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On Free Surface PDE Constrained Shape
Optimization Problem

H. Kasumba∗and K. Kunisch †

Abstract

Shape optimization problems in fluid dynamics governed by the free surface
flows are considered. Such problems are inspired by the process of continuous
casting of steel where optimization of large vortex structures in different metal-
lurgical reactors is of paramount importance to ensure good quality output. The
pseudo-transient approach is used as solution strategy for solving the free surface
problem. Design sensitivities involving different cost functionals are derived using
a formal Lagrangian framework. Numerical results are presented which indicate
the success of the proposed algorithm for solving this free surface shape optimiza-
tion problem.
Key words: Fluid dynamics, Free surface flow, Shape optimization.

1 Introduction
Many industrial processes contain a combination of fluid flow and free fluid surfaces.
Examples of such processes are coating flows [15], thin film manufacturing processes
[24], and continuous casting of steel [19]. The problem we consider in this paper is
inspired by the latter process. Given the increasing demands related to quality of steel
products, optimization of processes involved in continuous casting is required, e.g.,
process improvements in metallurgical reactors like ladle, tundish and mould. For this
purpose, it is important to analyze the fluid flow and mixing that result from various
processing parameters. Large vortex structures that appear in different metallurgical
reactors influence the flotation and separation of non-metallic inclusions and therefore,
the steel quality. These large vortex structures are partly due to the shape of metallurgi-
cal reactors. Different shapes produce different kinds of flows. Therefore, the optimal
vortex control by means of the shape of these metallurgical reactors is important to
ensure a good quality output. As an example, we consider the spout of a pouring tube
reaching into a mold of liquid metal (see Figure 1). The control objective consists in
determining its shape in such a way that the fluid remains as laminar as possible dur-
ing the inflow. The location of the top surface Γ2 ∪Γ7 is not known a priori and its
determination is part of the problem. Therefore, in this work, we deal with a compli-
cated problem namely, the control of the shape of a flow domain Ω with a free surface.
This problem is an optimal control problem, where the free surface problem represents
the state constraint and the parameters defining the subset of the boundary Γopt (to be
specified later ) are the control. Such an optimization problem has been treated for the
Bernoulli problem in [22] and apparently has not been considered previously for free
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Figure 1: Model domain

surface flows governed by the Navier-stokes equations. Furthermore, in [22], a sensi-
tivity analysis was performed for a discretized Bernoulli problem using an automatic
differentiation technique. In the present work, we carry out the sensitivity analysis on
the continuous formulation of the free surface problem. A possible way to realize nu-
merically this optimization problem is to discard one of the boundary conditions on the
free surface and to append it to the cost functional by using a penalty or augmented
Lagrangian approach. Using this strategy, the state relation now becomes a classical
non-linear boundary value problem with well-posed boundary data. Unfortunately, as
noted in [22], this approach leads to serious convergence problems. A further disad-
vantage that was noted in [22] is that, depending on the formulation, a locally optimal
triplet (Γopt,(u∗, p∗),Ω∗) might not represent a physical solution to the free surface
problem. For this reason, we solve the optimization problem in its original setting, i.e.,
we find a solution to the state equation first and then proceed to the upper level repre-
sented by the minimization of the cost functional. Since the free surface problem has to
be solved several times for varying interfaces, one needs an efficient and robust solver
for this type of problem. Possible solution strategies include trial methods, lineariza-
tion methods (continuous or discrete) [4], and shape optimization methods [9]. Here
we use the pseudo-transient approach, which is a trial method. The main advantage of
this approach is that there is no explicit parametrization of the shape of the free bound-
ary using, e.g., splines, but instead the boundary nodes can move freely. Moreover, this
method converges linearly [4] (equivalent to the rate of convergence of a shape opti-
mization method, which requires calculation of shape derivatives which is really only
feasible for fairly simple systems).
The remainder of this paper is organized as follows. Section 2 describes the setting
of the state and optimization problems. The sensitivity analysis of the optimization
problems is given in Section 3. In Section 4, the numerical algorithm used to realize
the optimization problems is given. Numerical examples that support the theoretical
results are presented and the conclusions of this work are drawn.
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2 Setting of the problem
In this section the mathematical notations, the governing equations, and the corre-
sponding boundary conditions of viscous fluid flows are presented. The equations are
formulated in primitive variables, namely: the velocity components and the pressure.

2.1 Notation
Here we collect some notations and definitions that we need in our subsequent discus-
sion. Throughout the paper, we restrict ourselves to the two dimensional case. Vector-
valued functions are indicated by bold letters. An element in x ∈ R2, is denoted by
x = (x1,x2)

T with norm |x|R2 = (∑2
j=1 x2

j)
1/2. Two notations for the inner product in

R2 shall be used, namely (x,y) and x · y, respectively. The latter shall be used in case
of nested inner products. For a vector valued function u, the gradient of u, denoted by
∇u, is a second order tensor defined as ∇u = [∇u]i j :=

(
∂u j
∂xi

)
i, j=1,2

, where [∇u]i j is the

entry at the intersection of the ith row and jth column, while the Jacobian of u, denoted
by Du, is the transpose of the gradient. The curl of a vector field u = (u1,u2)

T ∈ R2,
denoted by curl u, is defined as curl u := ∂u2

∂x1
− ∂u1

∂x2
, while the curl of a scalar field u,

denoted by curl u, is defined as curl u := ( ∂u
∂x2

,− ∂u
∂x1

). The determinant of the velocity
gradient tensor of a vector field u = (u1,u2)

T ∈ R2, denoted by det ∇u(x), is defined
as det ∇u(x) := ∂u1

∂x1

∂u2
∂x2
− ∂u2

∂x1

∂u1
∂x2

. Furthermore, we define the tensor scalar product
denoted by ∇u : ∇ψψψ as

∇u : ∇ψψψ :=
( d

∑
i, j=1

∂u j

∂xi

∂ψ j

∂xi

)
∈ R.

The unit outward normal and tangential vectors to the boundary ∂Ω shall be denoted
by n = (nx1 ,nx2) and τττ = (−nx2 ,nx1), respectively. We denote by Hm(S ), m∈R+, the
standard Sobolev space of order m defined as

Hm(S ) :=
{

u ∈ L2(S ) | Dα u ∈ L2(S ), for 0≤ |α| ≤ m
}
,

where Dα is the weak (or distributional) partial derivative, and α is a multi-index. Here
S , is either the flow domain Ω, or its boundary Γ, or part of its boundary. The norm
|| · ||Hm(S ) associated with Hm(S ) is given by

||u||2Hm(S ) = ∑
|α|≤m

∫
S
|Dα u|2 dx.

Note that H0(S ) = L2(S ) and || · ||H0(S ) = || · ||L2(S ). For vector valued functions,
we define the Sobolev space Hm(S ) as

Hm(S ) := {u = (u1,u2) | ui ∈ Hm(S ), for i = 1,2} ,

and its associated norm

||u||2Hm(S ) =
2

∑
i=1
||ui||2Hm(S ).
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2.2 State problem
Let Ω be a connected bounded domain in R2 with a sufficiently piecewise regular
boundary ∂Ω = Γ. Suppose that an incompressible viscous flow occupies Ω, and that
the state equation for the flow is given by the following system of Navier-Stokes equa-
tions in non-dimensional form:−ν∆u+(u ·∇)u+∇p = f in Ω,

div u = 0 in Ω.
(1)

Here u = (u1,u2)
T is the velocity field, p the pressure, ν the kinematic viscosity of

the fluid (ν = 1
Re > 0, where Re is the Reynolds number) and f the density of exter-

nal forces. The non-linear term (u ·∇)u in (1) is a symbolic notation for the vector
(u1

∂u1
∂x1

+ u2
∂u1
∂x2

, u1
∂u2
∂x1

+ u2
∂u2
∂x2

)T . In order to make (1) well-posed, we have to im-
pose appropriate boundary conditions. The boundaries Γ5, Γ9 and Γ f ≡ Γ2 ∪Γ7 in
Figure 1 are the inflow, the outflow, and the free boundary, respectively. On each of the
boundaries Γi, i = 1, · · · ,12, except Γ f , two boundary conditions are imposed, i.e.,

u = g = (0,un), on inflow Γ5,

−p+ν
∂u
∂n
·n = 0 , ν

∂u
∂n
· t = 0, on outflow Γ9,

u ·n = 0, ν
∂u
∂n
· t = 0, on other fixed boundaries Γ∗,

(2.1)

(2.2)

(2.3)

where Γ∗ := Γ1 ∪ Γ3 ∪ Γ8 ∪ Γ10 ∪ Γ11 ∪ Γ12 ∪ Γ6 ∪ Γ4. Here the vector g is a given
velocity at the inflow Γ5. At the outflow Γ9, a natural “do nothing” boundary condition
proposed in [11] is imposed. Along other boundaries Γ∗, we require that the tangential
stress acting on the fluid along these boundaries vanishes so that it slips freely along
them in the tangential direction. In fact, if we are to impose the no-slip boundary
conditions on Γ4 and Γ6, then a stress singularity would result at contact points where
the boundaries Γ2 and Γ7, meet the boundaries Γ4 and Γ6, respectively [16]. The same
reasoning holds at intersection points where Γ2 and Γ7, meet the boundaries Γ1 and
Γ12, respectively. Therefore, the choice of the free-slip boundary condition (2.3) on Γ∗
suggests itself.

If we assume zero ambient pressure and negligible surface tension effects, then the
3 boundary conditions on the free surface corresponding to the kinematic, normal and
tangential stress balances can be expressed as

u ·n = 0, on Γ f , (3a)

−p+ν
∂u
∂n
·n = 0, and ν

∂u
∂n
· t = 0 on Γ f , (3b)

respectively [7].
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2.3 Pseudo-transient approach for the state problem
We can only apply two of the 3 boundary conditions in (3a-3b). The third is then
used to solve for the unknown free surface position. Two schemes exist for solving the
state problem (1-3) using a Picard type technique, namely the kinematic and normal
stress update schemes. The former is stable for flows where surface tension effects
are insignificant [23]. Therefore, we use this update scheme in this work. We solve the
boundary value problem (1) together with boundary conditions (2) and (3b) on an initial
domain Ω0. The solution (u, p) on Ω0 will not satisfy the boundary condition (3a).
Hence, Γ f needs to be shifted iteratively in order to find a domain Ω satisfying it. For
this purpose, a pseudo time t is introduced and we assume that the instantaneous normal
velocity of the free surface is equal to the normal component of the fluid velocity at the
free surface at all times. This consequently translates (3a) to

n · (dx
dt
−u) = 0 on Γ f , (4)

where x is the vector representing the free surface. For a converged solution of the free
surface, (4) reduces to (3a). The algorithmic steps can now be summarized as follows.

Algorithm 1 Free surface flow solution algorithm

1. Set the initial grid Ω0 and the free surface position Γ0.

2. Solve the Navier-Stokes equations (1), (2) and (3b) to compute the velocity
field uk = (uk

1,u
k
2)

T and pressure pk on this geometry.

3. Compute the new geometry (Ωk+1) by updating the coordinates at the free
surface with aid of (4) using (uk

1,u
k
2)

T and regenerating the mesh such that

(xk+1
1 ,xk+1

2 )T = (xk
1,x

k
2)

T +∆t(uk ·n)(nx1 ,nx2)
T where ∆t is the step size

4. If free surface is moving go to 2.

Remark 2.1. Note that the coordinates (x1,x2)
T in step 3 of Algorithm 1 are defined

locally on the free surface. Thus, we need to provide for the interior node movements
to avoid mesh distortions. For this purpose, we solve the following Poisson problem to
obtain the interior and boundary vertex displacements,

∆ΘΘΘ = 0, in Ω, ΘΘΘ ·n = 0, and
(

∂ΘΘΘ

∂n

)
· t = 0, on ΓS, (5)

ΘΘΘ = 0, on ΓNS, ΘΘΘ = (u ·n)n, on Γ f , (6)

where ΓS := Γ1 ∪Γ4 ∪Γ6 ∪Γ12 and ΓNS := Γ3,Γ5,Γ8,Γ9,Γ10,Γ11. The choice of the
boundary conditions on ΓS ∪ΓNS ∪Γ f is dictated by the physics of the problem. For
instance on ΓS, a slip boundary condition is chosen since we want the mesh nodes to
move freely along the tangential direction. Mesh nodes on ΓNS are fixed, while on Γ f ,
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they move with the normal component of the fluid velocity, in the direction of the unit
outward normal vector to Γ f . The mesh update at the kth time step is now given by

(xk+1
1 ,xk+1

2 )T = (xk
1,x

k
2)

T +∆t ΘΘΘ
k, (7)

where (x1, x2) in (7) are global node locations. Since we are using the forward Euler
time stepping algorithm, we must use a small step size ∆t to ensure stability of the
algorithm [23].

In order to test Algorithm 1, the following flow parameters are chosen, i.e., f = (−1,0),
the inflow speed g = (−0.56,0), and Re = 50. The computational domain in Figure 1
is discretized by triangular elements generated by the bi-dimensional anisotropic mesh
generator [10]. The Navier-Stokes equations (1), (2) and (3b), are then discretized
using the Galerkin finite-element method. We use polynomial of degree two for the
velocity approximation and polynomial of degree one for the pressure. This results in
a set of nonlinear algebraic equations that may be represented in matrix form as

K(ū)ū = F, (8)

where K is the global system matrix, ū is the global vector of unknowns (velocities
and pressures), and F is a vector that includes the effects of body forces and boundary
conditions. A fixed point iteration procedure, namely, a Picard iteration which may be
written as

K(ūi)ūi+1 = F
is used to solve the discrete system (8). Here, the nonlinearity is evaluated at the known
iterate ūi, and a non-symmetric linear system is formed at each iteration. This linear
system is solved by a multi-frontal Gauss LU factorization implemented in the package
UMFPACK [5]. The flow field patterns in Figure 2 are obtained. In Figure 2(a), the

(a) iter =2 (b) iter=6 (c) iter=17

Figure 2: Snapshots of velocity field at different iteration numbers

velocity field lines point out of Γ f and therefore, the flow field does not satisfy u ·n = 0
on Γ f . Hence, we run Algorithm 1 until ||ΘΘΘ||L2 < 10−3 and we stop. This stopping
criterion is met after 17 iterations. The corresponding geometry and flow solving the
free surface problem are depicted in Figure 2 (c).

2.4 Optimization problems
Our objective is to find a domain that solves the free surface problem (1-3) and at
the same time possesses “minimal” vortices within the containment. For this purpose,
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we utilize cost functionals for vortex reduction in fluid dynamics. These include the
tracking-type functional

J1(u,Ω) =
1
2

∫
Ω

|u(x)−ud(x)|2 dx, (9)

which matches a given flow field u to some given desired flow field ud without vortices,

J2(u,Ω) =
1
2

∫
Ω

|curl u(x)|2 dx, (10)

which minimizes of the curl of the velocity field [1]. Furthermore, we utilize

J3(u,Ω) =
∫

Ω

g3(det ∇u) dx, where g3(t) =

{
0 t ≤ 0,

t3

t2+1 t > 0,
(11)

which was more recently introduced in ( see, e.g., [12] and references there in ) for
2D flows. It penalizes the complex eigenvalues of ∇u which are responsible for the
swirling motion in a given flow. The optimization problems can be formulated as
follows: Find Ω over a class of admissible domains Uad such that the functionals J1, J2
and J3 are minimized subject to the Navier-Stokes equations (1-3). More precisely the
optimization problems read {

minΩ∈Uad Ji(u,Ω)

subject to (1−3).
(12)

The set Uad is set up in such a way that problem (12) possesses at least one solution
(Ω,u, p).

3 Sensitivity analysis
In this section we discuss the necessary optimality conditions for (12). We implicitly
assume that the underlying functions are regular enough to ensure well posedness of
all the operations. In order to set up the optimality system, a common technique is
to introduce a family of perturbations {Ωt : t > 0} of a given admissible domain Ω.
The relationship of these perturbations to the set of admissible domains Uad will be
discussed in Section 4. This family of perturbations can be constructed for instance
by perturbation of the identity, see, e.g., [21],[6],[9]. Let D⊂ R2 be a fixed, open and
bounded hold all domain with a piecewise C1,1 boundary ∂D. Let Ω⊂ D̄ be open and
let

F = {h ∈C1,1(D̄) : h|∂D = 0} (13)

be the space of deformation fields which define for t > 0, a perturbation of Ω by

Tt : D 7→ R2, (14)
x 7→ Tt(x) = x+ th(x). (15)
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Then for each h ∈F , there exists τ0 > 0 such that Tt(D) = D and {Tt} is a family of
C1,1-diffeomorphisms for |t|< τ0 [21] . For each t ∈ R with |t|< τ0, we set

Ωt = Tt(Ω), Γt = Tt(Γ).

Thus, Ω0 = Ω,Γ0 = Γ,Ωt ⊂ D. In what follows, we assume that f and g in (1) and
(2.1), respectively, are fixed functions defined on D. The shape derivative of J at Ω in
the direction of the deformation field h is defined as the limit

dJ(u,Ω)h = lim
t→0+

J(ut ,Ωt)− J(u,Ω)

t
, (16)

provided that it exists. Here ut is the solution of (1-3) when we replace Ω by Ωt . If the
mapping h 7→ dJ(u,Ω)h is linear and continuous, then we say that J(u,Ω) is shape dif-
ferentiable [21]. If Ω is sufficiently smooth such that dJ(u,Ω)h =

∫
Γopt

∇ j n ·h ds, for

some scalar-valued function j, then we call ∇ j n the shape gradient of J(u,Ω). We shall
now discuss in a formal manner how to obtain the shape derivative for Ji(u,Ω), i =
1,2,3.

3.1 The formal Lagrangian approach
In order to set up the optimality system for the optimization problem, we introduce the
Lagrange functional L as follows:

L (u, p,v,q,ηηη ,γγγ,µ1,µ2,Ω) =
∫

Ω

ji(u) dx−
∫

Ω

v
(
−α∆u+(u ·∇)u+∇p− f

)
dx+∫

Ω

q div u dx−
∫

Γ5

(u−g)ηηη ds−
∫

Γ9

(−pn+α
∂u
∂n

)γγγ ds−
∫

Γ∗
(u ·n)µ1 ds

−
∫

Γ∗

(
α

∂u
∂n
· t
)

µ2 ds,

where v,q,ηηη ,γγγ, µ1 and µ2 are Lagrange multipliers to enforce the momentum equation,
the incompressibility condition, as well as the boundary conditions. Note that µ1 and
µ2 are scalar valued Lagrange multipliers. The boundary conditions

−pn+α
∂u
∂n

= 0, on free surface Γ f = Γ2∪Γ7,

u ·n = 0, on free surface Γ f ,

have not been enforced through the Lagrange functional. Therefore, any variations ũ
and p̃ in the states u and p must be such that

−p̃n+α
∂ ũ
∂n

= 0, on free surface Γ f ,

ũ ·n = 0, on free surface Γ f .

(18.1)

(18.2)

To obtain the optimality system for the optimization problem (12), we take the first
variation of L with respect to Lagrange multipliers (v,q,ηηη ,γγγ,µ1,µ2), state variables
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(u, p) and the domain Ω in directions (ṽ, q̃, η̃ηη , γ̃γγ, µ̃1, µ̃2), (ũ, p̃) and h, respectively, to
zero, i.e.,

Lv,q,ηηη ,γγγ,µ1,µ2(ṽ, q̃, η̃ηη , γ̃γγ, µ̃1, µ̃2) = 0, (19)
Lu,p(ũ, p̃) = 0, (20)

LΩh = 0. (21)

Equation (19) leads to the state problem (1-3), (20) to the adjoint problem that we
derive in Theorem 3.1, and (21) leads to the optimality conditions, whose derivation is
discussed in subsection 3.2.

Theorem 3.1. Formally the adjoint equations associated to (1-3) are given by

−α∆v− (u ·∇)v+[∇u] ·v+∇q = j′i(u), in Ω,

div v = 0, in Ω,

v ·n = 0, t · [qn− (u ·n)v−α
∂v
∂n ] = 0, on Γ∗,

v = 0, on Γ5,

v ·n = 0, [qn− (u ·n)v−α
∂v
∂n ] = 0, on Γ f ,

qn− (u ·n)v−α
∂v
∂n = 0, on Γ9.

(22)

Proof. (a) Setting the first variation of L with respect to p in direction p̃ to zero,
i.e., Lp p̃ = 0, leads to

Lp p̃ =−
∫

Ω

v∇p̃ dx−
∫

Γ9

(−γγγ ·n)p̃ ds = 0.

Integrating by parts to remove where possible, derivatives from p̃, one obtains∫
Ω

div v p̃ dx−
∫

Γ

(v ·n)p̃ ds−
∫

Γ9

(−γγγ ·n)p̃ ds = 0.

Choosing p̃ ∈C∞
0 (Ω), we obtain∫

Ω

div v p̃ dx = 0. (23)

Since C∞
0 (Ω) is dense in L2(Ω), the relation (23) holds almost every where in Ω.

Hence,
div v = 0, in Ω.

By similar arguments, we can show that

v ·n = 0 on Γ∗∪Γ5∪Γ2∪Γ7,

γγγ ·n = v ·n on Γ9.
(24)
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(b) Setting the variation of L with respect to the state u in the direction ũ equal to
zero results in

Luũ =
∫

Ω

j′i(u)ũ dx−
∫

Ω

v ·
(
−α∆ũ+(ũ ·∇)u+(u ·∇)ũ

)
dx+

∫
Ω

q div ũ dx

−
∫

Γ5

ũ ·ηηη ds−
∫

Γ9

α
∂ ũ
∂n
··· γγγ ds−

∫
Γ∗
(ũ ·n)µ1 ds−

∫
Γ∗
(α

∂ ũ
∂n
· t)µ2 ds = 0,

where ũ denotes an arbitrary variation in the state variable u satisfying (18).
Integrating by parts to remove where possible, derivatives from ũ, one obtains∫

Ω

(
j′i(u)+α∆v+(u ·∇)v− [∇u] ·v−∇q

)
ũ dx+

∫
Γ

(
α

∂ ũ
∂n
·v−α

∂v
∂n
· ũ
)
ds

+
∫

Γ

[ũ · (qn)− (u ·n)(v · ũ)] ds−
∫

Γ5

ũ ·ηηη ds−
∫

Γ9

α
∂ ũ
∂n
· γγγ ds−

∫
Γ∗
(ũ ·n)µ1 ds

−
∫

Γ∗
(α

∂ ũ
∂n
· t)µ2 ds = 0.

(i) Choosing ũ ∈C∞
0 (Ω)2, and using density arguments as before leads to

−α∆v− (u ·∇)v+[∇u] ·v+∇q = j′i(u), in Ω.

Thus, we remain with the expression,∫
Γ

(
α

∂ ũ
∂n
·v−α

∂v
∂n
· ũ
)

ds+
∫

Γ

[q(ũ ·n)− (u ·n)(v · ũ)] ds−
∫

Γ5

ũ ·ηηη ds

−
∫

Γ9

α
∂ ũ
∂n
· γγγ ds−

∫
Γ∗
(ũ ·n)µ1 ds−

∫
Γ∗
(α

∂ ũ
∂n
· t)µ2 ds = 0.

(25)

(ii) Choosing ˜̃u ∈C∞(Γ)2, we can find an extension ũ ∈C∞(Ω)2 such that ũ|Γ = ˜̃u
and ũ|Γ\Γ5 = 0. Consequently, we have that

∫
Γ5

(
α

∂ ˜̃u
∂n
·v−α

∂v
∂n
· ˜̃u
)

ds+
∫

Γ5

q( ˜̃u ·n)− (u ·n)(v · ˜̃u)− ˜̃u ·ηηη ds = 0,

from which we obtain

v = 0, and ηηη = qn− (u ·n)v−α
∂v
∂n

, on Γ5.

(iii) Similarly choosing ˜̃u ∈C∞(Γ)2, we can find an extension ũ ∈C∞(Ω)2 such that
ũ|Γ = ˜̃u and ũ|Γ\Γ∗ = 0. This leads to∫

Γ∗

(
α

∂ ũ
∂n
·v+[qn− (u ·n)v−α

∂v
∂n

] · ũ− (α
∂ ũ
∂n
· t)µ2− (ũ ·n)µ1

)
ds = 0.

(26)
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Re-writing the first and second terms in (26) in component-wise form, we obtain
using that ṽ = (ṽ ·n)n+(ṽ · t)t∫

Γ∗

((
α

∂ ũ
∂n
·n
)
(v ·n)+

(
α

∂ ũ
∂n
· t
)
(v · t)+n · [qn− (u ·n)v−α

∂v
∂n

](ũ ·n)
)

ds

+
∫

Γ∗
t · [qn− (u ·n)v−α

∂v
∂n

](ũ · t) ds−
∫

Γ∗
(α

∂ ũ
∂n
· t)µ2− (ũ ·n)µ1 ds = 0.

(iv) Now choosing variations ũ on Γ∗ such that ũ · n = ũ · t = 0, ∂ ũ
∂n · t = 0, ∂ ũ

∂n · n
arbitrary, we obtain

v ·n = 0, on Γ∗.

Similarly, the following can be independently shown

µ2 = v · t, µ1 = n · [qn− (u ·n)v−α
∂v
∂n

], t · [qn− (u ·n)v−α
∂v
∂n

] = 0 on Γ∗.

(v) Choosing ˜̃u ∈C∞(Γ)2, we can find an extension ũ ∈C∞(Ω)2 such that ũ|Γ = ˜̃u,
ũ|Γ\Γ9 = 0. Then, we have from (25)∫

Γ9

(
α

∂ ũ
∂n
·v−α

∂v
∂n
· ũ+[q(ũ ·n)− (u ·n)(v · ũ)]−α

∂ ũ
∂n
· γγγ
)

ds = 0,

from which we obtain

v = γγγ, and [qn− (u ·n)v−α
∂v
∂n

] = 0, on Γ9.

(vi) Finally setting variations ũ such that ũ = 0 on Γ\Γ f , we obtain from (25)∫
Γ f

α
∂ ũ
∂n
·v ds−

∫
Γ f

ũ
(
−qn+α

∂v
∂n
)

ds = 0. (27)

Using (18) and (24), the first integral in (27) vanishes and we obtain for any
arbitrary variation satisfying (18) that

−qn+α
∂v
∂n

= 0, on Γ f .

Collecting these assertions, we arrive at the adjoint system (22) where we note that
(u ·n) = 0 on Γ f .

Note 3.1. It is important to note that (12) is equivalent to the min-max problem [20].

min
minΩ∈Uad

,u,p

{
max

v,q,ηηη ,γγγ,µ1,µ2
L (u, p,v,q,µ1,µ2,ηηη ,γγγ,Ω)

}
. (28)

Furthermore, from the theory of min-max,

dJi(u,Ω)h = dL (u, p,v,q,µ1,µ2,ηηη ,γγγ,Ω)h,

at the solution of the min-max problem (28).
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Next the boundary condition on Γ5 is homogenized at Γ5 = Γopt. There exists a
unique ĝ satisfying [8] 

div ĝ = 0, in Ω,

ĝ = g, on Γopt,

ĝ = 0, on Γ\Γopt.

Let û = u− ĝ. Then substituting û into (1-3) leads to the following system:

−α∆û+Dû · û+Dû · ĝ+Dĝ · û+∇p = F, in Ω,

div û = 0, in Ω,

û = 0, on Γopt,

−p+α
∂ û
∂n
·n = 0, α

∂ û
∂n
· t = 0, on Γ9,

û ·n = 0, α
∂ û
∂n
· t = 0, on Γ∗,

û ·n = 0, − pn+α
∂ û
∂n

= 0, on Γ f ,

(29.1)

(29.2)

where F := f+α∆ĝ−Dĝ · ĝ.
For the following result, we require the existence of material derivatives of û and p
defined by

˙̂u = lim
t→0+

ut ◦Tt −u
t

,

˙̂p = lim
t→0+

pt ◦Tt − p
t

,

(30)

provided that the limits exist. For the Navier-Stokes equations, existence of the material
derivative is rigorously proved for instance in [18]. Essentially, the existence of the
material derivative requires regularity of f, g and the domain Ω.

Proposition 3.1. We assume that the material derivatives ˙̂u and ṗ exist. Then the shape
derivatives û′ = ˙̂u−Dû ·h and p′ = ṗ−∇p ·h exist by formal arguments, and they are
characterized as the solution of the system

−α∆û′+Dû · (û′+ ĝ′)+Dû′ · (û+ ĝ)+Dĝ · û′+Dĝ′ · û+∇p′ = F′, in Ω,

div û′ = 0, in Ω,

û′ =− ∂ û
∂n n ·h, on Γopt,

−p′+α
∂ û′
∂n ·n = 0, α

∂ û′
∂n · t = 0, on Γ9,

û′ ·n = 0, α
∂ û′
∂n · t = 0, on Γ∗,

û′ ·n = 0, −p′n+α
∂ û′
∂n = 0, on Γ f ,

(31)
where F′ = α∆ĝ′−Dĝ · ĝ′−Dĝ′ · ĝ. Here h denotes a fixed deformation field which is
considered zero on Γ\Γopt.
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Before we prove Proposition 3.1, we recall the following essential lemma.

Lemma 3.1. [21] Let J = [0,τ0] with τ0 sufficiently small, f ∈C(J ,W 1,1(D)), and
assume that ft(0) exists in L1(D). Then

(a)
d
dt

∫
Ωt

f (t,x) dx|t=0 =
∫

Ω

ft(0,x) dx+
∫

Γ

f (0,x)n ·h ds.

(b) Moreover if f ∈C(J ,W 2,1(D)), then

d
dt

∫
Γt

f (t,x) dst |t=0 =
∫

Γ

ft(0,x) ds+
∫

Γ

(
∂ f (0,x)

∂n
+κ f (0,x)

)
n ·h ds,

where κ stands for the mean curvature of Γ.

Proof of Theorem 3.1. Observe that û in (29) satisfies∫
Ω

α∇û : ∇ϕϕϕ +(Dû · û+Dû · ĝ+Dĝ · û+∇p−−−F)ϕϕϕ dx = 0, for any ϕϕϕ ∈D(Ω,R2).

For t sufficiently small, if ϕϕϕ ∈ D(Ω,R2), then also ϕϕϕ belongs to D(Ωt ,R2) [3], and
any solution (ût , pt) of the Navier-Stokes equations in Ωt satisfies:∫

Ωt

α∇ût : ∇ϕϕϕ +Dût · ût ·ϕϕϕ +Dût · ĝt ·ϕϕϕ +Dĝt · ût ·ϕϕϕ +∇ptϕϕϕ−F ·ϕϕϕ dxt = 0. (32)

Taking the derivative of (32) with respect to t at t = 0, and using Lemma 3.1(a), we
obtain∫

Ω

α∇û′ : ∇ϕϕϕ +α∇û : ∇ϕϕϕ
′+Dû′ · û ·ϕϕϕ +Dû · û′ ·ϕϕϕ +Dû · û ·ϕϕϕ ′+Dû′ · ĝ ·ϕϕϕ dx

+
∫

Ω

Dû · ĝ′ ·ϕϕϕ +Dû · ĝ ·ϕϕϕ ′+Dĝ′ · û ·ϕϕϕ +Dĝ · û′ ·ϕϕϕ +Dĝ · û ·ϕϕϕ ′+∇p′ϕϕϕ +∇pϕϕϕ
′ dx

+
∫

Γopt
(α∇û : ∇ϕϕϕ +Dû · û ·ϕϕϕ +Dû · ĝ ·ϕϕϕ +Dĝ · û ·ϕϕϕ +∇pϕϕϕ−F ·ϕϕϕ)n ·h ds

−
∫

Ω

F′ ·ϕϕϕ−F ·ϕϕϕ ′ dx = 0.

(33)

Re-arranging the terms in (33) leads to∫
Ω

α∇û′ : ∇ϕϕϕ +
(

Dû · (û′+ ĝ′)+Dû′ · (û+ ĝ)+Dĝ · û′+Dĝ′ · û+∇p′−F′
)

ϕϕϕ dx

+
∫

Γopt
(α∇û : ∇ϕϕϕ +Dû · û ·ϕϕϕ +Dû · ĝ ·ϕϕϕ +Dĝ · û ·ϕϕϕ +∇pϕϕϕ−F ·ϕϕϕ)n ·h ds

+
∫

Ω

α∇û : ∇ϕϕϕ
′+
(

Dû · û+Dû · ĝ+Dĝ · û+∇p−F
)

ϕϕϕ
′ dx = 0.

(34)
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Let ϕϕϕ be arbitrary and take ϕϕϕ t , in the form ϕϕϕ t ,= ϕϕϕ ◦ T−1
t ∈ D(Ωt ,R2). Since ϕϕϕ , is

constant along each streamline x+ th(x), x ∈ R2 [9], we have ϕ̇ϕϕ = 0 in Ω so that

ϕϕϕ
′ =−∇ϕϕϕ ·h. (35)

Applying the Greens formula on the terms
∫

Ω
α∇û : ∇ϕϕϕ ′ dx and

∫
Ω

α∇û′ : ∇ϕϕϕ dx, we
obtain

−
∫

Ω

α∇û : ∇(∇ϕϕϕ ·h) dx =−
∫

Γopt
α

∂ û
∂n

∇ϕϕϕ ·h ds−
∫

Ω

α∆ûϕϕϕ
′ dx, (36)

and ∫
Ω

α∇û′ : ∇ϕϕϕ dx =
∫

Γopt
α

∂ û′

∂n
ϕϕϕ ds−

∫
Ω

α∆û′ϕϕϕ dx, (37)

respectively, making use of (35) again. Note that

ϕϕϕ
′ =−∂ϕϕϕ

∂n
h ·n, −α

∂ û
∂n

∇ϕϕϕ ·h =−α
∂ û
∂n

∂ϕϕϕ

∂n
h ·n and

α∇û : ∇ϕϕϕ(h ·n) = α
∂ û
∂n

∂ϕϕϕ

∂n
h ·n,

(38)

since ϕϕϕ ∈ D(Ω,R2), yielding ∂ϕϕϕ/∂ s = 0 on Γopt, where ∂/∂ s = 0 stands for the
derivative along Γopt. From (29.1), (34), (36), (37), (38) and the fact that ϕϕϕ has com-
pact support, the second and third expressions in (34) vanish such that we obtain∫

Ω

(−α∆û′+Dû · (û′+ ĝ′)+Dû′ · (û+ ĝ)+Dĝ · û′+Dĝ′ · û+∇p′−F′) ·ϕϕϕ dx = 0.

By density arguments, we obtain

−α∆û′+Dû · (û′+ ĝ′)+Dû′ · (û+ ĝ)+Dĝ · û′+Dĝ′ · û+∇p′ = F′,

which gives the first equation in (31). Since û = 0 on Γopt, we have∫
Γopt

û ·ϕϕϕ ds = 0, for all ϕϕϕ ∈C1(D;R2). (39)

On Γopt, t , (39) becomes∫
Γopt, t

ût ·ϕϕϕ dst = 0, for all ϕϕϕ ∈C1(D;R2). (40)

Taking the derivative of equation (40) with respect to t at t = 0, and using Lemma
3.1(b), we obtain∫

Γopt
û′ ·ϕϕϕ +ϕϕϕ

′ · û ds+
∫

Γopt
[

∂

∂n
(û ·ϕϕϕ)+κû ·ϕϕϕ]n ·h ds = 0, (41)
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where κ is the curvature of the boundary. Using the expression for ϕϕϕ ′ in (38), equation
(41) simplifies to ∫

Γopt
(û′ ·ϕϕϕ +

∂ û
∂n
·ϕϕϕn ·h) ds = 0.

Again by density arguments, we have that

û′ =−∂ û
∂n

n ·h, on Γopt,

which gives the third equation in (31). Since h is assumed to be zero on the other
boundaries, derivation of the other boundary conditions easily follow in a similar way.

Since g is independent of the shape, the shape derivative u′ of the solution u of the
original Navier-Stokes system (1-3) is given by û′ = u′− ĝ′, where ĝ′ = g′ = 0 on Γopt.
Therefore, we obtain the following corollary by substituting û′ = u′− ĝ′ and û = u− ĝ
into (31).

Corollary 3.1. The shape derivative u′ of system (1-3) satisfies the following system

−α∆u′+Du ·u′+Du′ ·u+∇p′ = 0, in Ω,

div u′ = 0, in Ω,

u′ =−∂ (u−g)
∂n

n ·h, on Γopt,

−p′+α
∂u′

∂n
·n = 0, α

∂u′

∂n
· t = 0, on Γ9,

u′ ·n = 0, α
∂u′

∂n
· t = 0, on Γ∗,

u′ ·n = 0, (−p′n+α
∂u′

∂n
) = 0, on Γ f .

(42)

Remark 3.1. We assume that the free boundary is disjoint from the control boundary
and fixed during the optimization step. This implies that not only that u′ ·n = 0, on Γ f ,
but also u′ · t = 0, on Γ f . Consequently, the following conditions

(−p′n+αn ·∇u′) = 0, on Γ f ,

u′ ·n = 0, u′ · t = 0, on Γ f ,

hold.

In the sequel, the following lemma will be utilized.

Lemma 3.2. The shape derivative u′ in (42) satisfies

u′ ·n = 0, on Γopt.
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Proof. Using u′=− ∂ (u−g)
∂n n ·h on Γopt, using the tangential divergence formula [21],

we have on Γopt that

u′ ·n =−∂ (u−g)
∂n

·n(h,n) = div (u− ĝ)(h,n)|Γopt −divΓopt(u−g)(h,n). (43)

Using u−g = 0 on Γopt, as well as considering the fact that we are using divergence
free fields, the expression in (43) vanishes.

3.2 Gradients of cost functionals
The goal here is to find the Eulerian derivatives of Ji(u,Ω), i = 1, . . . ,3, in the direction
of the deformation vector field h.

Theorem 3.2. Let ud the desired flow field, and h a fixed vector field. Then the shape
gradient ∇ j1 n of the cost functional J1 can be expressed as

∇ j1 n =

[
1
2
|u−ud |2 +α

∂ (u−g)
∂n

· ∂v
∂n

]
n, (44)

where all expressions are evaluated on Γopt, and the adjoint state v satisfies (22) with
j′1(u) = (u−ud).

Proof. Since J1(u,Ω) is differentiable with respect to u, by Lemma 3.1 we obtain the
Eulerian derivative of J1(u,Ω) with respect to Ω,

dJ1(u,Ω)h =
∫

Ω

(u−ud)u′ dx+
∫

Γopt

1
2
|u−ud |2n ·h ds. (45)

Testing system (42) with the adjoint variable (v,q) and utilizing the adjoint system
(22), we have

0 =
∫

Ω

((
−α∆u′+Du ·u′+Du′ ·u+∇p′

)
·v− (div u′) ·q

)
dx. (46)

Applying Greens formula to equation (46) gives

0 =
∫

Ω

[(
−α∆v−Dv ·u+[Du]t ·v+∇q

)
·u′− (div v) · p′

]
dx (47)

−
∫

Γ

u′
(
qn− (u ·n)v−α

∂v
∂n
)

ds−
∫

Γ

(
− p′n+α

∂u′

∂n
)
v ds.

Since (v,q) satisfies the adjoint system (22), we have

0 =
∫

Ω

(u−ud) ·u′ dx−
∫

Γ

u′
(
qn− (u ·n)v−α

∂v
∂n
)

ds−
∫

Γ

(
− p′n+α

∂u′

∂n
)
v ds.

(48)

If we write the boundary terms in (48) in component form:∫
Γ

[
(u′ ·n)

(
qn− (u ·n)v−α

∂v
∂n
)
·n+(u′ · t)

(
qn− (u ·n)v−α

∂v
∂n
)
· t
]

ds,∫
Γ

[
(v ·n)

(
− p′n+α

∂u′

∂n
)
·n+(v · t)

(
− p′n+α

∂u′

∂n
)
· t
]

ds,
(49)
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then it is easy to see that these terms in (49) vanish on Γ9,Γ∗ and Γ f , due to (22) and
(42). Therefore, equation (48) becomes∫

Ω

(u−ud) ·u′ dx =−
∫

Γopt
(α

∂v
∂n
−qn)u′ ds. (50)

The term (qn)u′ in (50) vanishes on Γopt, due to Lemma 3.2. Hence, using (42), we
obtain the Eulerian derivative from (45):

dJ1(u,Ω)h =
∫

Γopt

(
1
2
|u−ud |2 +α

∂ (u−g)
∂n

· ∂v
∂n

)
n ·h ds. (51)

Since the mapping h 7→ dJ1(u,Ω)h is linear and continuous, we get the expression for
the shape gradient (44).

Theorem 3.3. Let h be a fixed vector field. Then the shape gradient ∇ j2 n of the cost
functional J2(u,Ω) can be expressed as

∇ j2 n =

[
1
2
|curl u|2 + ∂ (u−g)

∂n
·
(
α

∂v
∂n
− τττcurl u

)]
n, (52)

where all expressions are evaluated on Γopt, and the adjoint state v satisfies (22) with
j′2(u) =−∆u.

Proof. Since J2(u,Ω) is differentiable with respect to u, by Lemma 3.1, we obtain the
Eulerian derivative of J2(u,Ω) with respect to t,

dJ2(u,Ω)h =
∫

Ω

curl u curl u′ dx+
∫

Γopt

1
2
|curl u|2 n ·h ds. (53)

Utilizing arguments in (46), (47), we have for the solution (v,q) of the adjoint system
(22) with j′2(u) =−∆u, that

0 =
∫

Ω

−∆u ·u′ dx−
∫

Γ

u′
(
qn− (u ·n)v−α

∂v
∂n
)

ds−
∫

Γ

(
− p′n+α

∂u′

∂n
)
v ds.

Using similar arguments as before, we have∫
Ω

∆u ·u′ dx =
∫

Γopt
(α

∂v
∂n
−qn)u′ ds. (54)

The term (qn)u′ vanishes on Γopt, due to Lemma 3.2. Thus, (54) becomes∫
Ω

∆u ·u′ dx =−
∫

Γopt
α

∂ (u−g)
∂n

· ∂v
∂n

n ·h ds. (55)

Using Greens formula [17], we have that∫
Ω

curl u curl u′ dx = −
∫

Ω

∆u ·u′ dx+
∫

Γ

(u′ · τττ)curl u ds.
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Utilizing (55) and (42), we obtain∫
Ω

curl u curl u′ dx =
∫

Γopt

∂ (u−g)
∂n

·
(

α
∂v
∂n
− τττ(curl u)

)
n ·h ds.

Hence, we obtain the Eulerian derivative from (53):

dJ2(u,Ω)h =
∫

Γopt

(
1
2
|curl u|2 + ∂ (u−g)

∂n
·
(

α
∂v
∂n
− τττ(curl u)

))
n ·h ds. (56)

Since the mapping h 7→ dJ2(u,Ω)h is linear and continuous, we get the expression for
the shape gradient (52).

Theorem 3.4. Let h be a fixed vector field. Then the shape gradient ∇ j3 n of the cost
functional J3(u,Ω) can be expressed as

∇ j3 n =

[
g3(det ∇u)+

∂ (u−g)
∂n

·
(

α
∂v
∂n
−P(u)

)]
n, (57)

where all expressions are evaluated on Γopt, and the adjoint state v satisfies (22) with
j′3(u) = R(u), where

R(u) =

(
−curl

(
ϑ∇u2

)
curl

(
ϑ∇u1

) )
, P(u) =

 ϑ

(
∂u2
∂x2

nx1 −
∂u2
∂x1

nx2

)
ϑ

(
∂u1
∂x1

nx2 −
∂u1
∂x2

nx1

)
 ,

ϑ = g′3(det ∇u) and u = (u1,u2)
T .

Proof. Since J3(u,Ω) is differentiable with respect to u, by Lemma 3.1, we obtain the
Eulerian derivative of J3(u,Ω) with respect to t,

dJ3(u,Ω)h =
∫

Ω

B dx+
∫

Γopt
g3(det∇u)n ·h ds, (58)

where B = g′3(det ∇u)
(

∂u1
∂x1

∂u′2
∂x2

+
∂u′1
∂x1

∂u2
∂x2
− ∂u2

∂x1

∂u′1
∂x2
− ∂u′2

∂x1

∂u1
∂x2

)
, u′1(x) := ∂u1,t

∂ t (x) |t=0,

u′2(x) := ∂u2,t
∂ t (x) |t=0 and u′(x) = (u′1(x),u

′
2(x))

T .
Using integration by parts, the first term in (58) can be written as∫

Ω

B dx =
∫

Ω

R(u) ·u′ dx+
∫

Γopt
P(u) ·u′ ds.

Following the arguments in (46), (47), we have for the solution (v,q) of the adjoint
system (22) with j′3(u) = R(u), that

0 =
∫

Ω

R(u) ·u′ dx−
∫

Γopt

(
u′
(
qn− (u ·n)v−α

∂v
∂n
)
−
(
− p′n+α

∂u′

∂n
)
v
)

ds.



H. Kasumba & K. Kunisch 19

Using similar arguments as in (49), we obtain∫
Ω

R(u) ·u′ dx =
∫

Γopt
(α

∂v
∂n
−qn)u′ ds.

Utilizing (42), we obtain the Eulerian derivative from (58):

dJ3(u,Ω)h =
∫

Γopt

(
g3(det ∇u)+

∂u
∂n
·
(
α

∂v
∂n
−P(u)

))
n ·h ds. (59)

Since the mapping h 7→ dJ3(u,Ω)h is linear and continuous, we get the expression for
the shape gradient (57).

Remark 3.2. Since Remark 3.1 holds, the integrals in (49), evaluated on Γ f , van-
ish irrespective of which boundary condition is posed on Γ f for the adjoint problem.
Therefore, it suffices to consider only one of the conditions:

[q ·n− (u ·n)v−α∇v ·n] = 0, on Γ f ,

v ·n = 0, on Γ f ,
(60)

for the adjoint problem, so that the expressions for the shape derivatives of Ji, i = 1,2,3
in (51), (56), and (59) are satisfied. In this work we chose to solve the following adjoint
system 

−α∆v− (u ·∇)v+[∇u] ·v+∇q = J′i (u), in Ω,

div v = 0, in Ω,

v ·n = 0, t · [q ·n− (u ·n)v−α∇v ·n] = 0, on Γ∗,

v = 0, on Γ5,

q ·n− (u ·n)v−α∇v ·n = 0, on Γ f ,

q ·n− (u ·n)v−α∇v ·n = 0, on Γ9.

(61)

4 Algorithmic realization and numerical examples
In this section we consider two optimization problems. Firstly, the optimization of the
shape on the inflow portion Γ5 of the flow domain Ω in Figure 1. Figure 3 (a) shows
the geometrical set up of this portion, not drawn to scale. Secondly, the optimization
of the shape of the boundaries Γ4 and Γ6 of the domain Ω (Figure 3 (b)). In both cases,
we let Γopt be represented by the graph of functions α chosen from appropriate sets of
admissible graphs. In particular, for the first problem, we let α ∈ O , where

O = {α ∈C1,1([a,b]) | 0 < αmin ≤ α(x1)≤ αmax, x1 ∈ [a,b]}. (62)

In the second problem, we let α ∈ Oi, i = 1,2, where

O1 = {α1 ∈C1,1([c,d]) | α{min,1} ≤ α1(x2)≤ α{max,1}, x2 ∈ [c,d]},
O2 = {α2 ∈C1,1([c,d]) | α{min,2} ≤ α2(x2)≤ α{max,2}, x2 ∈ [c,d]}.

(63)
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(a) Problem 1 (b) Problem 2

Figure 3: Admissible domains

Consequently, the sets of admissible domains for problems 1 and 2 are defined as

Uad = {Ω(α) | α ∈ O}, (64)

and
Uad = {Ω(α) | α1 ∈ O1, α2 ∈ O2}, (65)

respectively. We solve the optimization problems in their original setting, i.e., we find
a solution to the state problem (1-3) first and then proceed to the upper level repre-
sented by the minimization of the cost functionals (9-11). On the minimization level,
we utilize the boundary variation technique [2]. We remark here that the form of the
deformation field h realizing shape variations depends on how shapes of admissible
domains are parametrized [9]. Therefore, for the family of domains shown in Figures
3(a) and 3(b), it is natural to take the deformation fields of the form h = (0,h2) and
h = (h1,0), respectively. Here, hi corresponds to the variation δα = α̃ −α , where
α̃ ∈ O is a function that determines Γopt(α̃) after deformation of Γopt(α) by δα .
Moreover, δα is defined on the boundary Γopt and can be taken as one of the nega-
tive gradients according to (44), (52) and (57). In fact, for the geometries depicted in
Figure 3, only one of the coordinates of ∇ ji n is nontrivial. However, to avoid ambigu-
ity with (14)-(15), we must extend this variation such that it is defined over the entire
domain. This is done by Algorithm 2 which extends the deformation field h over the
entire domain. It provides a descent direction for the cost functional Ji, i = 1,2,3:

dJi(u,Ω)h =
∫

Γopt
∇Ji n ·h ds =−

∫
Ω

|∇h|2 + |h|2 dx < 0.

Remark 4.1. In the above form, Algorithm 2 does not provide for the inequality con-
straints in Uad . To realize these constraints, a penalty approach is used [13]. Further-
more, no gradient constraints on the curve are imposed and therefore possible boundary
oscillations of Γopt can occur. The extension of h on the basis of (66) is also regular-
izing. If the Neumann boundary condition in (66) is replaced by a Dirichlet condition,
then the regularization is insufficient and undesired oscillations of the shapes occur.
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Algorithm 2 Free surface flow - shape optimization algorithm
• Choose initial shape Ω0, tol, Nmax;
while ( (err > tol) & ( j < Nmax)) do
• Solve the free surface problem by algorithm 1 .
• Compute the adjoint system (61).
• Evaluate the descent direction h j by using

−∆h+h = 0 in Ω, (66)
∂h
∂n

=−∇ ji n on Γopt, (67)

h = 0 on Γ\Γopt, (68)

with Ω = Ω j and Γopt is part of boundary to be optimized.
• Set Ω j+1 = (Id + t jh j)Ω j, where t j is a positive scalar.

end while

4.1 Optimization of inflow
In this problem, we choose parameters in Uad as follows, [a,b] = [−0.4,−0.2], αmax =
0.65, and αmin = 0.45, (see Figure 3). The geometry, together with the correspond-
ing flow field depicted in Figure 2(c), are used to initialize Algorithm 2. The H1(Ω)
norm of h together with the maximum value of h on Γopt are used as the stopping
criteria for the optimization Algorithm 2, i.e., the algorithm is stopped as soon as
max(||h||H1 , ||h||C(Γopt)) is sufficiently small. During each optimization step, the step

size t j is chosen on the basis of the Armijo-type line search and such that there are
no reversed triangles within the mesh after the update. It is observed that we need on
average only k = 2 free surface flow solves per optimization step and this leads to the
convergence of the optimization algorithm.

(a) J1 (b) J2 (c) J3

Figure 4: Snapshots of optimized geometries using the three costs J1, J2 and J3

The geometries together with the flow fields corresponding to the minimization of
the three cost functionals are shown in Figure 4. The desired flow field for cost J1 is
chosen to be ud =(0,−1), which appears to be a natural choice. Moreover, ud is chosen
to be of the same magnitude as the inflow velocity. We observe that the optimal shapes
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corresponding to the 3 cost functionals differ, with J1 being significantly different from
J2 and J3. For both J2 and J3, the depths d (distance of the inflow of the bottom of
the containment) increase during the optimization. For the initial and final graphs of

(b) αopt,J2
(c) αopt,J3

Figure 5: Zoom of αopt for J2 and J3

α , see Figure 5, where the dashed line indicates the location of the optimal boundary
for the inflow. The right hand end point of αopt is active at the upper bound αmax for
the results in Figure 5. From a physical point of view, pulling the spout out of the
containment, leads to a relatively large cross section area for the net flow to occur. This
results in lowering the velocities in the containment as the stream turns, and suggests
a decrease of the cost functionals J2 and J3. We therefore compared the values for
J2, J3 at αopt,J2 , αopt,J3 , to the case where all of Γ5 is chosen to be active at αmax.
The corresponding values are J2(αopt,J2) = 1.011 < J2(αmax) = 1.02578, J3(αopt,J3) =
0.0979 < J3(αmax) = 0.101275. This suggests that a tilted spout is preferable over a
straight spout. A plot of the history of the 3 cost functionals in Figure 6 clearly shows
that the 3 cost functionals decrease during the minimization process.

(a) J1 (b) J2 (c) J3

Figure 6: Convergence history using the three costs J1, J2 and J3

Remark 4.2. The optimal shape corresponding to the cost functional J1 depends
choice of the desired flow ud . A different choice would yield a different optimal shape.



H. Kasumba & K. Kunisch 23

4.2 Optimization of inflow walls
In this example, we optimize the shape of the boundaries Γ4 and Γ6 of the domain
Ω. The parameters in Uad (see equation (65) ) are chosen as follows, [c,d] = [0.6,1],
α{max,1} = −0.18, α{min,1} = −0.22, α{max,2} = −0.37, and α{min,2} = 0.43. The up-
per ends of Γ4 and Γ6 are fixed at the top, i.e., α1(d) = α2(d) = d, while the lower
ends are free. The geometry and the corresponding flow field depicted in Figure 2(c)
are again used to initialize Algorithm 2. The geometries together with the flow field
corresponding to the minimization of the three cost functionals are shown in Figure 7.
The desired flow field for cost J1 is again chosen as in the previous subsection. We ob-

(a) J1 (b) J2 (c) J3

Figure 7: Snapshots of optimized geometries using the three costs J1, J2 and J3

serve that the optimal shape corresponding to the 3 cost functionals again differ, with
J1 being significantly different from J2 and J3. For both J2 and J3, their minimization
leads to the narrowing of the inflow tube (see Figure 7). The converse holds for the
cost functional J1. Moreover, the plots of the history of the 3 cost functionals in Figure
8 clearly show that the 3 cost functionals decrease during the minimization process.

(a) J1 (b) J2 (c) J3

Figure 8: Convergence history using the three costs J1, J2 and J3

A physical explanation of the obtained results is the following. Momentum is trans-
ferred in a fluid by molecules in a slower-moving layer of fluid migrating to a faster-
moving region of fluid and vice versa [14]. The rate of momentum transfer (I) can
mathematically be expressed as

I = u2
ρA,

where u is the velocity of the fluid, ρ the density and A, the cross section area of the
flow region. By enlarging the inflow area A while keeping the velocity u constant,
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the rate of momentum transfer in the fluid is increased. This consequently leads to
an increase in the magnitude of the velocity field as the stream turns. The converse
holds true when the inflow becomes narrower (see Figures 7 (b-c) ), which leads to a
reduction in the vortex in the flow field.

5 Conclusions
In this paper, we proposed a new segregation algorithm for solving free surface PDE
constrained shape optimization problems, by assuming that the free surface remains
fixed during the optimization step. The numerical results presented indicate the feasi-
bility of the proposed method for solving this coupled problem. It remains to inves-
tigate the relaxation of the assumption that the free surface remains fixed during the
optimization and the incorporation of surface tension into the free surface model.
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