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Definite integrals and operational methods
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Abstract

An operational method, already employed to formulate a generalization of the Ramanujan master

theorem, is applied to the evaluation of integrals of various types. This technique provides a very

flexible and powerful tool yielding new results encompassing different aspects of the special function

theory.
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The use of operational methods is, sometimes, very much useful to ”guess” specific the-

orems in various fields of analysis. The drawback of such an approach is that any of its

consequences should be validated by a more rigorous procedure. This is indeed the case

of the Ramanujan Master Theorem [1, 2], according to which if a function f(x) can be

expanded around x = 0 in a power series of the form

f(x) =

∞
∑

n=0

ϕ(n)

n!
(−x)n, (1)

with ϕ(0) = f(0) 6= 0, then

∫ ∞

0

xν−1f(x) dx = Γ(ν)ϕ(ν), (2)

where Γ(z) is the Euler’s Gamma function. The rigorous proof of this identity has been

obtained in Ref. [3, 4]. The simpler but heuristic proof is given in [5, 6]. It is based on

setting

f(x) =
∞
∑

n=0

ĉn

n!
(−x)nϕ(0) = e−ĉ xϕ(0), (3)

with ĉ being an umbral operator such that [7]

ĉnϕ(0) = ϕ(n). (4)

The theorem has been exploited in [5, 6] in a generalized version to obtain, in a very simple

way, old and new formulas for integrals and successive derivatives of Bessel functions. The

noticeable feature emerging from such a procedure is that cylindrical Bessel functions can

be formally treated as functions involving the operator ĉ. For example, the n-th order

cylindrical Bessel function can be written as

Jn(2x) = (ĉ x)ne−ĉ x2

ϕ(0), ϕ(n) =
1

Γ(1 + n)
. (5)

According to the above restyling, and by taking the freedom of treating ĉ as an ordinary

constant, an interesting plethora of new results concerning integrals of Bessel functions and

their derivatives can be obtained. Just to give an example of how the method works, we

consider the integral

Bν(α, β) =

∫ ∞

0

x J2ν(αx)e
iβx2

dx, (α > 0, β > 0). (6)
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The use of Eq. (5) allows to treat this integral as an elementary integral of exponential type

and indeed, under the hypothesis α2 < 4β, we find

Bν(α, β) =
1

2

(α

2

)2ν
(

i

β

)ν+1

bν

(

−i
α2

4β

)

, (7)

where we have introduced the function

bν(x) =
∞
∑

k=0

Γ(ν + k + 1)

Γ(2ν + k + 1)

xk

k!
=

√
π

2
x

1

2
−νe

x

2

[

Iν− 1

2

(x

2

)

+ Iν+ 1

2

(x

2

)]

,

where Iµ(z) is the modified Bessel function [10]. In the case ν = 0, Eq. (7) gives

B0(α, β) =
i

2β
exp

(

−i
α2

4β

)

, (8)

in agreement with Eqs. 6.728.3 and 6.728.4 of [8], and Eq. 2.12.18.7 of [9].

We consider now the Struve function [10]

Hν(x) =

∞
∑

k=0

(−1)k
(

x
2

)2k+ν+1

Γ
(

k + 3
2

)

Γ
(

k + ν + 3
2

) , (9)

that can be rewritten with the umbral operator ĥν as

Hν(x) =
(x

2

)ν+1

exp

[

−ĥν

(x

2

)2
]

ϕ(0), (10)

with

ϕ(n) = (ĥν)
nϕ(0) =

Γ(n+ 1)

Γ
(

n+ 3
2

)

Γ
(

n + ν + 3
2

) . (11)

By applying our method, and using the Euler’s reflection formula for Gamma functions, we

find:
∫ ∞

0

Hν(bx) dx =
1

b

Γ
(

1 + ν
2

)

Γ
(

−ν
2

)

Γ
(

1−ν
2

)

Γ
(

1+ν
2

) = − 1

b tan
(

πν
2

) , (−2 < Reν < 0, b > 0), (12)

that is formula 6.811.1 of [8]. Further application of Eq. (10) furnishes
∫ ∞

−∞

x−(ν+1) Hν(x) dx =

√
π

2ν
ĥ
− 1

2

ν ϕ(0) =
π

2ν Γ(1 + ν)
(13)

(see formula 6.813.2 of [8]). It is evident that the method can easily be applied also to more

complicated integrals involving the Struve functions.

As a further evidence of the usefulness of the method, we apply it to the search of close

form of the following generating function

G(x, t|m) =

∞
∑

n=0

tn

n!
Jmn(2x). (14)
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With the help of Eq. (5) it can be written as

G(x, t|m) = exp[(ĉx)m t− ĉ x2]ϕ(0). (15)

If we introduce the higher, (m ≥ 2), order Hermite polynomials [11]

H(m)
n (u, v) = n!

[n/m]
∑

k=0

un−mk vk

(n−mk)! k!
, (16)

their generating function is [11–13]:

∞
∑

n=0

zn

n!
H(m)

n (u, v) = exp(uz + vzm). (17)

(Note that H
(2)
n (x, y) = (−i)n yn/2Hn

(

ix
2
√
y

)

, where Hn(z) are conventional Hermite poly-

nomials [10]). This allows us to recast Eq. (15) in the operator form

G(x, t|m) =

∞
∑

n=0

ĉn

n!
H(m)

n (−x2, xm t)ϕ(0). (18)

Furthermore, as a consequence of the definitions (5) and (16), it is possible to show that

G(x, t|m) = HC
(m)
0

[

x2, (−x)mt
]

, (19)

where

HC
(m)
n (x, y) =

∞
∑

k=0

(−1)k

k! (n+ k)!
H

(m)
k (x, y), (20)

are the so called Hermite-based Tricomi functions [14]. The correctness of the above identity

has been thoroughly checked numerically. We stress that its derivation with conventional

means is much more involved.

In the same spirit, we will use operational methods to evaluate various families of integrals.

In particular, we consider the integrals of the type

I(x) =

∫ ∞

−∞

f(x g(t)) dt. (21)

The identity [13]

[g(t)]x∂xf(x) = f [x g(t)] (22)

can be used to write

I(x) =

∫ ∞

−∞

[g(t)]x∂xf(x) dt, (23)
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and, by assuming that the integral (a = constant)

F (a) =

∫ ∞

−∞

[g(t)]a dt

exists, one can express I(x) as

I(x) = F̂ (x ∂x)f(x). (24)

If the function f(x) admits a power series expansion

f(x) =
∞
∑

k=0

α(k)xmk+p, (25)

as a consequence of the identity

F̂ (x ∂x)x
n = F (n)xn, (26)

we get

I(x) =

∞
∑

k=0

α(k)F (mk + p)xmk+p. (27)

To clarify the content of this result, we choose the case g(t) = et
2

, f(x) = Jn(x). By

using Eq. (26) one has

∫ ∞

−∞

Jn

(

xe−t2
)

dt =
√
π

∞
∑

k=0

(−1)k

k! (k + n)!

(

x
2

)2k+n

√
2k + n

, n > 0. (28)

The above series has been proved to be convergent and the correctness of the proposed

procedure has been checked numerically.

As a further example we consider the evaluation of the integral (21) for g(t) = (1+ t2)−1,

f(x) = x2e−x2

. Since
∫ ∞

−∞

(1 + t2)−a dt =
√
π
Γ
(

a− 1
2

)

Γ(a)
(29)

we get

∫ ∞

−∞

exp
[

− x2

(1+t2)2

]

(1 + t2)2
dt =

√
π

∞
∑

k=0

(−x2)k

k!

Γ
(

2k + 3
2

)

2k + 2
=

π

2
2F2

(

3

4
,
5

4
; 1,

3

2
; −x2

)

, (30)

where pFq(a1, . . . , ap; b1, . . . , bq; y) is the generalized hypergeometric function, see [9, 10].

Let us now consider the following Laplace-type transform integral

L(x) =

∫ ∞

0

e−t g(x t) dt , (31)
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also known as the Borel transform. The use of Eq. (22) leads to the operatorial identity

L(x) = Γ(x ∂x + 1) g(x) (32)

from which, under the assumption that L(x) can be expanded as in Eq. (1), as a consequence

of Eq. (26), one obtains

g(x) =

∞
∑

k=0

ϕ(k)

(k!)2
(−x)k. (33)

See Chap. 2 of [15] for the use of the operator Γ(x ∂x + 1).

The use of Borel transform is of noticeable importance in the derivation of Quantum

Chromodynamics (QCD) sum rules [16]. For a general introduction see [17]. We will just

touch on this topic and leave further developments for a forthcoming paper. Just to quote

a few examples we note that the polynomials given in Eq. (16) are the Borel transform of

their hybrid counterpart [18]

H̃(m)
n (x, y) =

[n/m]
∑

k=0

xn−mk yk

k! [(n−mk)!]2
, m ≥ 2, (34)

if we choose g(x t) = H̃
(m)
n (x t, y) and treat y as a parameter. They are called hybrid

because they have properties in between those of Hermite and Laguerre polynomials. It is

worth stressing that the Borel transform with respect to the y variable [namely choosing

g(yt) = H̃
(m)
n (x, yt) ], is e

(m)
n (x, y) =

∑[n/m]
k=0

xn−mk yk

[(n−mk)!]2
corresponding to a family of truncated

polynomials. See [20, 21] for discussions of related polynomial families. Furthermore, for

g(x) = (1+xm)−1, |x| < 1, we find that the associated transform is the pseudo-trigonometric

function [19] c
(m)
0 (x), where

c
(m)
k (x) =

∞
∑

r=0

(−1)r
xmr+k

(mr + k)!
, 0 ≤ k < m. (35)

The following relationship can be viewed as an extension of the Borel transform

Iα,β(x) =

∫ 1

0

uα−1 (1− u)β−1 f(u x) du (Reα,Reβ > 0). (36)

By using Eq. (22), this integral can be written in terms of the Beta function as follows

Iα,β(x) = B(α + x ∂x, β)f(x),

i.e., in terms of the Gamma function

Iα,β(x) =
Γ(β) Γ(α+ x ∂x)

Γ(α + β + x ∂x)
f(x). (37)
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If the function f(x) satisfies Eq. (1), one has

Iα,β(x) =

∞
∑

n=0

Ψ(n)

n!
(−x)n, (38)

where

Ψ(n) = B(α + n, β)ϕ(n). (39)

In conclusion, in this paper we have provided a few elements proving the usefulness of

formal procedures to get results encompassing various aspects of operators and of special

functions. Other examples could be discussed to corroborate the validity of the method. We

believe, however, that the main plot of the whole technique can be quite well understood

via the examples discussed here. In closing, we remark that the results we have obtained

are at the level of sound conjectures. The relevant rigorous proof of them is out of the scope

of the present article. There are similar techniques that kept being revived, see for example

[22] and references therein.
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