
ar
X

iv
:1

30
4.

10
56

v1
  [

m
at

h.
A

P]
  2

6 
M

ar
 2

01
3

Analytic solutions of fractional

differential equations by operational

methods

Roberto Garra1 & Federico Polito2
(1) – Dipartimento di Scienze di Base e Applicate per l’Ingegneria, “Sapienza” University, Rome

Via A. Scarpa 16, 00161, Rome, Italy.

Email address: rolinipame@yahoo.it

(2) – Dipartimento di Matematica, University of Torino

Via Carlo Alberto 10, 10123, Torino, Italy.

Email address: federico.polito@unito.it

September 11, 2018

Abstract

We describe a general operational method that can be used in the analysis

of fractional initial and boundary value problems with additional analytic

conditions. As an example, we derive analytic solutions of some fractional

generalisation of differential equations of mathematical physics. Fraction-

ality is obtained by substituting the ordinary integer-order derivative with

the Caputo fractional derivative. Furthermore, operational relations be-

tween ordinary and fractional differentiation are shown and discussed in

detail. Finally, a last example concerns the application of the method to

the study of a fractional Poisson process.
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1 Introduction

Recently, great interest has been devoted to the application of fractional calcu-
lus modelling to different fields of science e.g. rheology, biology, geomorphology
(see for a recent review [1, 2]). Indeed, it is well known that the introduction
of fractional derivatives furnishes the system with a memory mechanism that is
of great importance, in particular for some diffusive processes [3]. It is there-
fore important to understand the advantages of using fractional derivatives in
classical equations. Currently, several different methods are used to solve frac-
tional differential equations, from the classical Laplace transform for linear frac-
tional equations [2], to Adomian decomposition [4] and recently the Homotopy
Perturbation Method [5] which gives approximate solutions also for nonlinear
fractional differential equations. In this note we provide analytic solutions of a
general class of linear fractional differential equations by operational methods.
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In some previous papers, [6, 7] the authors investigated the differential isomor-
phism between Laguerre and ordinary derivatives. This approach permits us to
study generalised evolution problems (see [8]). In our framework we generalise
some of these results to fractional differential equations. Besides that, we find
a way to analytically solve boundary and initial value problems (BVP and IVP,
respectively) of some interesting equations such as the space and time fractional
diffusion. Moreover, we present some applications considering widely used ini-
tial conditions to highlight the reliability of our method. The organization of
this paper is the following: in Section 2 we discuss the relation between ordinary
derivative and Caputo fractional derivative and discuss a stochastic interpreta-
tion of fractional differentiation from an operational point of view; in Section 3
we state the main result regarding the solution of linear fractional differential
equations by operational method and give some interesting examples.

2 Relations between ordinary derivative and Ca-

puto fractional derivative

In [6], the authors derived formal operational solutions of a class of partial
differential equations involving the so-called Laguerre derivative operator

Dt = −
∂

∂t
t
∂

∂t
, (2.1)

in terms of Tricomi functions. In particular, for the initial value problem

{

Dtf(x, t) = Oxf(x, t),

f(x, 0) = g(x),
(2.2)

where Ox is a linear operator with constant coefficients on x and g(x) is an
analytic function, the operational solution can be written as

f(x, t) = C0(tOx)g(x), (2.3)

where

C0(y) =

∞
∑

n=0

(−y)n

(n!)2
(2.4)

is the zeroth order Tricomi function. Furthermore they pointed out the corre-
spondence

Dt −→
∂

∂t
, C0(y) −→ ey, (2.5)

and also that if h(x, t) is the classical solution, then h(x,∆−1
t ) is the solution

to the same problem but based on Laguerre derivative, where

∆−1
t ξ(t) =

∫ t

0

ξ(y)dy. (2.6)
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In this paper, we exploit the same framework in order to arrive at solutions to
fractional differential equations. The Caputo fractional derivative is defined as

Dνf(x) =
1

Γ(m− ν)

∫ x

0

dm

dym f(y)

(x− y)ν−m+1
dy, ν ∈ (0,+∞), m = ⌈ν⌉, (2.7)

and reduces to the classical derivative when ν = m. It is well-known that
the eigenfunction associated with the Caputo derivative is the Mittag–Leffler
function

Eν(x) =

∞
∑

r=0

xr

Γ(νr + 1)
, ν ∈ (0,+∞), x ∈ R. (2.8)

This can be ascertained by simply writing for example the IVP problem











Dν
t f(t) = αf(t), ν ∈ (0, 2],

f(0) = 1,

f ′(0) = 0,

(2.9)

and by applying the Laplace transform to both members of (2.9), thus obtaining

zνL{f}(z)− zν−1 = αL{f}(z). (2.10)

Now, by considering that L{f}(z) = zν−1/(zν − α) is the Laplace transform of
a Mittag–Leffler function we readily arrive at

f(t) = Eν(αt
ν), t ≥ 0, ν ∈ (0, 2]. (2.11)

In order to complete the correspondence between classical and Caputo deriva-
tive, first we notice that the natural choice of the Riemann–Liouville fractional
integral (here indicated as D−ν

t ) is not satisfactory because

e−αD−ν

t =
∞
∑

r=0

(−α)rD−rν
t 1

r!
=

∞
∑

r=0

(−α)rtνr

r!Γ(νr + 1)
= φ(ν, 1;−αtν), (2.12)

where

φ(γ, ζ;x) =

∞
∑

r=0

xr

r!Γ(γr + ζ)
(2.13)

is a Wright function (see [9]) and not a Mittag–Leffler function. Instead, when
ν ∈ (0, 1], we can operate the right transformation by randomising the time t
as follows:

e−αt −→

∫

∞

0

e−αξtνfΞ(ξ)dξ = EΞe
−αΞtν , (2.14)

or equivalently

t −→ log
[

EΞe
−αΞtν

]

−1/α

, (2.15)

3



where Ξ is a Wright-distributed random variable, that is with probability density
function

fΞ(ξ) =

∞
∑

r=0

(−ξ)r

r!Γ(1 − ν(r + 1))
, ξ > 0, ν ∈ (0, 1]. (2.16)

We can therefore write that

EΞe
−αΞtν =

∫

∞

0

e−αξtνfΞ(ξ)dξ (2.17)

=

∫

∞

0

e−αξtν
∞
∑

r=0

(−ξ)r

r!Γ(1 − ν(r + 1))
dξ

=

∞
∑

r=0

(−1)r

r!Γ(1 − νr − ν)

∫

∞

0

e−αξtν ξrdξ

=
1

αtν

∞
∑

r=0

(−1/(αtν))r

Γ(1− νr − ν)

=
1

αtν
E−ν,1−ν

(

−
1

αtν

)

= Eν(−αtν),

where

Eγ,ζ(y) =

∞
∑

r=0

yr

Γ(γr + ζ)
, y ∈ R, (2.18)

is the generalised Mittag–Leffler function (see [9]), and where, in the last step
we exploited formula (5.1) of [10].
Alternatively, one can define the integral operator

D
−ν
t f(t) = Γ(⌈ν⌉)D−ν

t f(t), ν ∈ (0, 1), (2.19)

which is a simple modification of the Riemann–Liouville fractional integral, and
then write that

e−αD−ν

t =

∞
∑

r=0

(−α)rD−rν
t 1

r!
=

∞
∑

r=0

(−α)rtνr

Γ(νr + 1)
= Eν(−αtν). (2.20)

Beside (2.15), we also have

t −→ D
−ν
t . (2.21)

In practice in our analysis the operator D−ν
t replaces the integral operator ∆−1

t

in Dattoli et al. [6]. In the ordinary case we have that ∆−1
t 1 =

∫ t

0 1 ds = t while

in our case D
−ν
t 1 =

∫ t

0 1 dsν = tνΓ(⌈ν⌉)/Γ(1 + ν), where

dsν =
dsΓ(⌈ν⌉)

Γ(ν)(t − s)1−ν
. (2.22)

Note that dsν can be linked to the interpretation of fractional integration fur-
nished by Tarasov [11] as a measure for fractal media.
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3 Analytic solutions of a class of fractional dif-

ferential equations by operational methods

We here seek to solve analytically a general class of linear partial fractional
differential equations by operational methods, using the results recalled in the
previous section.

Theorem 3.1. Consider the following initial value problem (IVP)
{

Dν
t f(x, t) = Θxf(x, t), ν ∈ (0, 1],

f(x, 0) = g(x),
(3.1)

in the half plane t ≥ 0, with an analytic initial condition g(x) and where Θx is a
generic linear integro-differential operator with constant coefficients acting on x,
and which satisfies the semi-group property, i.e. ΘxΘy = Θx+y. The operational
solution of equation (3.1) is given by:

f(x, t) = Eν(t
νΘx)g(x) =

∞
∑

r=0

tνrΘr
x

Γ(rν + 1)
g(x). (3.2)

Proof. Using spectral properties of Caputo fractional derivative, we immediately
have that

Dν
t f(x, t) = Dν

t Eν(t
νΘx)g(x) = ΘxEν(t

νΘx)g(x) = Θxf(x, t).

Corollary 3.1. Consider the following BVP:
{

Dν
xf(x, t) = Θtf(x, t),

f(0, t) = g(t),
(3.3)

in the half plane x ≥ 0, with an analytic boundary condition g(t). The opera-
tional solution of equation (3.3) is given by:

f(x, t) = Eν(x
νΘt)g(t) =

∞
∑

r=0

xνrΘr
t

Γ(rν + 1)
g(t). (3.4)

Remark 3.1. Note that Theorem 3.1 is still valid for ν ∈ (1, 2] if the constraint
∂tf(x, 0) = 0 holds. Moreover we can state a similar remark for Corollary 3.1
but with the constraint ∂xf(0, t) = 0.

Example 3.1 (IVP for the time-fractional diffusion equation). Consider the
following IVP

{

Dν
t f(x, t) = ∂xxf(x, t), ν ∈ (0, 1],

f(x, 0) = xβ , β /∈ Z
−.

(3.5)

Considering Theorem 3.1, the analytic solution is given by

f(x, t) =

∞
∑

r=0

Γ(β + 1)tνrxβ−2r

Γ(rν + 1)Γ(β + 1− 2r)
. (3.6)
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Proof. Recalling that Dν
t t

rν = Γ(rν + 1)trν−ν/Γ(rν + 1− ν), we have that

Dν
t

{

∞
∑

r=0

Γ(β + 1)tνrxβ−2r

Γ(rν + 1)Γ(β + 1− 2r)

}

=
∞
∑

r=1

Γ(β + 1)t−νtνrxβ−2r

Γ(rν + 1− ν)Γ(β + 1− 2r)
. (3.7)

On the other hand

∂xx

{

∞
∑

r=0

Γ(β + 1)tνrxβ−2r

Γ(rν + 1)Γ(β + 1− 2r)

}

=

∞
∑

r=0

Γ(β + 1)tνrxβ−2(r+1)

Γ(rν + 1)Γ(β − 1− 2r)
, (3.8)

so with a simple change of index in the sum (r′ = r + 1) we retrieve (3.7) and
the proof is complete.
Note that the solution (3.6) is the fractional generalisation of the classical heat
polynomials studied by Rosenbloom and Widder [12].

Example 3.2 (IVP for the time-fractional equation of vibrating plates [13]).
Consider the following initial value problem for the time-fractional equation of
vibrating plates











Dν
t f(x, t) = −∂xxxxf(x, t), ν ∈ (0, 2],

f(x, 0) = sinx,

∂tf(x, 0) = 0,

(3.9)

The analytic solution is given by

f(x, t) = sinx

∞
∑

r=0

(−1)rtνr

Γ(rν + 1)
= sinxEν(−tν). (3.10)

Note that this is simply the solution by separation of variables.

Example 3.3 (BVP for the space-fractional diffusion equation). Consider the
following BVP











Dν
xf(x, t) = ∂tf(x, t), ν ∈ (0, 2], x ≥ 0,

f(0, t) = e−t,

∂xf(0, t) = 0.

(3.11)

The analytic solution is given by

f(x, t) = e−t
∞
∑

r=0

(−1)rxνr

Γ(rν + 1)
= e−tEν(−xν). (3.12)

It is straightforward to realise that this solution can also be derived by separation
of variables.

Example 3.4 (Fractional Poisson process). Consider the differential equation
governing the probability generating function Gν(u, t), |u| ≤ 1, of a fractional
Poisson process [10] Nν(t), t ≥ 0, with rate κ > 0:

{

Dν
t G

ν(u, t) = −κ(1− u)Gν(u, t),

G(u, 0) = 1.
(3.13)
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It may be immediately realised that the solution to (3.13) is

Gν(u, t) = Eν(−κ(1− u)tν), |u| ≤ 1. (3.14)

The remarkable thing here is that we can treat the related fractional difference-
differential equations governing the state probabilities pνk(t) = Pr{Nν(t) = k},
k ≥ 0, with the same operational techniques. In particular it is known that pνk(t)
satisfy the equations

{

Dνpνk(t) = −λpνk(t) + λpνk−1(t), ν ∈ (0, 1], t ≥ 0,

pνk(0) = δk,0.
(3.15)

Where δk,0 is the Kronecker delta, i.e.

δk,0 =

{

1, k = 0,

0, k 6= 0.
(3.16)

We can rewrite equation (3.15) as
{

Dνpνk(t) = −λ(1−B)pνk(t), ν ∈ (0, 1], t ≥ 0,

pνk(0) = δk,0.
(3.17)

where B is the so-called backward shift operator and is such that B(δk,0) =
δk−1,0 and Br(δk,0) = Br−1(B(δk,0)) = δk−r,0. By considering that the eigen-
function associated with the Caputo fractional derivative is the Mittag–Leffler
function, we obtain that the operational solution to (3.17) is

pνk(t) =

∞
∑

r=0

(−λtν)r

Γ(νr + 1)
(1−B)rδk,0 (3.18)

=
∞
∑

r=0

(−λtν)r

Γ(νr + 1)

r
∑

h=0

(

r

h

)

(−1)hδk−h,0

=

∞
∑

r=k

(−λtν)r

Γ(νr + 1)

(

r

k

)

(−1)k.

Note that (3.18) coincides with formula (1.4) of Beghin and Orsingher [10]. For
the specific case ν = 1, that is for the classical homogeneous Poisson process,
we can retrieve the Poisson distribution either by specialising (3.18) or by oper-
ational methods as follows.

pk(t) =
∞
∑

r=0

[−λt(1−B)]r

r!
δk,0 (3.19)

=

∞
∑

r=0

(−λt)r

r!

r
∑

h=0

(

r

h

)

(−1)hδk−h,0

=

∞
∑

r=k

(−λt)r

r!

(

r

k

)

(−1)k

=

∞
∑

r=0

(−λt)r+k

k!r!
(−1)k

=
(λt)k

k!
e−λt.

7



References

[1] L. Debnath. Recent applications of fractional calculus to science and engi-
neering. Int. J. Math. Math. Sci., 54:3413–3442, 2003.

[2] I. Podlubny. Fractional Differential Equations. Academic Press, New York,
1999.

[3] D. Benson., S.W. Wheatcraft, M.M. Meerschaert, and H.P. Scheffler.
Stochastic solution of space-time fractional diffusion equation. Phys. Rev.
E, 65(4):041103, 2002.

[4] V. Daftardar-Geji and H. Jafari. Adomian decomposition: a tool for solving
a system of fractional differential equations. J. Math. Anal. Appl., 301:508–
518, 2005.

[5] S. Momani and Z. Odibat. Homotopy perturbation method for nonlinear
partial differential equations of fractional order. Phys. Lett. A, 365:345–350,
2007.

[6] G. Dattoli, M. Migliorati, and S. Khan. Solutions of integro-differential
equations and operatorial methods. Appl. Math. Comput., 186:302–308,
2007.

[7] G. Dattoli and P.E. Ricci. Laguerre-type exponents and the relevant L-
circular and L-hyperbolic functions. Georgian Math. J., 10:481–494, 2003.

[8] G. Dattoli, M.X. He, and P.E. Ricci. Eigenfunctions of laguerre-type op-
erators and generalized evolution problems. Math. Comput. Modelling, 42:
1263–1268, 2005.

[9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications
of Fractional Differential Equations. Elsevier Science, 2006.

[10] L. Beghin and E. Orsingher. Fractional Poisson processes and related planar
random motions. Electron. J. Probab., 14(61):1790–1826, 2009.

[11] V.E. Tarasov. Fractional Hydrodynamic Equations for Fractal Media. Ann.
Phys., 318(2):286–307, 2005.

[12] P.C. Rosenbloom and D.V. Widder. Expansions in terms of heat poly-
nomials and associated functions. Trans. Amer. Math. Soc., 92:220–266,
1959.

[13] E. Orsingher and M. D’Ovidio. Vibrations and fractional vibrations of rods,
plates and Fresnel pseudo-processes. J. Stat. Phys., 145(1):143–174, 2011.

8


	1 Introduction
	2 Relations between ordinary derivative and Caputo fractional derivative
	3 Analytic solutions of a class of fractional differential equations by operational methods

