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On asymptotic solutions of Friedmann equations
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Abstract

Our main aim is to apply the theory of regularly varying functions to
the asymptotical analysis at infinity of solutions of Friedmann cosmologi-
cal equations. A new constant Γ is introduced related to the Friedmann
cosmological equations. Determining the values of Γ we obtain the asymp-
totical behavior of the solutions, i.e. of the expansion scale factor a(t) of
a universe. The instance Γ < 1

4 is appropriate for both cases, the spatially
flat and open universe, and gives a sufficient and necessary condition for the
solutions to be regularly varying. This property of Friedmann equations is
formulated as the generalized power law principle. From the theory of reg-
ular variation it follows that the solutions under usual assumptions include
a multiplicative term which is a slowly varying function.

Keywords: Friedmann equation, expansion scale factor, regularly varying
functions

1. Introduction

In this paper1 we describe conditions under which the Friedmann equa-
tions [5] have regularly varying solutions. Strictly speaking, we found a
necessary and sufficient condition for Friedmann equations, expressed by
the values of a constant Γ, to have regularly varying solutions. We formu-
late this description as the generalized power law principle for Friedmanns

equation. The physical formulation of this condition is that a certain form
of the equation of state p ∼ wρc2 must hold. Hence, our discussion is mainly
about a universe filled with the perfect fluid with constant barotropic equa-
tion of state p = wρc2. The sufficiency of this condition is well known,
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e.g. Liddle and Lyth [9], Coles and Lucchin [4], Narlikar [16] and Islam [8].
However, we have not found in the literature the necessity part of the power
law principle.

It appears that the mentioned constant Γ related to the Friedmann accel-
eration equation plays the crucial role in this analysis. Its values determine
the asymptotical behavior of the solutions of the Friedmann equations, i.e.
of the scale factor a(t) as time t tends to ∞. Our solution is also valid for
non-zero cosmological constant Λ if the pressureless spatially flat universe
is assumed. This was possible due to a formula of Carroll at al. [3] for the
predicted age of the universe. In the course of this analysis, mathematical
singularities appearing in the solutions are classified and are clearly distin-
guished from those arising from the physical constrains. All solutions we
found are in agreement with the results widely found in the literature on
standard cosmological model.

The background for our analysis is the theory of regularly varying func-
tions which could be considered as the mathematical counterpart of the
general form of the power law, the term often used in physics. A good pre-
sentation of this subject can be found in Bingham at al. [2] and Seneta [17].
Another tool we used is the theory of regularly varying solutions of differ-
ential equations. A good source for this theory is Marić [13]. The theory
of regular variation provides additional means in the asymptotical analysis
of the solutions of the second order linear differential equations as (3), but
it seems it has not been much applied in cosmology and in astrophysics.
There are few such applications, e.g. Molchanov at al. [15], Stern [18] and
Mijajlovic at al. [14].

By R we denote the set of real numbers. As usually, for two real functions
f and g, f(x) ∼ g(x) (or f ∼ g) means that limx→∞ f(x)/g(x) = 1.

The paper is organized as follows. In the first section the history of the
problem is explained and physical (Friedmann equations) and mathematical
(regular variation) background is given. The main results of the paper are
presented in Sections 2 and 3.

1.1. Friedmann equations

The scale factor a(t) is defined by Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric. The FLRW 4-dimensional line element in spherical comov-
ing coordinates is given by

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]

(1)

2



This metric is an exact solution of Einstein’s field equations of general rel-
ativity and it describes a homogeneous, isotropic expanding or contracting
universe. In this paper we shall discuss only the expanding universe. The
scale factor a(t) is a solution of the Friedmann equations. These equations
are derived from the Einstein field equations; they are the following three
differential equations. The term Friedmann equation is usually reserved for
the first one.

(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
(2)

The Friedmann acceleration equation is

ä

a
= −4πG

3

(

ρ+
3p

c2

)

(3)

while the fluid equation is

ρ̇+ 3
ȧ

a

(

ρ+
p

c2

)

= 0. (4)

The solutions of these equations are three fundamental parameters, the scale
factor a = a(t), the energy density ρ = ρ(t) and p = p(t), the pressure of
the material in the universe. Here k is the curvature index with possible
values 1 (elliptic geometry), 0 (spatially flat geometry) and −1 (hyperbolic
geometry). The symbol G denotes the gravitational constant and c is the
speed of light. Equations (2) – (4) are not independent. Eq. (3) follows
from (2) and (4), while the Eqs. (2) and (3) yield (4).

We shall use Karamata theory of regularly varying functions, as applied
to differential equations in Marić and Tomić [12] and Marić [13]. This the-
ory generalizes the power law in physics and we shall use it to obtain the
asymptotic analysis of solutions of Friedmann equations.

In our study of the asymptotical solutions of Friedmann equations, the
acceleration equation will have the central point for several reasons. First,
it does not contain explicitly the curvature index k. Secondly, the theory of
regularly varying solutions of such type of equations can be applied success-
fully, regardless if the cosmological constant Λ is added in (2) and (3):

(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
,

ä

a
= −4πG

3

(

ρ+
3p

c2

)

+
Λ

3
. (5)

Namely, under the transformations ρ′ = ρ+Λ/(8πG), p′ = p−Λ/(8πG)
the equations (5) yield (2) and (3), but now with respect to the parameters
ρ′ and p′. The fluid equation is not affected by the parameter Λ. Therefore,
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our discussion will be concentrated further on the solutions of the Friedmann
equations in their basic form (2) – (4) if it is not otherwise stated.

From now on, we shall assume that the functions a(t), p(t) and ρ(t) sat-
isfy all three Friedmann equations. We shall also assume that all appearing
functions are continuous in their domains and have the sufficient number of
derivatives, at least that they have the continuous second derivative.

1.2. Regular variation

In this section we shall review the basic notions related to the regular
variation necessary for our analysis. In particular we shall need properties
of regularly varying solutions of the second order differential equation

ÿ + f(t)y = 0, f(t) is continuous on [α,∞]. (6)

Observe that the acceleration equation (3) has the form (6). In short, the
notion of a regular variation is related to the power law distributions, de-
scribed by the following relationship between quantities F and t:

F (t) = tr(α+ o(1)), α, r ∈ R. (7)

It is said that two quantities y and tr satisfy the power law if they are
related by a proportion,2 i.e. there is a constant α so that y = αtr. This
definition of power law can be naturally extended by use of the notion of
slowly varying function.

A real positive continuous function3 L(t) defined for x > x0 which sat-
isfies

L(λt)

L(t)
→ 1 as t→ ∞, for each real λ > 0. (8)

is called a slowly varying function.

Definition A physical quantity F(t) is said to satisfy the generalized power
law if

F (t) = trL(t) (9)

where L(t) is a slowly varying function and r is a real constant.

2This relation is usually denoted by y ∝ tr.
3More generally it may be assumed that L(t) is a measurable function, but in this

article we are dealing only with continuous functions anyway.
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Examples of slowly varying functions are ln(x) and iterated logarithmic
functions ln(. . . ln(x) . . .). More complicated examples (cf. Marić [13]) are
provided by:

L1(x) =
1

x

∫ x

a

dt

ln t
, L2(x) = exp((ln x)1/3 cos(lnx)1/3) (10)

We note that L2(x) varies infinitely between 0 and ∞.
A positive continuous function F defined for t > t0, is the regularly

varying function of the index r, if and only if it satisfies

F (λt)

F (t)
→ λr as t→ ∞, for each λ > 0. (11)

It immediately follows that a regularly varying function F (t) has the form
(9). So to say that F (t) is regularly varying is the same as F (t) to satisfy
the generalized power law. By Proposition 7 in [13], if a function F (x) is
asymptotically equivalent to a regularly varying function, it is a regularly
varying function. Hence, we may define the generalized power law also by

F (x) ∼ tαL(t), as t→ ∞. (12)

The class of regularly varying functions of index α we shall denote byRα.
Hence R0 is the class of all slowly varying functions. By Z0 we shall denote
the class of zero functions at ∞, i.e. ε ∈ Z0 if and only if lim

t→+∞

ε(t) = 0.

J. Karamata introduced in [10] the concept of regularly varying functions
continuing the works of G.H. Hardy, J.L. Littlewood and E. Landau in the
asymptotic analysis of real functions. The following two theorems describe
fundamental properties of this class of functions.

Theorem 1.1. [10] (Representation theorem) L ∈ R0 if and only if there

are measurable functions h(x) and ε ∈ Z0 and b ∈ R so that

L(x) = h(x)e
∫
x

b

ε(t)
t

dt, x ≥ b, (13)

and h(x) → h0 as x→ ∞, h0 is a positive constant.

The function ε(t) in the above theorem is not uniquely determined. If
h(x) is a constant function, then L(x) is called normalized. We denote by
N the class of normalized slowly varying functions. We note the following
important fact for N -functions. If L ∈ N and there is L̈, then ε in (13) has
the first order derivative ε̇. This follows from the identity ε(t) = tL̇(t)/L(t).
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There is also an appropriate definition of regular variation at 0 and ∞
and various generalizations such as the rapidly varying functions. Even if
such solutions of Friedmann equation are possible, we will not discuss these
types of solutions in this article, so we omit these definitions.

For our study of Friedmann equations we need several results on solutions
of (6). There are various conditions for f(t) that ensure that regularly
varying solutions of ÿ + f(t)y = 0 exist. We shall particularly use the
following result, see Howard and Marić [7] and Marić [13] the theorems 1.10
and 1.11:

Theorem 1.2. Let −∞ < Γ < 1/4, and let α1 < α2 be two roots ofthe equa-
tion

x2 − x+ Γ = 0. (14)

Further let Li, i=1,2 denote two normalized slowly varying functions. Then

there are two linearly independent regularly varying solutions of ÿ+f(t)y = 0
of the form

yi(t) = tαiLi(t), i = 1, 2, (15)

if and only if lim
x→∞

x

∫

∞

x
f(t)dt = Γ. Moreover, L2(t) ∼

1

(1− 2α1)L1(t)
. �

The limit of the integral in the theorem is not always easy to compute.

As lim
t→∞

t2f(t) = Γ implies lim
x→∞

x

∫

∞

x
f(t)dt = Γ, we see that

lim
t→∞

t2f(t) = Γ (16)

gives a useful sufficient condition for the existence of regular solutions of the
equation ÿ + f(t)y = 0 as described in the previous theorem.

2. Regularly varying solutions of acceleration equations

As noted, the acceleration equation obviously has the form (6) so under
appropriate assumptions, i.e. that the functions we encounter are continu-
ously differentiable as many times as necessary, the analysis of the previous
section, in particular the theorem 1.2, can be applied to it. For this reason,
we shall write from now on the acceleration equation (5) in the form

ä+
µ(t)

t2
a = 0, (17)
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where

µ(t) =
4πG

3
t2
(

ρ+
3p

c2

)

. (18)

Our approach in the next analysis is as follows. Obviously µ is a function of ρ
and p. We assumed that ρ and p are solutions of Friedmann equations, hence
µ(t) is a well-defined function. Under this assumption, the theory of regular
variation applied to the equation (17) yields the asymptotic expansions of
µ(t) and a(t) and exact conditions on µ(t) under which these expansions
exist. Using the identity (18) we will be able then to find the asymptotical
expansions for ρ, p and other cosmological parameters.

In the next the crucial role will play the following integral limit:

lim
x→∞

x

∫

∞

x

µ(t)

t2
dt = Γ. (19)

Let us denote by MΓ the class of functions µ that satisfy the integral
condition (19). Further, let

M =
⋃

r∈R

Mr.

Marić introduced the integral condition (19) (cf. [13]), accordingly we shall
call the class M also as Marić class of functions. Obviously, M is a vector
space over R and the map M : M → R defined by

M(u) = lim
x→∞

x

∫

∞

x

u(t)

t2
dt

is a linear functional, i.e. M(αu + βv) = αM(u) + βM(v), α, β ∈ R,
u, v ∈ M. It is easy to see that M(ε) = 0 for ε ∈ Z0. By the note regarding
(16), we immediately have

Proposition 2.1. If lim
t→∞

u(t) = r then M(u) = r.

Now we prove a useful representation theorem for Marić class of func-
tions.

Theorem 2.2. (Representation theorem for M-functions) u ∈ Mr if and

only if there are ε, η ∈ Z0 such that u(t) = r− tε̇(t)+η(t). If r < 1/4 then ε
is that one appearing in the representation (13) of a(t), with h(t) constant.
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Proof (⇒) Suppose u ∈ Mr, and r <
1

4
. By Theorem 1.2 the equation

ÿ+
u(t)

t2
y = 0 has a solution a(t) = tαL(t) where α is a root of the equation

x2 − x+ r = 0 and L ∈ N . By Theorem 1.1 there are a0, b ∈ R and ε ∈ Z0

so that a(t) = a0t
αe

∫
x

b

ε(t)
t

dt. As L̇(t) =
ε(t)

t
L(t) and r = −α(α − 1), we

have
ä(t) = (−r + tε̇− (1− 2α)ε + ε2)L(t)tα−2

Since −u(t)
t2

=
ä(t)

a(t)
it follows u(t) = r−tε̇(t)+η(t) where η = ε2−(1−2α)ε.

Suppose r ≥ 1

4
. As M( 1

8ru) =
1
8 , taking

1

8r
u instead of u in the previous

proof, we have 1
8ru(t) =

1
8 − tε̇(t) + η(t) for some ε, η ∈ Z0, hence

u(t) = r − tε̇1(t) + η1(t) where ε1 = 8rε and η1 = 8rη.
(⇐) Suppose u(t) = r − tε̇(t) + η(t) where ε, η ∈ Z0. Then

M(u) = M(r)−M(tε̇) +M(η) = r −M(tε̇).

Further, taking v(t) = tε̇,

∫

∞

x

v(t)

t2
dt =

∫

∞

x

dε

t
= − ε

x
+

∫

∞

x

ε

t2
dt = − ε

x
+ o

(

1

x

)

.

Hence, M(tε̇) = lim
x→∞

x

∫

∞

x

v(t)

t2
dt = lim

x→∞

(−ε+ o(1)) = 0, so M(u) = r. �

Corollary 2.3. Assume u ∈ Mr. Then lim
t→∞

u(t) = r if and only if

lim
t→∞

tε̇(t) = 0 in above representation of u.

Example Let ε(t) =
sin(t3)

t
. Then for

µ(t) =
1

8
− tε̇(t)− ε(t) =

1

8
− 3t2 cos(t3)

M(µ) =
1

8
and all ultimately positive solutions of (17) are regularly varying,

but lim
t→∞

µ(t) does not exist. Note that it follows lim
x→∞

x

∫

∞

x
cos(t3)dt = 0.

�

The next proposition will be useful in our further analysis. It also gives
the ε-representation of the logarithmic derivative H(t) ≡ ȧ(t)/a(t) of a(t).
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Proposition 2.4. Suppose µ ∈ M and Γ ≡ M(µ) <
1

4
holds for Eq. (17).

Then any ultimately positive solution a(t) of (17) is a normalized regularly

varying function, i.e. there are L ∈ N and α ∈ R, so that a(t) = tαL(t).
If L(t) has the ε-representation as in Theorem 1.1, where h(t) is a posi-

tive constant, then H(t) = α/t+ ε/t.

Proof Suppose a(t) is positive at∞. By Theorem 1.2 there are L1, L2 ∈ N
and α1, α2 ∈ R so that

a(t) = c1L1t
α1 + c2L2t

α2 , c1, c2 ∈ R, (20)

where α1, α2 are the roots of the equation (14). Since Γ < 1/4 we have
α1 6= α2, so we may assume α1 > α2. Suppose c1 6= 0. Hence, the term
c1L1t

α1 dominates c2L2t
α2 , so there is t0 > 0 so that a(t) > 0 for t > t0.

Let δ = α2 − α1, c0 = c1/c2 and L0 = L1/L2. Note that L0 ∈ R0. By
Representation theorem 1.1 and as L1, L2 are normalized, there are constants
h1, h2, b ∈ R and ε1, ε2 ∈ Z0 so that

Li(x) = hie
∫
x

b

εi(t)

t
dt, x ≥ b, i = 1, 2.

As L̇i(t) =
εi(t)

t
Li(t), taking the logarithmic derivative H(t) ≡ ȧ(t)

a(t)
of a(t)

and α ≡ α1 we obtain

H(t) =
α

t
(1 + ε1/α)

1 + c0
α2 + ε2
α1 + ε1

L0(t)t
δ

1 + c0L0(t)tδ

Since L0 is slowly varying and δ < 0, it follows L0t
δ → 0 as t → 0. Hence,

there is ε ∈ Z0 so that

H(t) =
ȧ(t)

a(t)
=
α

t
+
ε(t)

t
. (21)

By integration of this relation we have immediately

a(x) = a0e
∫
x

b

ε(t)
t

dt, x ≥ b, where b = t0, a0 = a(t0).

Hence, by Theorem 1.1, a(t) is a normalized slowly varying function. �
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3. Asymptotic solutions of Friedmann equations

We proceed to the analysis of solutions of Friedman equations taking into
account the physical constraints. We remind that besides the acceleration
equation (17) with µ(t) defined by (18), the scale factor a(t) also satisfies the
other two Friedmann equations (2) and (4). Note that a(t) is a function of
time which represents the relative expansion of the universe. This function
relates the proper distance between a pair of objects, e.g. two galaxies,
moving with the Hubble flow in a FLWR universe at any arbitrary time t
to their distance at some reference time t0. Thus, d(t) = a(t)d(t0) where
d(t) is the proper distance at epoch t. Hence a(t) > 0. Therefore, we shall
consider only positive solutions a(t) of Friedmann equations.

3.1. Cosmological parameters

The Hubble parameter H(t) and the deceleration parameter q(t) are
defined in Cosmology by

H(t) =
ȧ(t)

a(t)
, q(t) = − ä(t)

a(t)
· 1

H(t)2
(22)

where a(t) is the scale factor. Then obviously we have the following identity.

µ(t) = q(t)(H(t)t)2. (23)

Observe that µ(t) is a dimensionless parameter. We shall assume that µ(t)
is continuous. From the physical point of view, it means that scenarios such
as Big Crunch, or Big Rip are not included in our analysis. That is, in finite
time t, a(t) 6= 0, neither a(t) becomes infinite. If µ(t) is an M-function then
the real constant Γ is defined by Γ = M(µ).

Let us remind that the density parameter Ω(t) and the density parameter
for the cosmological constant Λ are defined by

Ω = Ω(t) =
ρ(t)

ρc
, ΩΛ = ΩΛ(t) =

Λ

3H(t)2

where ρc is the critical density.

Proposition 3.1. If the limit H∞ = lim
t→∞

H(t) exists, then

Γ = lim
t→∞

t

(

(H(t)−H∞)−
∫

∞

t
H(t)2dt

)

10



Proof. As µ(t) = − ä
a
t2 by use of partial integration we have:

∫

µ(t)

t2
dt = − ȧ

a
−

∫

ȧ2

a2
dt = −H(t)−

∫

H(t)2dt

and the statement follows as Γ = lim
x→∞

x

∫

∞

x

µ(t)

t2
dt. �

Therefore, if the limit (19) exists then Γ depends solely on the behavior
of the Hubble parameter H(t) at ∞.

The next theorem describes the main property of the scale factor a(t) for
the non-oscillatory universe. Namely, it gives the necessary and sufficient
condition for a(t) to satisfy the generalized power law.

Theorem 3.2. (Generalized power law for the scale factor a(t)) Let a(t) be
the scale factor, a solution of Friedmann equations, and α ∈ R. Then

1. If µ ∈ MΓ and Γ < 1/4 then there is L ∈ N so that a(t) = tαL(t),
where α is a root of the polynomial x2 − x+ Γ.

2. If there is L ∈ N so that a(t) = tαL(t) then µ ∈ MΓ, α
2 − α+ Γ = 0

and Γ ≤ 1/4.

Proof 1. This assertion follows immediately from Proposition 2.4.
2. The next proof follows the ideas presented in [[13], Section 1.4]. So,
suppose a(t) = tαL(t), L ∈ N . By Representation theorem 1.1 there is

ε ∈ Z0 so that L̇ =
ε

t
L, hence

t
ȧ(t)

a(t)
= ε(t) + α,

(

t
ȧ(t)

a(t)

)2

= η(t) + α2, η ∈ Z0. (24)

Using
ä

a
= − µ

t2
and by integration of the identity

ä

a
=

(

ȧ

a

)

′

+

(

ȧ

a

)2

we

obtain after multiplying by x

−xȧ(x)
a(x)

+ x

∫

∞

x

(

t
ȧ(t)

a(t)

)2

t−2dt+ x

∫

∞

x

µ(t)

t2
dt = 0.

By (24), the last identity and applying x → ∞, we infer α2 − α + Γ = 0.
Since α is a real number, for the discriminant ∆ = 1− 4Γ of the polynomial
x2 − x+ Γ must be ∆ ≥ 0, i.e. Γ ≤ 1/4. �

Remark Under certain conditions Theorem 3.2.1 also holds for Γ = 1/4,
i.e. α = 1/2. This case will be discussed in Section 3.4.
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Theorem 3.3. Assume µ ∈ MΓ where Γ < 1/4. Let a(t) = tαL(t) be the

corresponding scale factor, where α 6= 0 and L ∈ N , with L having the

ε-representation as in Theorem 1.1, where h(t) is a positive constant. Then

1. The possible values of the curvature index k are 0 and −1, i.e. the

Friedmann model of the universe is non-oscillatory.

2. The Hubble parameter H(t) has the following representation

H(t) =
α

t
+
ε

t
. (25)

3. The deceleration parameter q(t) has the following representations

q(t) =
µ(t)

α2
(1 + η), (26)

q(t) =
1− α

α
− tε̇

α2
(1 + η) + τ, η, τ ∈ Z0. (27)

q(t) =
1− α

α
− tξ̇ + ζ, ξ, ζ ∈ Z0 (28)

Proof 1. N -functions belong to so called Zygmund class (Bojanić and
Karamata, see [2]), hence, since α 6= 0, the scale factor a(t) is ultimately
monotonous function. Thus, the universe is non-oscilatory, hence k = 0 or
k = −1.

2. The representation (25) follows from Proposition 2.4

3. q(t) = − ä
a
· 1

H2
=
µ

t2
· 1

(α/t+ ε/t)2
=

µ

α2
(1 + ε/α)−2 =

µ(t)

α2
(1 + η(t))

for some η ∈ Z0, i.e. (26) holds. Further, by ε-representation for µ(t),
Theorem 2.2, there is δ ∈ Z0 so that q(t) = (Γ − tε̇ + δ)(1 + η)/α2. As
Γ = α(1 − α) we obtain (27) taking τ = Γη/α2 + δ(1 + η)/α2.

Finally we show that q ∈ M(1−α)/α. According to Theorem 2.2 this will
prove the representation (28). So, we have

q(t) =
µ

α2
(1 + ε/α)−2 =

Γ− tε̇+ δ

α2
(1 + ε/α)−2,

hence for v(t) = (1 + ε(t)/α)2 we have

M(q) =
Γ

α2
M (1/v)− 1

α2
M (tε̇/v) +

1

α2
M (δ/v) .

Further, M (1/v) = 1 since x

∫

∞

x

1

(1 + ε/α)2
· dt
t2

→ 1 as x→ ∞.

12



M (tε̇/v) = 0 since

x

∫

∞

x

tε̇

v
·dt
t2

= −xα
∫

∞

x

1

t
d

1

1 + ε/α
=

α

1 + ε(x)/α
−xα

∫

∞

x

1

1 + ε/α
· 1
t2
dt =

α

1 + ε(x)/α
− α+ o(1) → 0 as x→ ∞.

M (δ/v) = 0 since δ(t)(1 + ε(t)/α)−2 is a Z0-function.

Therefore M(q) = Γ/α2 = (1− α)/α. �

Now we introduce a new constant w related to the scale factor a(t)
which satisfy the generalized power law. It will appear that w is in fact the
equation of state parameter. So assume a(t) = tαL(t), L ∈ N and α 6= 0.
We define w by

w ≡ wα =
2

3α
− 1 (equation of state parameter). (29)

Note that w 6= −1. As Γ = α(1− α), we have the following statement:

Proposition 3.4. 1. Γ =
2

9
· 1 + 3w

(1 + w)2
.

2. w =
1− 3Γ + σα

√
1− 4Γ

3Γ
, where σα ∈ {1,−1}. �

The sign σα is determined as follows. Suppose Γ 6= 1/4. Then the
polynomial x2 − x + Γ has two different roots α, β. As α + β = 1, we see
that α > β if and only if α > 1/2. Since w in decreasing in α we have:

Case α > 1/2. Then: if 1/4 > Γ > 0 then σα = −1; if Γ < 0 then σα = +1.
Case α < 1/2. Then: if 1/4 > Γ > 0 then σα = +1; if Γ < 0 then σα = −1.

According to Theorem 3.3 we have also the following statement

Theorem 3.5. Under the assumptions of Theorem 3.3 there are the follow-

ing relations

α =
2

3(1 + w)
, a(t) = a0L(t)t

2
3(1+w)

H(t) ∼ 2

3(1 + w)t
, M(q) =

1 + 3w

2
�

(30)

For determination of energy density ρ(t) and pressure p(t) more infor-
mation on the geometry of the universe are needed. We proceed to study
cosmological parameters of the universe with the specific curvature index k.
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3.2. Asymptotic solution for universe with curvature index k = 0

In this subsection we shall discuss cosmological parameters for spatially
flat universe. Hence k = 0 where k is the curvature index. We also assume
that the scale factor a(t) satisfies the generalized power law. This allows
us to estimate at infinity parameters ρ = ρ(t) and p = p(t). The sym-
bol w denotes the equation of state parameter as defined in the previous
subsection.

Theorem 3.6. Assume µ ∈ MΓ where Γ < 1/4. Let a(t) = tαL(t) be the

corresponding scale factor, where α 6= 0 and L ∈ N , with L having the

ε-representation as in Theorem 1.1. Then

1. ρ =
1

6πG(1 + w)2t2
+
η

t2
, η ∈ Z0. 2. M

(

p

ρc2

)

= w.

Proof 1. As k = 0, the Friedmann equation (2) becomes H2 = 8πGρ/3. As

H(t) = α/t+ ε/t and w =
2

3α
− 1, the statement follows if η =

3(2ε+ ε2)

8πG
.

2. By (18), Theorem 2.2 and the above representation of ρ, we have

p

ρc2
=

2µ

3α2(1 + ε/α)2
− 1

3
, µ = Γ− tε̇+ η, η ∈ Z0.

Let us take v(t) = (1 + ε(t)/α)2. Then

M
(

p/ρc2
)

=
2Γ

3α2
M(1/v) − 2

3α2
M(tε̇/v) +M(η/v)− 1

3
.

As in the proof of Theorem 3.3.3, we have M(1/v) = 1, M(tε̇/v) = 0 and
M(η/v) = 0. Hence, M

(

p/ρc2
)

= 2Γ/3α2 − 1/3 = 2/3α − 1/3 = w. �

Corollary 3.7. Under assumptions of Theorem 3.6 there are ξ, ζ ∈ Z0 so

that p = ŵρc2, where ŵ(t) = w − tξ̇ + ζ.

Hence, the assumption that the scale factor a(t) satisfies the generalized
power law implies a certain form of equation of state, p = ŵρc2. If Γ =
lim
t→∞

µ(t) exists, then M(µ) = Γ and by the proof of Theorem 3.6 it follows

ŵ = w, i.e. the classical form of the equation of state is valid. In the next
subsection we shall see that the assumption of the existence of Γ = lim

t→∞

µ(t)

leads to the classical formulas for cosmological parameters.
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3.3. Solution for µ(t) constant at ∞
In this section we shall discuss conditions under which the parameter µ(t)

introduced by (23) is constant at ∞ and how this relates to the solutions
of the Friedmann equations. Therefore we assume lim

t→∞

µ(t) = Γ. Hence,

by Proposition 2.1, M(µ) = Γ. So, all up to now derived properties of
cosmological parameters related to the scale factor a(t) which satisfies the
generalized power law are valid. By Theorem 3.2 this will be the case if Γ <
1/4 and under under additional assumptions if Γ = 1/4. In this subsection
we shall assume Γ < 1/4.

Case k = 0, spatially flat universe

By Corollary 2.3 lim
t→∞

µ(t) = Γ if and only if lim
t→∞

tε̇ = 0 in ε-representation

of a(t) described by Theorem 1.1. Hence, according to Theorems 3.3, 3.5
and 3.6 we immediately obtain:

α =
2

3(1 + w)
, a(t) = a0Lα(t)t

2
3(1+w)

ρ(t) ∼ 1

6πG(1 +w)2t2
, p(t) ∼ wc2ρ

H(t) ∼ 2

3(1 + w)t
, q(t) ∼ 1 + 3w

2

(31)

and the equations (3), (4) and (2) are satisfied.
First we suppose that α is greater of the roots of the polynomial x2−x+Γ,

hence α > 1/2. Then by (31) immediately follows
1

3
> w > −1, hence the

set of admissible values of w is the interval

Iα = (−1, 1/3) (32)

The value w = −1 yields singularity; for such w there is no corresponding
α neither Γ. If p = −ρc2 is anyway assumed, then by fluid equation we have
ρ̇ = 0, i.e ρ is constant. This case corresponds to the cosmological constant,
so ρ = ρΛ = Λ

8πG . The constant Λ has a negative effective pressure, and
as the universe expands, work is done on the cosmological constant fluid.
Hence energy density remains constant in spite of the fact that universe
expands.

If w = 1/3 then α = β = 1/2, Γ = 1/4 and in this case (20) is not the
general solution for Friedmann equations. This case will be discussed later.

If w = −1/3, then α = 1, Γ = 0 and the acceleration equation reduces
to ä ∼ 0. If ρ is computed using the acceleration equation, assuming the
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asymptotic value for a(t) in (31), then the following asymptotic formula for
ρ holds, except for w = −1/3,

ρ ∼ 3Γ

4πG(1 + 3w)
· 1

t2

Hence, w = −1/3 is a kind of singularity, but not the proper one, as it can
be replaced by the second formula for ρ in (31).

Let us take into account the physical constraints on the parameters oc-
curring in our calculations. For example, the universe is decelerating if and
only if q > 0 hence, by (27), this is equivalent to α < 1. On the other hand,

α < 1 is equivalent to w > −1

3
by definition (29) of w. Therefore,

1

2
< α < 1 if and only if − 1

3
< w <

1

3
(33)

and the universe decelerates in all cases. From p ∼ wc2ρ we see that the
pressure p > 0 if and only if w > 0. Hence, using (29), we see that p > 0 if
and only if α < 2

3 and the interval for α in (33) reduces to 1
2 < α < 2

3 .
Let us consider the second fundamental solution in (20) of the accelera-

tion equation with the index β ≡ α2 < 1/2. First we introduce the constant
wβ by

wβ =
2− 3β

3β
(34)

Then as α+ β = 1 and the following symmetric identity holds:

wα +wβ + 3wαwβ = 1 (35)

Let (31β) be the set of parameters obtained from (31) by replacing w(= wα)
by wβ. Using (35) one can show that b(t) satisfies all three equations (3),
(4) and (2). Now having β < 1

2 we can extend the interval for w in (33). As
β < 1

2 we find from (34) that w ≡ wβ >
1
3 or w ≡ wβ < −1. Therefore, by

(31β) the set of admissible values for w = wβ is the set

Iβ = (−∞,−1) ∪
(

1

3
,+∞

)

(36)

Putting together (32) and (36) we see that the set of all admissible values
for w corresponding to all possible solutions of the equations (3), (4) and
(2) is the set

I = R\
{

−1,
1

3

}

, R is the set of real numbers. (37)
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The physical constraints on physical parameters for β < 1
2 give the narrower

bound for wβ. By (31β) the adiabatic sound speed vs =
(

∂p
∂ρ

)1/2
= wβc

2,

hence wβ < 1 and so β > 1
3 . Therefore, including also our previous discus-

sion on physical constraints for α > 1
2 , we have the following bounds for α

and w:
1

3
< α <

2

3
and 0 < w < 1 (Zel’dovich interval). (38)

Case k = −1, spatially open universe

We shall only briefly discuss this case. We remind that if we assume
Γ = lim

t→∞

µ(t) exists and Γ < 1/4, then tε̇(t) → 0 as t→ ∞.

Lemma 3.8. Let a(t) = tαL(t) be a solution of Friedmann equations,

L ∈ N , with ε-representation (13) and k = −1 the spatial index. Then

p

ρc2
=

2

3
· α+ ε+ kc2a−2t2 − tε̇

(α+ ε)2 + kc2a−2t2
− 1 (39)

Proof Taking the logarithmic derivative of ρ using (2) we obtain

ρ̇

ρ
= 2 · HḢ − kc2ȧa−3

H2 + kc2a−2

Using ȧ = Ha and by (25), Ḣ = ε̇/t− (α+ ε)/t2, we get

ρ̇

ρ
= −2H · α+ ε+ kc2a−2t2 − tε̇

(α+ ε)2 + kc2a−2t2
(40)

By fluid equation (4) we have p/ρc2 = − 1

3H
· ρ̇
ρ
− 1, hence (39) follows. �

Corollary 3.9. Suppose k = −1 and α < 1. Then p/ρc2 → −1/3 as

t→ ∞.

Proof As α < 1 and L is slowly varying, we have a−2t2 = L(t)t2(1−α) → ∞
as t→ ∞. Since also ε, tε̇ → 0 as t→ ∞, by (39) the assertion follows. �

Theorem 3.10. Suppose Γ = lim
t→∞

µ(t) exists, Γ < 1/4, and a(t) = tαL(t),

α 6= 0, is a corresponding scale factor for an open universe (i.e. k = −1).
Then α = 1 and w = −1/3.
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Proof Suppose α = 1. Then it easy to see that in this case, by (39),

p

ρc2
=

2

3
· 1 + ε+ kc2L−2 − tε̇

(1 + ε)2 + kc2L−2
− 1 → −1

3
, as t→ ∞.

Assume α < 1. Then, by Corollary 3.9, we have p/ρc2 → −1/3, as t → ∞.
Further, as a−2t2 → ∞ for t→ ∞, by (40) it follows ρ̇/ρ→ −2H, as t→ ∞.
Then by (25) it follows ρ(t) = L1t

−2α for some L1 ∈ N . By (25), Friedman
equation (2), some constants c1, c2 and L2 ∈ N , L2 = L−2, it follows

(α+ ε)2 = (c1L1 + c2L2)t
2(1−α). (41)

Since 2(1− α) > 0 and L1, L2 are slowly varying, it follows

L1t
2(1−α), L2t

2(1−α) → ∞ as t→ ∞,

contradicting the identity (41), as (α+ ε)2 → α2 for t→ ∞. Thus, α ≥ 1.
Suppose α > 1 and t → ∞. Then for the second fundamental solution

uβ we would have β < 1 as α+ β = 1. But this solution is impossible as it
was just proved in the previous case α < 1.

Therefore α = 1. �

Hence, if the power law is assumed for the scale factor a(t) for an open
universe, then a(t) ∼ a0t as t → ∞. Also, Γ = 0 since Γ = α(1 − α). Our
analysis in this subsection leads to the following conclusions.

1◦ The values of the equation of state parameter w. Let us discuss the
values of the parameter w excluded by (37). In the following we shall use the
relation (35). We see that w = −1 leads to the singularities in (31). Also,
wα = −1 if and only if wβ = −1 and in this case there is no corresponding
Γ. This case corresponds to cosmic inflation. The value w = −1

3 yields a
kind of singularity in (31), while the relation (35) is inconsistent. In this
case wβ does not exists and the symmetry between wα and wβ is broken.
Also Γ = 0 and the corresponding w = −1

3 appears in the solution for the
open universe. If w = 1

3 , then Γ = 1
4 , wα = wβ and α = β. This case will be

analyzed in the next subsection. Finally, let us consider the cases w = 0, 1,
the values that appear as limits in (38). If w = 0, then α = 2

3 and from the
definition of w we see that p = 0 (the matter dominated universe). If w = 1,
then α = 1

3 and this value of w corresponds to the universe with the mixture
of dust and radiation. This is possible only if the integration constant c2 in
(20) of the dominant fundamental solution is equal to 0.

2◦ By discussion in this subsection and the remarks in 1◦ we arrive to the
following conclusion: For the spatially flat universe the assumption that µ(t)
is constant at ∞ leads to the classic solution of the Friedmann equation.
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3◦ For the sake of completeness we give a rather short derivation of solution
for the spatially flat universe assuming the equation of state p = wc2ρ, w
is nonsingular. Under this assumption the acceleration equation is reduced

to
ä

a
= −4πG

3
(1 + 3w)ρ, while the Friedmann equation becomes

(

ȧ

a

)2

=

8πG

3
ρ. Dividing the acceleration equation by the Friedmann equation, we

obtain
ä

a
= λ

ȧ2

a2
where λ = −1 + 3w

2
. Hence

dȧ

ȧ
= λ

da

a
, i.e. log ȧ =

log(c0a
λ) and so

a1−λ

1− λ
= c0t+c1, where c0, c1 are the integration constants.

Taking a(0) = 0, we find a(t) = a0t
1

1−λ = a0t
2

3(1+w) for some constant a0.

4◦ Generalized power law principle. Putting together all results pre-
sented up to now, we see that the following are equivalent:

a. The integral limit Γ in (19) exists and Γ < 1
4 .

b. The solutions a(t) of the Friedmann equation satisfy the generalized
power law with index α 6= 1/2.
c. The equation of state holds at infinity as described by Corollary 3.7,
w 6= −1, 13 . If µ(t) is constant at ∞ then p ∼ wc2ρ, as t→ ∞.
5◦ Power law principle and cosmological constant Λ. If Λ 6= 0 is as-
sumed, all the asymptotic formulas (31) for the cosmological parameters are
valid, except for w = −1. This follows from the fact that by the appropriate
substitutions the Friedmann equations with the parameter Λ transform to
their basic form (2) – (4).

3.4. Case Γ = 1
4 , adjacent case

In this subsection we shall assume Γ = 1
4 in the limit (19). Then the

polynomial x2 − x − 1
4 has the double root α = 1

2 . In discussion of the
acceleration equation (17) for this case we shall use the following criterion,
see Marić [[13], p. 37] and Kusano, Marić [[11], Theorem 2.2]:

Theorem 3.11. Let φ(x) = x

∫

∞

x

µ(t)

t2
dt− 1

4
, let the integral

ψ(x) =

∫

∞

x

|φ(t)|
t

dt, x > x0 > 0, converge (42)

and assume
∫

∞

x

ψ(t)

t
dt <∞, x > x0. (43)
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Further, let L1, L2 denote two normalized slowly varying functions. Then

there exist two fundamental solutions of the acceleration equation (17):

u(t) = t
1
2L1(t) v(t) = t

1
2 log(t)L2(t) (44)

if and only if the condition (19) holds (for Γ = 1
4). Also L1, L2 tend to a

constant as t→ ∞ and L2(t) ∼ 1/L1(t). �

As log(t)L2(t) is also a slowly varying, we see that both fundamental
solutions u(t) and v(t) satisfy the general form of power law. Hence, each
solution a(t) = c1u(t)+ c2v(t) of the acceleration equation is regularly vary-
ing of index 1

2 . By the results in the previous subsection when Γ < 1
4 was

assumed, we see, if the conditions (42) and (43) are satisfied, that a(t) is
regularly varying of index 1

2 if and only if w ∼ 1
3 as t → ∞, i.e. p ∼ 1

3c
2ρ

holds asymptotically. This is the second classic cosmological solution.

3.5. Asymptotic solution for spatially flat universe with matter-dominated

evolution

We have seen that the constant Γ = M(µ) determine the asymptotical
behavior at the infinity of the scale factor a(t). If the matter-dominated
evolution of the universe is assumed, i.e. dominated by some form of pres-
sureless material after the certain time moment t0 then it appears that the
expression H(t)t depends solely on the parameter Ω. In this case we are
able to estimate possible values of Γ. We shall discuss also the status of
the constant Γ and the related asymptotic behavior of a(t) for the spatially
flat universe including the cosmological constant Λ. Therefore, in this sec-
tion we discuss asymptotic solutions and Friedmann equations, the related
parameter µ(t), and the constant Γ assuming the pressureless spatially flat
universe with the cosmological constant Λ.

Using the formula for the age of the spatially flat universe with the
cosmological constant Λ Carroll at al. [3], see also Liddle and Lyth [9] and
Narlikar [16], the expression H(t)t in this case is given by

H(t)t =
2

3
· 1√

1− Ω
ln

(

1 +
√
1− Ω√
Ω

)

, (45)

while the deceleration parameter q(t) is given by

q(t) =
Ω

2
− ΩΛ. (46)
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Figure 1: Graph of µ̄(Ω)

In the model of the spatially flat universe we have Ω + ΩΛ = 1 hence,

q(t) =
3Ω

2
− 1. Therefore, by (23) and (45) it follows

µ(t) =
2

9
· 3Ω− 2

1−Ω

(

ln

(

1 +
√
1− Ω√
Ω

))2

. (47)

where Ω = Ω(t). We see that the parameter µ(t) in the model for the
pressureless spatially flat universe depends solely on Ω. The graph of the
parameter µ(t) is presented in Figure 1, as a function of Ω.

The limit value
Ω∞ = lim

t→∞

Ω(t) (48)

can be in principle any value in the interval [0, 1]. Let us introduce the
parameter µ̄(Ω) by the expression on the right hand side of (47). Hence
µ(t) = µ̄(Ω(t)) and

Γ = lim
t→∞

µ(t) = lim
Ω→Ω∞

µ̄(Ω). (49)

We see that µ̄(Ω) is an increasing function in Ω and that its values lay in the

interval [−∞, 29 ], as lim
Ω→1−0

µ̄(Ω) =
2

9
. Hence µ(t) <

2

9
. Suppose the limit

Γ = lim
t→∞

µ(t) exists. Then Γ ≤ 2
9 < 1

4 . Thus, assuming the pressureless

spatially flat universe with the cosmological constant, all possible values of
Γ are less than 2/9, hence Theorem 3.2 can be applied. This analysis leads
to the following conclusions for the solutions of Friedmann equations for the
pressureless spatially flat universe with the cosmological constant Λ.

1◦ The scale factor a(t) satisfies the generalized power law. More specifically,
a(t) = tαL(t) where L ∈ N and α is a root of the polynomial x2 − x+ Γ.
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Figure 2: Graph of µ̄(Ω) in the preferred interval

2◦ Suppose Ω∞ = 1. By the identity Ω+ΩΛ = 1 it follows ΩΛ ∼ 0 as t→ ∞
and Γ = 2

9 . Then the equation (14) becomes x2 − x+ 2
9 = 0 and it has the

solutions α1 = 1
3 , α2 = 2

3 . According to the conclusion 1◦, a(t) regularly
varying of index 2

3 and by (45) and (46), H(t)t ∼ 2
3 and q ∼ 1

2 as t → ∞.
This result corresponds to the classic solution of the Friedmann equation for
the pressureless spatially flat universe with the cosmological constant Λ = 0.

3◦ The formula (47) for µ̄ shows that the evolution of the expansion scale
factor a(t) depends only on the evolution of the density parameter Ω. The
nature of this evolution is determined by the constant Γ but in all instances
it satisfies the power law represented by some regularly varying function.
The introduction of the cosmological constant only changes the index of the
regular variation with respect to the model with Λ = 0.

4◦ Let us consider the possible values of Γ. The value Ω0 = 0.3 (e.g. Liddle
[9]) for the present epoch is close to the value preferred by the observation. If
we assume that the energy density ρ becomes lower as the age of the universe
becomes older, we may suppose that the possible range for the constant Ω∞

is the interval [0.3, 1], i.e. 0.3 ≤ Ω∞ ≤ 1. The graph of µ̄ for this interval is
presented in Fig. 2. We see that Γ ≤ 2/9.
5◦ The solution a(t) is regularly varying of some index α, i.e. a(xt)/a(t) →
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xα as t → ∞, x > 0. So for relatively large4 t0 with respect to x > 0, we
have a(xt0) ∼ a(t0)x

α and we may take that the time instances t0 and xt0
belong to the same epoch in the evolution of the universe. So, taking t = xt0
and eliminating x from the last asymptotic relation, we find the asymptotic
estimation for a(t) for an epoch with respect to the initial value a(t0):

a(t) ∼ a(t0)

(

t

t0

)α

. (50)

Also, a(t) = tαL(t) where L(t) is slowly varying. Hence L(t) ∼ L(t0) for
an epoch, so it is hard to measure L(t0) and the influence of L(t) on a(t).
However, the influence of L(t) on the large scale might be substantial, par-
ticularly if α ≈ 0, as the example (10) shows.

3.6. Case Γ > 1
4

Assume Γ > 1
4 in the limit (19). Then the solution a(t) of the accelera-

tion equation is oscillatory. This immediately follows from Hille’s classical
theorem (see Hille [6] and Marić [13], Theorem 1.8). Therefore, for these
values of Γ the expansion scale factor a(t) of the universe does not satisfy
the power law and the approach presented in the paper is not appropriate
for this case. Since a(t) has in this case (infinitely many) zeros, then there is
t0 such that ȧ(t0) = 0. So, from the Friedmann equation (2) it follows that
k > 0, i.e. the universe must be closed. This is obviously true even if the
Friedmann equation is modified by adding the cosmological constant Λ > 0.

We see that the constant 1/4 plays an important role as a possible value
of Γ in the limit (19). This constant provides a sharp ”threshold”, or ”cut-off
point”, at which the oscillation of a(t) takes place.

4. Conclusion

It has been shown that a dimensionless constant Γ related to the Fried-
mann acceleration equation and the theory of regularly varying functions
play the key role in the formulation of the power law principle for solutions
a(t) of the Friedmann equations. The constant Γ is defined by

Γ = lim
x→∞

x

∫

∞

x

µ(t)

t2
dt. (51)

4 This notion can be made more precise by use of nonstandard analysis. There
we can say that t0 is infinite, while x > 0 is non-infinitesimal finite real number. For
development and notions of nonstandard analysis one can see Stroyan [19]. There are a
lot of applications of nonstandard analysis in the theoretical physics, e.g. Albeverio [1].
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where µ(t) = q(t)(H(t)t)2 as t→ ∞, q(t) is the deceleration parameter and
H(t) is the Hubble parameter. We have shown that the generalized power
law principle for the scale factor a(t) holds if and only if the integral limit
(51) exists and Γ < 1

4 . The cosmological constants were also discussed under
relaxed condition limt→∞ µ(t) = Γ which implies (51), Under this condition
we have shown that the power law principle is equivalent to the equation
of state p ∼ wc2p, w 6= −1, 1/3. The values of Γ determine the asymptoti-
cal behavior of the scale factor a(t) as time t tends to ∞. The constant Γ
also uniquely determines other cosmological parameters such as the Hubble
parameter and the equation of state parameter w. Particularly is discussed
the pressureless spatially flat universe with non-zero cosmological constant.
Further, the value of Γ determines the type of the universe; for Γ < 1

4 the
universe is spatially flat or open, while for Γ > 1

4 the universe is oscillatory.
The boundary case Γ = 1

4 is also analyzed. All solutions we found are in
agreement with the results found widely in the literature on standard cos-
mological model. As power law functions are the most frequently occurring
type of the solutions of the Friedmann equation, the study of the constant
Γ and the related function µ(t) might be of a particular interest.

Note Mathematical contributions in this paper belong to the first author.
The other coauthors clarified physical aspects of this work. We are partic-
ularly grateful to the anonymous reviewers for their suggestions and com-
ments. Due to their remarks and suggestion we did the major revision of the
first version of the paper, particularly those parts concerning the integral
condition (19).
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