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ABSTRACT. This paper deals with the existence and mul-
tiplicity of positive solutions for the system of nonlinear Ham-
merstein integral equations

u(@) = [} k(z,9) f1(y, u(y), v(v), w(y)) dy,
v(z) = [} k(z,9)f2(y,u(y), v(y), w(y)) dy,
w(z) = [ k(z,y)f3(y, u(y),v(y), w(y)) dy.

We use concave functions to characterize growing and inter-
acting behaviors of our nonlinearities so that f1, f2, f3 cover
three cases: the first with all superlinear, the second with all
sublinear, and the last with two superlinear and the other sub-
linear. Based on a priori estimates achieved by using Jensen’s
integral inequality, we use fixed point index theory to estab-
lish our main results. As an application, we use our main
results to establish the existence and multiplicity of positive
solutions for a system of nth order boundary value problems
for nonlinear ordinary differential equations.

1. Introduction. In this paper we study the existence and
multiplicity of positive solutions for the following system of nonlinear
Hammerstein integral equations

u(@) = [i k(@,y) fi(y, u(y), v(y)
(1.1) (@) = [y k(z,y) f2(y, u(y), v(y), w
w(@) = [y k(z,9) f3(y, u(y), v(y), w(y)) dy,
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where k € C([Oa 1] x [Oa 1]7R+)a fi,f2, f3 € C([Oa 1] X Ri)R-i-) (R+ =
[0,4+00)). Note that, by a positive solution of (1.1), we mean a triple
of continuous functions (u,v,w) defined on [0, 1] that solve (1.1) and
are all nonnegative, with at least one of them not vanishing identically
on [0, 1].

The solvability of systems of coupled nonlinear integral equations has
received a great deal of attention in the literature. For more details of
recent development in this direction, we refer the reader to [5, 9-12,
15-18, 21-24] and the references cited therein. In particular, Yang
and Donal O’Regan [22] considered the system of Hammerstein integral
equations

uw(z) = [ k(z,y)f(y, uy),v(y)) dy,
(12) {v<x> = o ke, )9 (y, uly), oly)) dy,

where G C R"™ is a bounded closed domain, k € C(G x G,R}) and
f.9 € C(G x R3,Ry). By using the fixed point index theory, they
obtained some existence and multiplicity results of positive solutions
for system (1.2), where assumptions imposed on the nonlinearities f
and g are formulated in terms of spectral radii of associated linear
integral operators. To the best of our knowledge, there are only a few
papers that deal with systems with three or more equations, see for
example [1-3, 5, 9, 20| and the references cited therein.

In this paper we use concave functions to characterize growing and
interacting behaviors of nonlinearities f;, f2, f3, so that they cover
three cases: the first with all superlinear, the second with all sublinear,
and the last with two superlinear and the other sublinear (see Example
1 in Section 3). Based on a priori estimates achieved by using Jensen’s
integral inequality for concave functions, we use the fixed point index
theory to establish our main results. Our work is motivated by [22],
but our main results extend and improve the corresponding ones in [22]
(see Remark 1 in Section 3). Our main results can be applied to a wide
variety of systems of second order and higher order boundary value
problems for nonlinear ordinary differential equations, but we confine
ourselves to consider, in Section 4, a system of nth-order boundary
value problems for nonlinear ordinary differential equations.

This paper is organized as follows. Section 2 contains some prelim-
inary results. The main results are stated and proved in Section 3.
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Finally, in Section 4, we apply our main results to establish the exis-
tence and multiplicity of positive solutions for a system of nth order
boundary value problems for nonlinear ordinary differential equations.

2. Preliminaries. Let E := C[0,1], |lu| := max,c[,q u(z)],
P:={u€FE:ulx) >0, for all x € [0,1]}. Then (E,| -||) is a
real Banach space and P a cone on E. Define

1w, v, w)| == max{[ull, [v]], [[w]l}, (v, v, w) € E.

Note that E3 is also a real Banach space under the above norm, and
P3 is a cone on E3.

Define the linear integral operator L by

1
(Lu)(z) := / ke, y)u(y) dy.

Then L : E — FE is a completely continuous positive linear operator.
From now on we suppose that the spectral radius of L, denoted by
r(L), is positive. Furthermore, we assume throughout this paper that
the following condition is satisfied:

(H1) There exists a function e € C0,1] such that e is almost
everywhere positive on [0, 1] and satisfies

k(z,y) > e(x)k(z,y), forall z,y,2 € [0,1].

Define the operators 4; (i = 1,2,3)

A, 0, w)() = / (2, 9) (> u(y), v(y), w(y)) dy, (4, v,w) € PP
and A by

A(u, v, w)(x)
= (A1 (u, v, w) (), Az(u, v, w) (), A3(u, v,w)(z)), (u,v,w) € P>
Now A; : P> - P (i = 1,2,3) and A : P> — P2 are completely
(

continuous operators if f; € C([0,1] x R3,R3) (i = 1,2,3). Recall
that, by a positive solution of (1.1), we mean a triple of functions
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(u,v,w) € P?\ {0} that solve (1.1). In our setting, (u,v,w) € P? is
a positive solution of (1.1) if and only if (u,v,w) € P*\ {0} is a fixed
point of A.

Notice we have supposed (L) > 0. Then the well-known Krein-
Rutman [14] theorem asserts that there exist two functions ¢ € P\{0}
and ¢ € P\{0} such that

(2.1) / Kz, 9)e(y) dy = r(L)p(a), / Kz, y)(a) dz = r(Z)(y)

and
(22) el =1, | wia)de=1.
Put
1
(2.3) Py = {u EP: /0 Y(z)u(z)de > w||u||},

where 9(z) is determined by (2.1), (2.2) and w := fol e(z)y(x)dz > 0.
Clearly, P, is also a cone on E.

Lemma 1 (see [22, Lemma 4]). If (H1) is satisfied, then L(P) C Py.

Lemma 2 (see [6]). Let X be a real Banach space and K a cone on
X. Suppose Q C X is a bounded open set and A: QNK — K is a
completely continuous operator. If there exists xg € K \ {0} such that
x — Ax # Axg for allz € 02N K and X\ > 0, then i(A,QNK,K)=0
where 1 indicates the fized point index on K.

Lemma 3 (see [7]). Let X be a real Banach space and K a cone on
X. Suppose Q C X is a bounded open set with0 € Q and A : ONK — K
is a completely continuous operator. If x # MNAzx for all z € 0Q N K
and A € [0,1], then i(A, QN K,K) = 1.

Lemma 4. Suppose p: Ry — Ry is a concave function. Then p is
nondecreasing on R4, and the following inequality holds:

(2.4) pla+0b) <p(a)+p(b), foralla,beRy.
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In addition, if there exist 0 < z1 < zg such that p(z1) = p(z2), then

(2.5) p(z) =p(z1), forallz > x.

Proof. For any x > x2 > x1 > 0, we have by the concavity of p

p(x2) — p(ivl)(

g x — x2) + p(x2).

(2.6) p(z) <

This, together with the nonnegativity of p, implies p(z2) > p(z1), which
proves that p is nondecreasing on R . If there exist 0 < ;1 < x2 such
that p(z1) = p(x2), then identity (2.5) follows from (2.6) immediately.
The proof of (2.4) can be found in [21, Lemma 5]. This completes the
proof. ]

3. Mail results. Let A\; := 1/r(L) > 0 and & := max, yco,1] k(, )
> 0. We now list our hypotheses on fi, fa, f3.

(H2) There exist three functions p,q,s € C(R4,R4) such that
(1) p and g are concave on R,

(2) there exist two constants ¢ > 0 and pq > 1 such that
fl (CL’, U, U, ’lU) > p(’U)—C, fQ(xa U, v, ’UJ) > q(w)_ca fg(il,', U, U, ’lU) > S(’u,)—C,
for all (z,u,v,w) € [0,1] x R3, and

p(kq(ks(u))) > mAik?u —c, forallu € R.

(H3) There exist three constants n; > 0 (¢ = 1,2, 3) and a sufficiently
small 71 > 0 such that 1 + 72 + 73 < A1 and

fi(Q?,U,U,U)) S ni(u—l—v—i—w),

for all (z,u,v,w) € [0,1] x [0,71] X [0,r1] X [0, 71].

(H4) There exist three functions p1, ¢1,51 € C(Ry, R4 ) such that

(1) p; and ¢ are concave on R,
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(2) there exist two constants ro > 0 and pug > 1 such that

p1(rq1(ks1(u))
for all (z,u,v,w) € [0,1] x [0,72] x [0,72] X [0, 72].

(H5) There exist four constants y; > 0 (i = 1,2,3) and ¢ > 0 such
that y1 + 72 +v3 < A1 and

fi(mauavaw) < 'yl(u—i—v—i—w) +c
for all (z,u,v,w) € [0,1] x R3,i=1,2,3.

(H6) fi(z,u,v,w) (i = 1,2,3) are nondecreasing in u,v and w, and
there exists an V > 0 such that

1
/ k(e,y) fily, N,N,N)dy < N, @€ [0,1], i=1,2,3.
0

Example 1. Let

fi(z,u,v,w) := In(u? + v* + w? + 1),
fg(ﬂ?,’LL,’U,’UJ) = u1.5 + v2 + w2,

f3(z,u,v,w) = exp(u® + v* + w?) — 1.

Then (H1) and (H2) hold with p(v) = In(1 + v), ¢(w) = w, r(u) =
exp(u?) — 1. Obviously, f; grows sublinearly at +oco, whereas f» and
f3 grow superlinearly at +oo.

We adopt the convention in the sequel that ci,co,... stand for
different positive constants. Let B, := {(u,v,w) € E3 : |(u,v,w)|| <
p} for every p > 0.

Theorem 1. Suppose (H1), (H2) and (H3) are satisfied. Then (1.1)
has at least one positive solution (u,v,w) € P3\{0}.
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Proof. Let
My = {(u,v,w) € P : (u,v,w) = A(u,v,w) + A(p, 9, 9), X > 0}.

We claim that .#; is bounded. Indeed, if (u,v,w) € .#, then
u > Aj(u,v,w), v > As(u,v,w) and w > As(u,v,w). By (H2), we
have

u(z) > / ke, 0)p(v(y)) dy — ca,
(3.1) o(z) > / k(2 )a(w(y)) dy — c1,

w(z) > / ke, 9)s(u(y)) dy — e1,

for all (z,u,v,w) € [0,1] X .#,. Applying Lemma 4 and Jensen’s
inequality, we obtain

(32) qlwiz) +a) 2 Q( / o )s(u(y) dy)

1
> ot / Kz, )a(s(u(y))) dy,

/ k(w,y>q(w(y)>dy)
k(z,y)p(kq(w(y))) dy

k(z,y)p(kg(w(y) +c1))dy — ca.

> w7t [ k(e) Ilra(w(w) + ralen) — plra(en)] dy

Now (3.2) and (3.3) combined lead to
(3.4)

p(v(z) +¢1) > w1 k(z, y)p(/0 k(y,z)q(rs(u(z))) dz) dy — ca

J
1 pl
> 572/0 /0 k(z,y)k(y, 2)p(kq(rs(u(z)))) dydz — ca,
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p(v(z)) > p(o() + e1) — pler)
k2 / / (2, )y, 2)p(ra(s(u(2)))) dy dz — e — pley).

Combining this with (3.1) and (3.5) gives
(3.6)

ue)z [ k(z,0) i 1 / k(v 2)k(z rp(rg(rs(u(r))) dzdr

—co—pler)|dy — ¢
>t 1 / 1 / ", (g, Dz, Pplnas(ur)))) dy de dr — cg
> k- /// k(2 1) k(y, 2)k (2, 7) [ AP K2u(r) —  dy dz dr — s
> Al / / / k(, 0)k(y, 2)k(z, T)u(r) dy dz dr — s,

Multiply both sides of the above by ¥ (z), integrate over [0,1] and use
(2.1) to obtain

(3.7) /0 ' (e)u() de
> ulxi/ol/ol/ol/ol Y(x)k(z, y)k(y, 2)k(z, 7)u(r) dzdydzdr — ¢4
= [ V) do - e

and thus folw(x)u(x) dz < cy/(p1 —1). Note that, by Lemma 1,
(u,v,w) € A, implies u € Py, v € Py and w € Py. By (2.3), we
obtain

(3-8) [[ull <

__“
w(ps — 1)
Multiply the first inequality in (3.1) by v¥(z), integrate over [0,1], and
use (2.1) to obtain

1 1
/ u(z)y(z)de > )\1_1 / pv(z)yY(x)de — ¢y,
0 0

for all (u,v,w) € .
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so that )
(prmwwaSme+q»

Notice that we may assume v # 0 for any (u,v,w) € .#; and thus
p(|Jv]]) > 0 if (u,v,w) € A;. Consequently, v € Py implies

ol < 5 [ o@e o

vl A¢wﬂﬂmwmw

= wp([[o]]) [[o]

1
ol A¢mmwmma

— wp(llvll)

so that
p(lol) < Mw (lull +c1),  for all (u,v,w) € .

By (2) of (H2) we know that lim,_,o, p(v) = 0o, and thus there exists
a ¢ > 0 such that

(3.9) [lvl| < ¢5, for all (u,v,w) € ;.

A similar argument as used in deriving (3.9) can be used to prove that
there exists a cg > 0 such that

(3.10) lw]| < cg, for all (u,v,w) € M.

We find from (3.8), (3.9) and (3.10) that .} is a bounded set. Conse-
quently, there exists a sufficiently large R > 0 such that

(u’ U, ’LU) 7& A(u, v, ’LU) + )‘(Saa 2 ‘P)a
for all (u,v,w) € 0Bg NP3, X >0.

Now Lemma 2 yields
(3.11) i(A,Bp N P*,P*) = 0.
On the other hand, by (H3) we have

(3.12) Ai(u,v,w) < Llu+v+w), i=1,2,3,
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for any (u,v,w) € B,, N P3. We claim that I — A and I are homotopic
on OB,, N P3. Tt suffices to prove

(3.13)  (u,v,w) # M(u,v,w),¥(u,v,w) € B, NP> e [0,1].

Suppose the contrary. Then there would exist some (ug,vg,wp) €
9B, NP3 and X € [0,1] such that

Ug = )\Al(uo, ’Uo,’wo),
(314) Vo = )\AQ(U(), Uo,’wo),

wo = AA3z(uo, vo, wo)-
It follows from (H3) and (3.14) that

uo < mL(up + vo + wo),
vo < maL(ug + v + wo),
wo < n3L(uo + vo + wo),

and hence
(3.15) o + vo + wp < (M1 + 12 + n3) L(ug + vo + wop).
By successive iteration, we obtain
(3.16) ug +vo +wo < (N1 +m2 +n3)" L™ (uo + vo + wo)
for every positive integer m. Since n1 + M2 + 13 < A1, we have
(m + 2 + n3)"L™(up + vo + wp) — 0 (n — o0). Equation (3.16)
then implies uy = vg = wp = 0, contradicting (ug, vy, wo) € 8B,, N P3.
As a result, (3.13) is true. Now Lemma 3 yields
(3.17) i(A,B,, N P? P®) =1.
Combining (3.11) and (3.17) gives
i(A,(Br\B,,) NP3 P =0-1=—1.

Therefore, operator A has at least one fixed point on (Bg\B,,) N P3,
and hence (1.1) has at least one positive solution. This completes the
proof. |
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Remark 1. In order to make a comparison with the conditions of [22],
we list the assumption (Hy) of [22].

(Hz) There exist p € C(R4+,R4) and ¢ € C(R,4,R) such that
(1) p is concave and strictly increasing on R,

(2) liminf, 4 [f(z,u,v)/p(v)] > 0, liminf,_,[g9(z, u,v)/q(u)] >
0 uniformly with respect to (z,u) € G x Ry and (z,v) € G x Ry,
respectively,

(3) limy—s 4 oo [p(cg(w))/u] = 400, for all ¢ > 0.

In our Theorem 1, the counterpart of (3) is liminf,, , o [p(kq(Kks(u)))/
u] > 1, which considerably weakens (3). In addition, we do not require
that p be strictly increasing.

Theorem 2. Suppose (H1), (H4) and (H5) are satisfied. Then (1.1)
has at least one positive solution (u,v,w) € P3\{0}.

Proof. By (H4), we have

Ay (u, v, 0)(2) > / Kz, 9)p(v(w)) dy,

3.15) Ao, 0)(@) = [ ke pa(ww)

sl )@) 2 [ b))
for all (u,v,w) € B,, NP3, for all z € [0,1].
We claim
(3.19) (u,v,w) # A(u,v,w), for all (u,v,w) € 8B,, N P>.

If the claim is false, there would exist (ug,vo,wo) € 0By, N P such
that Ug Z Al(’U,O,’Uo,wO), Vo Z AQ(’U,O,’U(),’UJ()) and Wo Z Ag(UO,’Uo,’wo).
In view of (3.18), we obtain

uo(z) > / Bz, y)pa (v0(v)) d,
(3.20)

1
wola) > / Bz, ) (wo(y)) dy,
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wo(z) > /0 k(z,y)s1(uo(y))dy, forall z € [0,1].

Note that p; and ¢g; are concave. Now Jensen’s inequality implies

pr(v0(2)) > pl( / k(e w)as (o)) dy)

(3.21) .
> fi’l/0 k(z,y)p1(£g1(wo(y)) dy,
and
a1 (wo(z)) > @1 k(z,y)s1(uo(y)) dy
o ( )

> 5! / Kz, )1 (551 (o)) .

By (3.20)—(3.22) and (H4), we obtain
(3.23)
w(@) > [ k)

X {nl /01 k(y, z)p1 (/01 k(z,7)q1(ks1(uo(T)) dT)) dz] dy
25 [ [ bkt I (s () gtz an
> A3 /01 /01 /01k(w,y)k(y,z)k(z,T)uo(T) dy dzdr.

Multiply both sides of the above by v (z), integrate over [0,1] and use

(2.1) to obtain

1 1
3.24 dz > de,
(3.24) | wl@te) o= [ u(ie) s
so that fol uo(x)y(z) dz = 0, and thus ug(z) = 0. By (3.20), we have

1
/0 Bz, 9)p(vo(y)) dy = 0,
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so that p(vg(xz)) = 0. This, along with Lemma 4, implies vy = 0. A
similar argument shows wy = 0. We then have ug = v9 = wy = 0,
contradicting (ug, vo, wp) € OBy, N P3. As a result, (3.19) is true and

(u, v, w) # A(u,v,w)+(p, @, ), forall (u,v,w) € dB,, NP3 \>0.
Now Lemma 2 yields
(3.25) i(A, B,, N P? P®) =0.
On the other hand, we have by (H5)
(3.26)
Ai(u,v,w) < v L(u+v+w)+cr, forall (u,v,w) € P, i=1,2,3.
Let
My = {(u,v,w) € PX P X P:(u,v,w) = AA(u,v,w), 0 <A< 1}.

We claim that .#5 is bounded. Indeed, for any (u, v, w) € .#>, we have
by (3.26),

(3.27) ut+v+w < yL(u+v+w)+ 3cr,

where 7y := 1 + v2 + 73 < A1. By successive iteration, we obtain

n—1
(3.28) utv+w <AL (u+v+w)+ Z’yiLi(Scﬂ.
i=0

for every n > 1. This, together with r(yL) < 1, implies v L™ (u + v +
w) = 0asn — oo and u+v+w < 3(I —yL) ey, where (I — L)1

denotes the inverse operator of I — yL. The boundedness of .5 has
thus been proven. Taking a sufficiently large R > 72, we have

(u,v,w) # AA(u,v,w), (u,v,w) € IBrN P> Xecl0,1].
Now Lemma 3 implies

(3.29) i(A,BpN P P?) = 1.



144 JIAFA XU AND ZHILIN YANG

Combining (3.25) and (3.29), we obtain
i(A,(BR\B,,) N P*,P*)=1-0=1.
Therefore, the operator A has at least one fixed point on (Bg\B,,)NP?3,

and hence (1.1) has at least one positive solution. This completes the
proof.

Theorem 3. Suppose (H1), (H2), (H4) and (H6) are satisfied. Then
(1.1) has at least two positive solutions in P3\{0}.

Proof. By (H6), we have for i = 1,2, 3,
1
(3.30) Ai(u, v, w)(z) < / k(z,9)fi(y, N, N, N)dty < N
0

for all (u,v,w) € 0By NP3, z € [0,1], and i = 1,2,3. This implies
1A (w, v, w)[| < [|(u, v, w)]],

and thus
(u,v,w) # AA(u,v,w)

for all (u,v,w) € 0By N P3,0 <X < 1. Now Lemma 3 implies

(3.31) i(A, By NP3 P?) = 1.

On the other hand, by (H2) and (H4) , we may take R > N and
ro € (0, N) so that (3.11) and (3.25) hold (see the proofs of Theorems
1 and 2). Combining (3.11), (3.25) and (3.31), we conclude

i(A,(BR\BNy) NP3 P*)=0—-1=—1,
and
i(A,(By\B,,) NP3, P> =1-0=1.
Consequently, A has at least two fixed points, one on (Bg\By) N P>

and the other on (By\B,,) N P3. Hence, (1.1) has at least two positive
solutions in P3\{0}. This completes the proof. O
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4. Applications. Our main results can be applied to a wide va-
riety of systems of boundary value problems for ordinary differential
equations of second order and higher order. In this section, we use our
main results to establish the existence and multiplicity of positive solu-
tions for a system of nth-order boundary value problems for nonlinear
ordinary differential equations. Our concern in this section is with the
problem

u™ (z) + f(z,u,v,w) =0,

u((O)) =4/ (0)=---=u"2(0) = u(1) = 0,
LTt

v(0) =4 (0)=---=v (0) =v(1) =0,

w™ () + h(z,u,v,w) =0,

w(0) = w'(0) = --- = w2 (0) = w(1) = 0,

where n > 2, f,g,h € C([0,1] x R3,R). Problem (4.1) is equivalent
to the system of nonlinear Hammerstein integral equations

(
(4.2) v(

where k(z,y) is the Green’s function

(4.3)
Bz, y) = { (1 =y e — (e~ )" /(- 1) 0<y<a<l,

[(1—y)" =tz ]/ (n = 1)! 0<z<y<l

Note that k € C([0,1]x[0, 1], R ) satisfies the relation (see [19, Lemma
2.2])

kE(z,y) > e(z)k(z,y), forallz,y,z € [0,1],

e(r) := min { "t (1 -x)a"? }

n—1 n-1
_{@nwmnn 0<z<1/2,

[(1-=z)2""%/(n—1)] 1/2<z<1.

where
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This implies that (H1) in Section 2 is satisfied. Simple computations
show that )
— 1 n—
K= max k(z,y) = (n—m .
(z,9)€[0,1]x[0,1] n™(n — 2)!

Define the completely continuous linear operator L : E — E by

(Lu)(z) = / (e, y)u(y) dy.

It is easy to prove that r(L) > 0. Applying Theorems 1-3, we obtain
the following results:

Theorem 4. Suppose (H2) and (H3) are satisfied. Then system (4.1)
has at least one positive solution (u,v,w) € (C™[0,1])* N (P*\{0}).

Theorem 5. Suppose (H4) and (H5) are satisfied. Then sys-
tem (4.10) has at least one positive solution (u,v,w) € (C™[0,1])* N
(P2\{0}).

Theorem 6. Suppose (H2), (H4) and (H6) are satisfied. Then
system (4.1) has at least two positive solutions on (C™[0,1])>N(P3\{0}).
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