scalar potential,

1

~2c2
[
M2c4 − E2

nκ −
(
Mc2 − Enκ

)
C−

]
= −

κ (κ+ 1)D0

r2e
− BsV2

+ α2

[
n+

1

2
−
q

2
+
κ (κ+ 1) (D1 −D2) /r

2
e + 2BsV2

4α2
(
n+ 1

2
− q

2

)
]2
, (25)

Furthermore, in the exact spin symmetric case (i.e., V = S, ∆ = 0, C− → 0), we obtain the

arbirary l-wave energy equation in the KG theory with equally mixed RM-type potentials

(in units of ~ = c = 1),

M2 −E2
nl = −

l (l + 1)D0

r2e
− (Enl +M) V2

+ α2

[
n+ δ +

l (l + 1) (D1 −D2) /r
2
e + 2 (Enl +M) V2

4α2 (n + δ)

]2
, (26)
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with

δ =
1

2
−

1

2

√

1 +
l (l + 1)D2

α2r2e
+

4

α2
(Enl +M) V1, (27)

where the quantum number n = 0, 1, 2, · · · , and the orbital quantum number l = 0, 1, 2, · · · .

Actually, the above expression resembles Eq. (13) reported in [54] when l = 0 (s-wave case).

Now, we are going to find the corresponding wave functions for the present potential model.

Firstly, we calculate the weight function defined as

ρ(z) =
1

σ(z)
exp

(∫
τ(z)

σ(z)
dz

)
= z−2a0 (1 + z)−q , (28)

and the first part of the wave function in Eq. (16) as

φ(z) = exp

(∫
π(z)

σ(z)
dz

)
= z−a0 (1 + z)

1

2
(1−q) . (29)

Hence, the second part of the wave function in relation (16) can be obtained by means of

the so called Rodrigues representation

yn(z) =
Kn

ρ(r)

dn

drn
[σn(r)ρ(r)] = Knz

2a0 (1 + z)q
dn

dzn
[
zn−2a0 (1 + z)n−q]

∼ P (−2a0,−q)
n (1 + 2z), z ∈ [0, 1], (30)

where the Jacobi polynomials P
(µ,ν)
n (x) are defined for Re(ν) > −1 and ℜ(µ) > −1 for the

argument x ∈ [−1,+1] and Kn is the normalization constant. By using Fnκ(z) = φ(z)yn(z),

in this way we may write the upper-spinor wave function in the fashion

Fnκ(r) = Knκ (exp(−2αr))−a0 (1 + exp(−2αr))
1

2
(1−q) P (−2a0,−q)

n (1 + 2 exp(−2αr))

= Nnκ (exp(−2αr))−a0 (1 + exp(−2αr))
1

2
(1−q)

2F1 (−n, n + 1− 2a0 − q;−2a0 + 1; exp(−2αr)) ,

(31)

where a0 > 0, q > −1. The calculated normalization constants Knκ for the upper-spinor

component are

Nnκ =

[
Γ(−q + 2)Γ(−2a0 + 1)

2αΓ(n)

∞∑

m=0

(−1)m (n− 2a0 + 1− q)m Γ(n+m)

m! (m− 2a0)!Γ (m− 2a0 − q + 2)
fnκ

]−1/2

, (32)

with

fnκ = 3F2 (−2a0 +m,−n, n + 1− 2a0 − q;m− 2a0 − q + 2; 1− 2a0; 1) . (33)
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In addition, the corresponding lower component Gnκ(r) can be obtained as follows

Gnκ(r) = cnκ
(exp(−2αr))−a0 (1 + exp(−2αr))

1

2
(1−q)

(Mc2 + Enκ − C−)

[
−2αa0 −

α (1− q) exp(−2αr)

(1 + exp(−2αr))
+
κ

r

]

× 2F1 (−n, n− a0 − q + 1;−2a0 + 1; exp(−2αr))

+cnκ

[
2αn [n− 2a0 − q + 1] (exp(−2αr))−a0+1 (1 + exp(−2αr))

1

2
(1−q)

(2a0 + 1) (Mc2 + Enκ − C−)

]

× 2F1 (−n + 1;n− 2a0 − q + 2;−2a0 + 2; exp(−2αr)) , a0 > 0, (34)

where Enκ 6= −Mc2 for exact spin symmetry. Here, note that the hypergeometric series

2F1 (−n, n− 2a0 − q + 1;−2a0 + 1; exp(−2αr)) terminates for n = 0 and thus converge for

all values of real parameters q > 0 and a0 > 0.

B. Pspin symmetric solution

In the same way as before, this time taking the difference potential in Eq. (7) as

∆ = V (r) = −4V1
exp(−2αr)

(1 + exp(−2αr))2
+ V2

(
1− exp(−2αr)

1 + exp(−2αr)

)
, (35)

and in terms of new variable z(r) = exp(−2αr), leads us to obtain a Schrödinger-like equa-

tion for the lower-spinor component Gnκ(r),

G′′
nκ(z) +

(1 + z)

z (1 + z)
G′

nκ(z) +
(−b2z

2 + b1z − b20)

z2 (1 + z)2
Gnκ(z) = 0, (36)

where the parameters bj (j = 0, 1, 2) are defined by

b0 =
1

2α

√
κ (κ− 1)

r2e
D0 + BpsV2 + A2

ps > 0,

b1 =
1

4α2

(
κ (κ− 1)

r2e
(D1 − 2D0) + 4BpsV1 − 2A2

ps

)
,

b2 =
1

4α2

(
κ (κ− 1)

r2e
(D0 −D1 +D2) + A2

ps −BpsV2

)
. (37)

To avoid repetition in the solution of Eq. (36), a first inspection for the relationship between

the present set of parameters (b0, b1, b2) and the previous set (a0, a1, a2) tells us that the

negative energy solution for pseudospin symmetry such that Σ = C+ = CΣ can be obtained
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directly from those of the positive energy solution above for spin symmetry by performing

the changes [12,20]:

Fnκ(r) ↔ Gnκ(r), V (r) → −V (r) (or V1 → −V1, V2 → −V2 ), Enκ → −Enκ and C− → −C+.

(38)

Considering the previous results in Eq. (25) and applying the above transformations, we

finally arrive at the pspin symmetric energy equation

[
M2c4 − E2

nκ +
(
Mc2 + Enκ

)
C+

]
= −

~
2c2κ (κ− 1)D0

r2e
+
(
Mc2 −Enκ + C+

)
V2

+
~
2c2α2

4

[
2n+ 1− p+

~
2c2κ (κ− 1) (D1 −D2) /r

2
e − 2 (Mc2 − Enκ + C+) V2

~2c2α2α2 (2n+ 1− p)

]2
, (39)

where

p =

√
1 +

κ (κ− 1)D2

α2r2e
−

4V1Bps

α2
. (40)

Again, the radial lower-spinor wave function in Eq. (31) becomes

Gnκ(r) = dnκ (exp(−2αr))−b0 (1 + exp(−2αr))
1

2
(1−p) P (−2b0,−p)

n (1 + 2 exp(−2αr)).

= dnκ (exp(−2αr))−b0 (1 + exp(−2αr))
1

2
(1−p)

2F1 (−n, n +−2b0 − p+ 1;−2b0 + 1; exp(−2αr)) ,

(41)

which satisfies the restriction condition for the bound states, i.e., p > 0 and b0 > 0 and the

normalization constants is

dnκ =

[
Γ(−p+ 2)Γ(−2b0 + 1)

2αΓ(n)

∞∑

m=0

(−1)m (n+ 1− 2b0 − p))m Γ(n+m)

m! (m− 2b0)!Γ (m− 2b0 − p+ 2)
gnκ

]−1/2

, (42)

with

gnκ = 3F2 (−2b0 +m,−n, n + 1− 2b0 − p);m− 2b0 − p+ 2; 1− 2b0; 1) . (43)

III. APPLICATIONS TO SOME PHYSICAL POTENTIAL MODELS

We adopt the following two physical potential cases that belong to the general potential

model been introduced in Eq. (1).
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A. The reflectionless-type potential

The reflectionless-type potential is the special case of the symmetrical double-well poten-

tial.offered by Büyükkılıç et al [55] to describe the vibration of polyatomic molecules. This

can be achieved when the coefficient of tanhαr becomes zero. So, it takes the form

V (r) = −a2 sec h2αr, a2 = λ(λ+ 1)/2, λ = 1, 2, 3, · · · . (44)

The potential is plotted in Fig. 2 for three different values λ = 1, 2 and 3. It follows that

the energy equation in Eq. (25) becomes

M2−E2
nκ−C− (M −Enκ) = −

κ (κ+ 1)D0

r2e
+
α2

4

[
2n+ 1− q0 +

κ (κ+ 1) (D1 −D2) /r
2
e

α2 (2n+ 1− q0)

]2
,

(45)

and the upper-spinor wave functions from Eq. (31) turns to be

Fnκ(r) = Nnκ (exp(−2αr))−s0 (1 + exp(−2αr))
1

2
(1−q0) P (−2s0,−q0)

n (1 + 2 exp(−2αr)), (46)

where

s0 =
1

2α

√
κ (κ + 1)

r2e
D0 + A2

s > 0, q0 =

√
1 +

κ (κ+ 1)D2

α2r2e
+

4a2Bs

α2
. (47)

It is worth noting that the results given above in Eq. (45) and (46) are identical to those

ones of Ref. [27] for s-wave case (κ = −1). In the presence of the pspin case, the energy

spectrum becomes

M2−E2
nκ+C+ (M + Enκ) = −

κ (κ− 1)D0

r2e
+
α2

4

[
2n+ 1− p0 +

κ (κ− 1) (D1 −D2) /r
2
e

α2 (2n+ 1− p0)

]2
,

(48)

and the lower spinor component of pseudospin symmetric wave function

Gnκ(r) = Ñnκ (exp(−2αr))−w0 (1 + exp(−2αr))
1

2
(1−p0) P (−2w0,−p0)

n (1 + 2 exp(−2αr)). (49)

where

w0 =
1

2α

√
κ (κ− 1)

r2e
D0 + A2

ps > 0, p0 =

√
1 +

κ (κ− 1)D2

α2r2e
−

4a2Bps

α2
> 0, (50)

4a2Bps/α
2 ≤ 1 for bound states when κ = 1.

Let us now discuss the non-relativistic limit of the energy eigenvalues and wave functions

of our solution. If we take C− = 0 (∆ = 0) and consider the transformations Enκ +M ≃ 2µ

11



and Enκ −M ≃ Enl [52,53], we would have the following expression for the energy equation

(45) and wave functions (46) (in ~ = c = 1)

Enl =
l (l + 1)D0

2µr2e
−
α2

2µ

[
n +

1

2
−

1

2
q0 +

~
2l (l + 1) (D1 −D2)

4r2eα
2
(
n+ 1

2
− 1

2
q0
)
]2
, (51)

and the wave functions:

Rnl(r) = Nnl (exp(−2αr))−s0 (1 + exp(−2αr))
1

2
(1−q0) P (−2s0,−q0)

n (1 + 2 exp(−2αr)), (52)

with

s0 =
1

2α

√
l (l + 1)

r2e
D0 −

2µ

~2
Enl > 0, q0 =

√
1 +

l (l + 1)D2

α2r2e
+

8µa2

α2~2
, (53)

where Enl <
l(l+1)
2µr2e

D0 is a condition for bound state solutions. 2.

To conclude, it is necessary to mention that the reflectionless-type potential here reminds

one of the modified PT potential in the one-dimensional (1D) case [29]. However, for the

present case it is in the three-dimensional (3D) case. Thus, the original symmetry is broken.

The energy levels could be obtained readily.

B. The Rosen-Morse potential

The standard RM potential was given by Rosen and Morse in Ref. [45] useful to describe

interatomic interaction of the linear molecules and helpful for discussing polyatomic vibra-

tional energies. As example of its application to the to the vibrational states of the NH3

molecule. This can be achieved when

V (r) = −a(a + α) sech2αr + 2b tanhαr, (54)

where a and b are real dimensionless parameters. In Fig. 3, we plot this potential for three

various sets of parameter values. It follows that from Eqs. (25) and (31), the spin symmetry

energy spectrum for the RM well is

M2 −E2
nκ − C− (M − Enκ) = −

κ (κ+ 1)D0

r2e
− 2b (M + Enκ − C−)

+
α2

4

[
2n+ 1− q1 +

κ (κ + 1) (D1 −D2) /r
2
e + 4b (M + Enκ − C−)

α2 (2n+ 1− q1)

]2
, (55)

12



and the upper spinor component Fnκ(r) of the wave functions as

Fnκ(r) = Nnκ (exp(−2αr))−s1 (1 + exp(−2αr))
1

2
(1−q1) P (−2s1,−q1)

n (1 + 2 exp(−2αr)), (56)

respectively, where

s1 =
1

2α

√
κ (κ+ 1)

r2e
D0 + 2bBs + A2

s > 0, q1 =

√
1 +

κ (κ+ 1)D2

α2r2e
+

4a(a+ α)Bs

α2
. (57)

Overmore, in the presence of the pspin symmetry, the energy spectrum for the RM well is

M2 − E2
nκ + C+ (M + Enκ) = −

κ (κ− 1)D0

r2e
+ 2b (M − Enκ + C+)

+
α2

4

[
2n+ 1− p1 +

κ (κ− 1) (D1 −D2) /r
2
e − 4b (M − Enκ + C+)

α2 (2n+ 1− p1)

]2
, (58)

and the lower-spinor wave function is

Gnκ(r) = dnκ (exp(−2αr))−w1 (1 + exp(−2αr))
1

2
(1−p1) P (−2w1,−p1)

n (1 + 2 exp(−2αr)), (59)

with

w1 =
1

2α

√
κ (κ− 1)

r2e
D0 + 2bBps + A2

ps > 0, p1 =

√

1 +
κ (κ− 1)D2

α2r2e
−

4a(a + α)Bps

α2
, (60)

where 4a(a + α)Bps/α
2 ≤ 1 when κ = 1. Let us now discuss the non-relativistic limit of

the energy eigenvalues and wave functions of our solution. If we take C− = 0 (∆ = 0) and

consider the nonrelativistic limits [52,53], we would have the following expression for the

energy equation (55) and the upper spinor component of the wave functions (56) (in units

~ = c = 1)

Enl =
l (l + 1)D0

2µr2e
+ 2b

−
α2

2µ


n+

1

2
−

1

2

√

1 +
l (l + 1)D2

α2r2e
+

8µa(a+ α)

α2
+

l (l + 1) (D1 −D2) /r
2
e + 8µb

α2
(
n+ 1

2
− 1

2

√
1 + l(l+1)D2

α2r2e
+ 8µa(a+α)

α2

)




2

,

(61)

and

Rnl(r) = Nnl (exp(−2αr))−s1 (1 + exp(−2αr))
1

2
(1−q1) P (−2s1,−q1)

n (1 + 2 exp(−2αr)), (62)

respectively, where

s1 =
1

2α

√
l (l + 1)

r2e
D0 + 4µb− 2µEnl > 0, q1 =

√

1 +
l (l + 1)D2

α2r2e
+

8µa(a+ α)

α2
. (63)

13



and Nnl is the normalization constant.

To conclude, it is necessary to mention that the RM potential was studied byusing the

proper quantization rule in Ref. [33].

IV. DISCUSSIONS

We study two special cases of the energy eigenvalues given by Eqs. (25) and (39) for the

spin and pspin symmetry, respectively.

(I) The s-wave spin symmetric case (κ = −1, l = 0) (in units ~ = c = 1). For the

reflectionless-type potential, we have

M2 −E2
n,−1 − (M − En,−1)C− = α2

[
n+

1

2
−

1

2

√
1 +

4a2

α2
(M + En,−1 − C−)

]2
, (64)

and

Fn,−1(r) = cn,−1 (exp(−2αr))−A
−1/2α (1 + exp(−2αr))

1

2

(
1−

√
1+ 4a2

α2 (M+En,−1−C
−
)

)

× P

(
−A

−1/α,−
√

1+ 4a2

α2 (M+En,−1−C
−
)

)

n (1 + 2 exp(−2αr)) (65)

where A2
−1 =M2−E2

n,−1−(M −En,−1)C−. The s̃-wave pspin symmetric case (κ = 1, l̃ = 0):

M2 − E2
n,1 + C+ (M + En,1) = α2

[
n+

1

2
−

1

2

√
1−

4a2

α2
(M −En,1 + C+)

]2
, (66)

where 4a2

α2 (M − En,1 + C+) ≤ 1 and the lower spinor component of pspin symmetric wave

function

Gn,1(r) = dn,1 (exp(−2αr))−A1/2α (1 + exp(−2αr))
1

2

(
1−

√
1− 4a2

α2
(M−En,1+C+)

)

× P

(
−A1/α,−

√
1− 4a2

α2 (M−En1+C+)

)

n (1 + 2 exp(−2αr)). (67)

where A2
1 =M2−E2

n,1+(M + En,1)C+. For the RM potential model (spin symmetric case),

we have

M2 − E2
n,−1 − C− (M − En,−1) = −2b (M + En,−1 − C−)

+ α2


n+

1

2
−
β−1

2
+
b (M + Enκ − C−)

α2
(
n + 1

2
−

β
−1

2

)




2

, (68)
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and the upper spinor component Fnκ(r) of the wave functions as

Fn,−1(r) = Nn,−1 (exp(−2αr))−γ
−1/2 (1 + exp(−2αr))

1

2
(1−β

−1) P (−γ
−1,−β

−1)
n (1 + 2 exp(−2αr)),

where β−1 =
√
1 + 4a(a+α)

α2 (M + En,−1 − C−) and γ−1 =
√
2b (M + En,−1 − C−) + A2

−1/2α.

For the pseudospin case:

M2 − E2
n,1 + C+ (M + En,1) = 2b (M − En,1 + C+)

+ α2

[(
n +

1

2
−
β1
2

)
−
b (M −En,1 + C+)

α2
(
n+ 1

2
− β1

2

)
]2
, (69)

and the lower-spinor wave functions become

Gn,1(r) = dn,1 (exp(−2αr))−γ1/2 (1 + exp(−2αr))
1

2
(1−β1) P (−γ1,−β1)

n (1 + 2 exp(−2αr)), (70)

where β1 =
√
1− 4a(a+α)

α2 (M − En,1 + C+) and γ1 =
√
2b (M −En,1 + C+) + A2

1/α.

(II) The transformation of the potential (1) into other potential forms. For a potential

V (x), when one makes the transformations: x → −x, α → iα and V2 → iV2 (complex

parameters), then Eq. (1) transforms into a trigonometric Rosen-Morse-type (tRM) form:

V (x) = −V1 sec
2 αx+ V2 tanαx, α =

π

2a
, x = [0, a], (71)

where ℜ(V1) > 0.When x→ −x and i→ −i, if the relation V (−x) = V ∗ exists, the potential

V (x) is said to be PT -symmetric, where P denotes parity operator (space reflection) and

T denotes time reversal (see e.g., [56,57] and the references therein). This PT -symmetric

potential is plotted in Figure 4 for various sets of parameters V1 and V2. Thus the spin-

symmetric energy equation (κ = −1) can be obtained from Eqs. (19) and (25) as

M2 − E2
n,−1 − (M − En,−1)C− = −α2

(
n+

1

2
−

1

2

√
1−

4V1
α2

(M + En,−1 − C−)

)2

+

(
V2
2α

)2

 M + En,−1 − C−

n+ 1
2
− 1

2

√
1− 4V1

α2 (M + En,−1 − C−)




2

, (72)

where 4V1 (M + En,−1 − C−) ≤ α2.
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V. FINAL COMMENTS AND CONCLUSION

In summary, we have obtained the approximate analytic relations for the relativistic

energy spectra and the corresponding upper and lower spinor wave functions in the pres-

ence of spherical scalar and vector reflectionless-type and RM potential models under the

conditions of the spin and pspin symmetries. The resulting solutions of the wave func-

tions are being expressed in terms of the generalized Jacobi polynomials or hypergeometric

functions. Parametric generalization of the NU method is used. We have further used

the recently introduced exponential approximation to deal with the spin-orbit centrifugal

(pseudo-centrifugal) potential term. The most stringent interesting result is that the present

spin (pspin) symmetric energy spectrum of the Dirac equation is noticed to be the same as

the energy spectrum of the KG solution if V = ±S (i.e., Σ = ∆ = 0, C± = 0). We

point out a possible remark of this result. The conditions that originate the spin and pspin

symmetries in the Dirac equation are the same that produce equivalent energy spectra of

relativistic spin-1/2 and spin-0 particles in the presence of spherical vector and scalar po-

tentials. Obviously, the relativistic solution can be reduced to its non-relativistic limit by

the choice of appropriate mapping transformations. Also, in case when spin-orbit quantum

number κ = ±1 (l = l̃ = 0), the problem can be easily reduced to the s-wave solution. We

also find that when we let x→ −x, α → iα, V2 → iV2, the RM potential (1) turns into tRM

potential (71) with real energy solution. We hope that, as in the nonrelativistic case (see, for

example [58]), the relativistic model under consideration can be applied in molecular physics

as well as nuclear physics. We stress that the present results should be useful in studying

the rotation-vibration energy spectrum of low vibrational molecules of small amplitude and

spin-orbit quantum nnmber κ that are not large [51,58].
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[55] F. Büyükkılıç, H. Eğrifes, D. Demirhan, Solution of the Schrödinger equation for two different

molecular potentials by the Nikiforov-Uvaroıv method, Theor. Chem. Acc. 98 (4) (1997) 192-

196.

[56] S.M. Ikhdair, R. Sever, Exact polynomial solution of PT-/non-PT-symmetric and non-

hermitian modified Woods-Saxon potential by the Nikiforov-Uvarov method, Int. J. Theor.

Phys. 46 (6) (2007) 1643-1665.

[57] S.M. Ikhdair and R. Sever, Polynomial solution of non-central potentials, Int. J. Theor. Phys.

46 (2007) 2384-2395.

[58] S.M. Ikhdair, R. Sever, Improved analytical approximation to arbitrary l-state solutions of the

Schrödinger equation for the hyperbolical potentials, Ann. Phys. (Berlin) 18 (10-11) (2009)

747-758.

21



0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

r (in units of 1/α)

V
(r

) (
in

 u
ni

ts
 o

f V
1)

 

 

V
2
=2V

1

V
2
=V

1

V
2
=V

1
/3

FIG. 1: A plot of the Rosen-Morse-type potential (1) for three different cases V2 = 2V1, V2 = V1

and V2 = V1/3.
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FIG. 2: A plot of the reflectionless potential (44) for three various values λ = 1, 2, and 3.
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α = 1, b = 1, (ii) a = 1, α = 5, b = 2, and (iii) a = 2, α = 10, b = 1.
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FIG. 4: Plot of the trigonometric Rosen-Morse-type potential [see Eq. (71)] for various sets of

parameters.
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