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Abstract

We present the simulation of the time evolution of the distance matrix.

The result is the node-node distance distribution for various kinds of net-

works. For the exponential trees, analytical formulas are derived for the

moments of the distance distribution.

1 Introduction

A graph is defined as a set of nodes (vertices) and a set of links between nodes
(edges) [1, 2, 3, 4]. By graph evolution or growth we mean subsequent attach-
ing of new nodes with m edges to previously existing nodes [5]. Such growing
graphs may reflect some features of real evolving networks, e.g. a network of
collaborators, a network of citations of scientific papers, some biological net-
works (food chains or sexual relations) or Internet and world-wide-web pages
with links between them [5, 6, 7, 8, 9].

The distance between nodes is the shortest number of edges which leads from
one node to the other. The node-node distance (NND) distribution depends on
how subsequent nodes are attached. If each node is connected with only one

of preexisting nodes (m = 1) a tree appears. When a new node is attached to
several different nodes with m > 1 edges, the growing structure is called a simple

graph. We may choose nodes to which new nodes are attached in preferential
way or randomly. In the latter case we deal with exponential networks. If the
probability of choosing a node is proportional to its degree (e.g. to the number
of its nearest neighbors) the growing structure is called scale-free or Albert–
Barabási networks [10].

In this paper, the numerical algorithm for the network growth — basing on
distance matrix evolution — is presented both, for exponential and scale-free
networks (m = 1, 2) [11, 12]. The NND distribution and its characteristics are
calculated. For the exponential trees the iterative formulas for n-th ordinary
moments are derived.

2 Computer simulations

A graph with edges of unit length may be fully characterized by its distance
matrix S, an element sij of which is equal to the shortest path between nodes
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i and j. This matrix representation is also particularly useful when computer
simulations for graph evolution are applied.

Attaching subsequent node with one edge (m = 1) to previously existing
network of N nodes corresponds to adding a new (N + 1)-th row and a new
column to N × N large distance matrix S. The distance from newly added
(N + 1)-th node to all others via selected — labeled as p — node is larger
by one than the distance between p-th and all others. Thus, new (N + 1)-th
row/column is a simple copy of p-th row/column but with all of its elements
incremented [11]:

∀ 1 ≤ i ≤ N : sN+1(N + 1, i) = sN+1(i, N + 1) = sN (p, i) + 1. (1)

Similarly, when new node is attached to the network with two edges (m = 2)
to two different nodes — which are labeled as p and q — but the distance from
all other nodes i to the newly added (N + 1)-th is one plus the smaller distance
between p–i or q–i nodes pairs [12]:

∀ 1 ≤ i ≤ N : sN+1(N+1, i) = sN+1(i, N+1) = min
(

sN (p, i), sN(q, i)
)

+1. (2)

In the case mentioned above of the growth of the simple graphs also the
reevaluation of distances between nodes i and j must be done to check if adding
a new node provides the shortcut [12]:

∀ 1 ≤ i, j ≤ N : sN+1(i, j) =

min
(

sN (i, j), sN (i, p) + 2 + sN (q, j), sN (i, q) + 2 + sN(p, j)
)

.
(3)

In both cases diagonal elements of new row/column are zero [11, 12]:

sN+1(N + 1, N + 1) = 0. (4)

Selecting rows/columns (nodes to which we attempt to add a new node) may
be random or preferential. In the latter case an additional evolving vector is in-
troduced, which contains the node labels. These labels occur as vector elements
with a probability proportional to the degree of the node. Random selection of
elements of such a vector correspond to Albert–Barabási construction rule. The
procedure is known as the Kertész algorithm [13].

3 Analytical calculations

Let us define n-th moments of the NND distribution for all distances

ℓnN ≡ [{sn(i, j)}] =
1

N2

N
∑

i=1

N
∑

j=1

[sn(i, j)], (5)

and only for non-zero distances

dnN ≡ [〈sn(i, j)〉] =
1

N(N − 1)

N
∑

i=1

N
∑

j=1

j 6=i

[sn(i, j)], (6)

where {· · · }, 〈· · · 〉 and [· · · ] denote an average over N2 matrix elements, an
average over N(N − 1) non-diagonal matrix elements, and an average over Nrun
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Table 1: The mean distance d(N) = a lnN + b for different evolving networks.
exponential exponential scale-free scale-free

m 1 2 1 2
a 2.00 0.672 1.00 0.462
b −2.84 0.296 −0.08 0.889

Table 2: The dispersion σ2(N) = c lnN+d for the exponential and the scale-free
trees (m = 1).

exponential scale-free
c 2.00 1.00
d −1.44 −1.64

independent realizations of the evolution process (matrices), respectively. Mo-
ments (5) and (6) for n = 1 are sometimes called the network diameter. Both
double sums in r.h.s. of Eqs. (5) and (6) are equal, due to obvious fact, that
s(i, i) = 0. That allows to derive simple dependence between averages {· · · }
and 〈· · · 〉:

NℓnN = (N − 1)dnN . (7)

For the exponential trees — basing on s(i, i) = 0 and distance matrix symmetry
s(i, j) = s(j, i) — we are able to construct iterative equations for ℓnN+1 as

dependent on ℓkN (k = 1, · · · , n)

(N + 1)2ℓnN+1 =

N+1
∑

i=1

N+1
∑

j=1

[sn(i, j)] = N2ℓnN + 2

N
∑

i=1

(

1 + [s(i, q)]
)n
, (8)

where q is the number of the randomly selected row/column of the distance
matrix S. Combining Eq. (8) with Eq. (7) gives the desired iterative formula:

dnN+1 =
(N + 2)(N − 1)

(N + 1)N
dnN +

2

N + 1
+

2(N − 1)

(N + 1)N

n−1
∑

k=1

(

n

k

)

dkN . (9)

4 Results and conclusions

For the trees the mean of the NND d1N and its dispersion σ2 ≡ d2N − (d1N )2

grow logarithmically with N (see Tabs. 1, 2) [11]. For the graphs only the
first cumulant (the average of the NND d1N ) grows logarithmically (see Tab. 2)
[12]. Such a slow increase of d1N with number of network nodes is known as the
small-world effect [14].

The histogram of NND is presented in Fig. 1. As we expected the NND
for the graphs are more condensed than the NND for the trees, as well as, the
scale-free graphs (trees) are more condensed than the exponential graphs (trees).

Knowing the moments dnN — the averages of the n-th powers of the non-
diagonal distance matrix elements (6) — allows to build all statistical parame-
ters which characterize the NND distribution, e.g. the average distance d, the

3



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25

P
(s

(i,
j))

node-node distance s(i,j)

N=1000, Nrun=105 (m=1), Nrun=104 (m=2)

exponential tree
scale-free tree

Poisson distribution, <s(i,j)>=10.985
Poisson distribution, <s(i,j)>=6.788
exponential graphs, <s(i,j)>=4.928

scale-free graphs, <s(i,j)>=4.067

Figure 1: The NND distribution for different types trees and graphs.
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Figure 2: The main moments dkN (k = 1, · · · , 4) for the exponential trees given
by Eq. (9) (lines) and from the direct simulations (symbols). The latter are
averaged over Nrun = 104 independent evolution process realizations.
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Figure 3: The NND distribution characteristics for the exponential trees as
derived from iterative Eq. (9).

distance dispersion σ2, its skewness

ν3 ≡
d3N − 3d2Nd1N + 2(d1N )3

σ3
,

and kurtosis

κ4 ≡
d4N − 4d3Nd1N + 6d2N(d1N )2 − 3(d1N )4

σ4
.

The values of such characteristics of the NND for the exponential trees obtained
via Eq. (9) are presented in Figs. 2 and 3. For trees, the distributions are similar
to the Poisson distribution (see Fig. 1). However, even for large N the skewness
and kurtosis do not vanish as one may expect for the normal distribution [15].
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