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Abstract

In this paper we propose methods to compute the Deegan-Packel, the Public
Good, and the Shift power indices by generating functions for the particular
case of weighted voting games. Furthermore, we define a new power index
which combines the ideas of the Shift and the Deegan-Packel power indices and
also propose a method to compute it with generating functions. We conclude
by some comments about the complexity to compute these power indices.
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1. Introduction

Generating functions are used in several operational research problems to
construct counting algorithms [13, 38, 30]. The flexibility of the generating
functions allows the development of finite algorithms for problems related to
inclusion and exclusion questions as, e.g., optimal allocation [27, 24], discrete
optimization [40, 11, 36], production control [18], weighted voting systems [28,
26, 22, 23, 25] or computation of power indices for weighted majority games [8,
1].

The classical power indices suggested in order to assess the a priori distribu-
tion of power in a simple game include the Shapley-Shubik [34, 33], the Banzhaf
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[6], the Johnston [19], the Deegan-Packel [12], and the Public Good [15] power
indices. This is not a comprehensive list and other power indices could be listed;
we just mention here one more power index, the Shift power index introduced
in Alonso-Meijide and Freixas [4], since we will deal with a slight variation of it
(the Shift Deegan-Packel power index) in this paper.

One of the main difficulties with these indices is that computation generally
requires the sum of a very large number of terms. Owen in [31] introduces the
multilinear extension of an n-person game as a help in computing the power
indices of large games, and gives a generalization of the Shapley-Shubik power
index. Owen in [32] also shows that the Banzhaf power index can be obtained
by differentiating the multilinear extension of a game. Later, Alonso-Meijide
et al. [3] presents again the multilinear extension to compute the Johnston, the
Deegan-Packel and the Public Good power indices.

A different useful procedure to compute power indices is provided by the
generating functions techniques. The main objective of this paper is to analyze
whether some modification of the generating function techniques might be used
to calculate the Deegan-Packel, the Public Good, and the Shift power indices for
weighted voting games. These three indices are defined on the basis of either
minimal winning coalitions (in the case of the Deegan-Packel and the Public
Good indices) or shift-minimal winning coalitions (in the case of the Shift power
index) [4]. Specially in games with a large number of players, it is not known a
priori which coalitions are minimal winning or shift-minimal winning.

The advantage of the procedures presented here is that once the correspond-
ing generating function has been defined, we provide an algorithm to easily
compute these indices. Although some techniques on generating functions have
been applied to computing (the Shapley-Shubik, the Banzhaf-Coleman and the
Owen) power indices [1, 21, 7], now we complete such analysis and provide new
methods, based again on generating functions, to compute the Deegan-Packel,
the Public Good, and the Shift power indices.

The paper is organized as follows. Section 2 is devoted to reviewing the main
power indices and to introducing a new power index. In Section 3, we recall
generating functions and present new methods based on them to compute the
Public Good, the Deegan-Packel, the Shift and the Shift Deegan-Packel power
indices by means of generating functions. In section 4 we provide the required
complexity for our methods. Conclusion and future research end the paper in
Section 5.

2. Preliminaries: Simple games and power indices

A simple game consists of a finite set of players N and a set of winning
coalitions, W, which is a collection of subsets of N with the following three
properties: ) ¢ W; N € W; and monotonicity: If S € W and S C T, then
Tew.

Thus, either the family of winning coalitions W or the subfamily of minimal
winning coalitions W™ = {S € W : T C S = T ¢ W} with the inclusion
determines the game.



For the interested reader, there are some applications and specific studies
about simple games in [20, 17, 39, 35].

The class of weighted voting games is probably the most important subfamily
of simple games since many real-world examples are of this type. Generating
functions apply precisely to the class of weighted voting games and therefore
constitute a meaningful tool to compute power indices for these games. As far
as we know this technique has only been applied for the Banzhaf (and Coleman),
the Shapley-Shubik and the Owen power indices [1, 21, 7]. The main goal of the
paper is to provide a systematic symbolic approach to compute four alternative
significant power indices. Our power indices will be defined from weighted voting
games. (N, W) is called a weighted voting game if there exist natural integers

w1, ..., W, such that every coalition S verifies S € W if and only if the sum of
the w;’s, i € S, is at least equal to some preset quota g, i.e., . w; > q.
€S

The number w; is interpreted as the number of votes that player ¢ owns,
and ¢ is the least total number of votes necessary to pass a decision. Such
representation for (N, W) is indicated by [g; w1, w2, . .., w,], where it is assumed
that w; > wy > -+ > wy, and w(S) stands for ), g w;. Note that for n > 4
there are simple games which are not weighted, but every simple game can be
written as an intersection of weighted voting games.

Loosely speaking, a power index is a function g which assigns to a simple
game (N, W) a vector g(N,W) € R™ where each component g;(N,W) is a
measure for the ith player in the simple game (N, W) according to g. As N
does not change in the rest of the paper, we will write g(W) instead of g(N, W)
hereafter. Table 1 shows known definitions of power indices (see e.g. [14] for
a comprehensive treatment on power indices) that will be considered in this
work. In this table we use a known notation: Given a simple game (N, W), we
define a swing for player ¢ by a coalition S C N \ {i} such that S ¢ W but
S uU{i} € W, and we denote n;(W) the number of swings for player i € N. We
also define s = |S|and C; = {S C N\ {i} : S¢W A SU{i} € W} so that
(W) = |C;]. Let W = {S e W™ : i € S}; and let ¢;(W) = [W!|. To define
the Shift power index [4], it is necessary to introduce the desirability relation
defined in [16].

Let (N, W) be a simple game, ¢ and j be two players. Players ¢ and j are
said to be equally desirable, denoted by ¢ ~ j, if for any coalition S € N\ {4, 5},
then SU{i} e W& SU{j} € W. Let (N, W) be a simple game, i and j be
two voters, then player 4 is said to be (strictly) more desirable than j, denoted
by ¢ > j, if the following two conditions are fulfilled:

1. VS e N\ {i,j}, then SU{j} e W = SuU{i} e W.
2. AT € N\ {i,j} such that TU {i} e Wand TU{j} ¢ W.

Let again (N, W) be a simple game, ¢ and j be two voters, then player i is
said to be at least as desirable as j (as a coalitional partner), denoted by i 77 7,
if i = j or i ~ j. The 77 relation is known as the desirability relation.

Now, we go in deep into the notion of shift minimal winning coalitions. See
[35] for references and history on the mathematical use of the shift ordering.



Power Index Definition References

Banzhaf relative B (W) = ) [6]
2 15 (W)

Shapley-Shubik  ¢; (W)= > L n—s1)! [34]

Deegan-Packel ~ p;(W) = g > = [12]

w2
EW!
Public Good hi(W) = =) [15]
22 (W)
j=1
Shift fiw) = =) [4]
35 0)

Table 1: Some known power indices.

Let (N,W) be a simple game and 7~ be its desirability relation. A coalition
S € W™ is shift minimal if for every ¢ € S and j ¢ S such that ¢ > j it holds
(S\{i}) U{j} ¢ W. From now on, the set of shift minimal winning coalitions
will be denoted by W?| i.e.,

WS ={SeWm :YieS A jgS:i=j) = (S\{iHUljlgw).

Moreover, we denote s;(W) = [W7|, where W7 = {S € W?* : i € S}.

Finally, we introduce another power index which combines the ideas of the
Shift and the Deegan-Packel indices, as far as we know this is a new power
index. Let (N,W) be a simple game, the Shift Deegan-Packel index for each
player i € N is the real number:

1 1 "
, — ~ 50 th ; — 1.
1 W) = g SGZV:V ~ 50 that ;u (W)

It assumes that:

1. Only shift minimal winning coalitions will emerge victorious,

2. Each shift minimal winning coalition has an equal probability of forming,
and

3. Players in a shift minimal winning coalition divide the “spoils” equally.

The Shift-Deegan Packel index is an intermediate solution between the Deegan-
Packel index and the Shift power index. In its definition, only shift minimal
winning coalitions appear, but the matter may be approached differently than
the Shift index, because the size of the coalitions is taken into account. The



involved coalitions in the computation of the Shift Deegan-Packel index and the
Shift index are the same, and the number of these involved coalitions is inferior
to that of Deegan-Packel and Public Good indices.

3. Generating functions to compute the Deegan-Packel, Public Good,
Shift and Shift Deegan-Packel power indices

In general, the computation of the previous indices needs a great number of
operations. Generating functions [13, 38, 30] give us a useful method to count
the number of elements ¢ (1) of a finite set, where these elements have a config-
uration that depends on a characteristic r. An application of these functions in
the field of simple games allows to recover the number of possible coalitions of a
given kind from the set of its coefficients, while the voting power of the coalition
can easily be read looking at its set of exponents. Brams and Affuso [9] provide
an example of a generating function for the classical power indices.

The generating function of the sequence of numbers [ag, a1, a9, ...] is the
formal series F(f) = >.,5,a;t", and can be finite or infinite. The variable ¢

serves to identify a; as the coefficient of #* in F(t).

Example 1. Consider the series

n

H (1+z.t) = iartr,
r=0

r=1
where ag = 1 and for r > 0, a, is given by

ar = E TP o P i

1<i1<i2<...<ir<n

The coefficients a, are symmetric functions on the variables x1,x2,...,x,. The
number of terms of the coefficient a, coincides with the number of combinations
of r elements of a finite set formed by n elements. If all the values x, are 1 it

holds that .
n
1+8)" =) tr

r=0
because, in this case the coefficients a, are the number of combinations of r
elements of a finite set formed by n elements. Then, the function F (t) =
(1+1t)" is the generating function of the numbers a, = {(:) :r=0,1,... ,n} .
That is, the binomial coefficients (:f) can be obtained by means of the function
(1+1¢)" because they coincide with the coefficients of the formal series.

Next, we will use generating functions of several variables, for example

F(z,y,2) = Zzzakjl ahylt

E>035>0 1>0



where agj; are real numbers depending on %, j and .

Cantor [10] (and Lucas [29]) used this method to compute the Shapley-
Shubik index and Brams and Affuso [9] used the same method to compute
the Banzhaf index. In [21, 7] generating functions are used to compute power
indices in games with restricted situations and in games with multiple majority.
Alonso-Meijide and Bowles [2] used the same method to compute power indices
in games endowed with a coalition structure and presented an application to the
International Monetary Fund. Alonso-Meijide et al. [1] also used the generating
functions to compute power indices in multiple majority games with a coalition
structure and also presented an application to the European Union. In all
these papers, the power indices are either the Banzhaf or the Shapley-Shubik
ones (or modifications of them). To our knowledge, the method of generating
functions is only used to compute indices based on the number of swings. In
this paper, we present a result that allows the computation, with generating
functions, of indices not based on the number of swings but based on minimal
(or shift-minimal) winning coalitions.

8.1. Deegan-Packel and Public Good power indices

In this section we provide a method to compute Deegan-Packel and Public
Good power indices by means of the generating function in a weighted voting
game. As far as we know this is a new procedure.

To compute the Deegan-Packel index in a weighted voting game, first, we will
employ a polynomial that has as many addends as coalitions can be formed, i.e.,
2™ coalitions. Among them, we will retain the addends that correspond to the
winning coalitions, and, finally, among them, we will only keep the monomials
that correspond to minimal winning coalitions. To obtain this polynomial, we
need to employ n + 2 variables, one for each player, another to indicate the
number of players in each coalition and, finally, a variable that indicates the
weight of the coalition.

Let (N,W) be a simple game, and let m (W) be the number of minimal
winning coalitions with cardinality & which the player ¢ belongs to. Then the
Deegan-Packel index for player i € N can be expressed as (see previous definition

in Table 1):
1 11 mi, (W)
V) = 2 ST
W s T

Now, given a weighted voting game (N, W) with representation [g; w1, wa, ..., wy],
we establish three steps to compute mj, (W). In the first step, we consider the
generating function given by

n

S(x,21,22,. - 2n,t) = H (14 2™ 2z t).
k=1



The corresponding coefficient c?j““ of S(x,21,22,...2n,t),

_ 1,0tk ] 4k
S(x,21,22,. .. 2n,t) = E eyt T 2z,
k,j>1

is the number of coalitions with players i1, ...,4; (coalition with cardinality k)
whose weights add j (i.e., w;, + ...+ w;, = J).

In the second step, we remove those monomials in which the power of z is
less than g, that is, we only keep winning coalitions. In the last third step,
we remove those monomials which are divisible by another monomial of the
function, that is, we only keep minimal winning coalitions. The total number of
terms of this function coincides with the number of minimal winning coalitions
of the game, [W™|.

Finally, to obtain the number m} (W), we only need to select those terms
of the previous function in which the variable z; appears. The power of the
variable ¢ indicates the number of players of this minimal winning coalition.

Below we present an example to compute the Deegan-Packel index.

Example 2. Consider the weighted voting game (N, W) with representation
[30;28,16,5,4,3,3].

In a first step, we compute the function S (x, 21,29, ..., 26,t)
n
S(.’E,Zl,ZQ, s 7ZGat) = H (1 + l.wkzkt) =
k=1

(1 + x2821t) (1 + xlﬁzgt) (1 + x523t) (1 + x4z4t) (1 + x3z5t) (1 + xgzﬁt) =

x5921222324z5z6t6 + x312223z4z526t5 + m43212324z526t5 + x54Z1ZQZ4Z5ZGt5+

x55zlzgz;;zsz6t5 + m56z1zzz;>,2426t5 + x56z1zngz4z5t5 + :v15zgz4z526t4+

x2622Z4Z5Z6t4 + .T27ZQZ3Z5Z6t4 + x28zQz3z4Z6t4 + x28z2z3Z425t4 + 1382 242526t4+

5133921232’526t4 + $402’12’32’426t4 + $402’12324Z5t4 + $5021222526t4 + $5121222426t4+

.’E512’1222425t4 + x5221222326t4 + x52212223z5t4 + x5321222324t4 + x1024z526t3+

x1123Z5z6t3 + x1123Z4z6t3 + $12232’42’5t3 + x22z225z6t3 + x23z224z6t3+

$232224Z5t3 + x24z2z3z6t3 + x24z2z32'5t3 + x25z'2z32'4t3 + I34212526t3+

x35zlz426t3 + x35zlz4z5t3 + x36212326t3 + x36212325t3 + x37zlzgz4t3+

x47zl ZQZ@tS + x47z1 2225153 + 3348z1 2224t3 + 3349z1 2223t3+

x44z1th2 + x33z1z3t2 + x32z1z4t2 + x31z1Z5t2 + x31z1z6t2—|—

x212223t2 + m202224t2 + 51:192225t2 + z192226t2 + $923Z4t2+

x823z5t2 + :rgzgz(;tz + x724z5t2 + x7z426t2 + x62526t2+



x28z1t + $1622t + x523t + x4z4t + x3z5t + x326t + 1.
In a second step, we choose those terms in which the power of x is greater than
or equal to 30, that is,
x59z1z223Z425z6t6 + x31z223Z4Z5z6t5 + x43z1Z3z4z526t5+
x54z1zz242526t5 + x552122232526t5 + x5621222324z6t5 + m56zlzgz3z4Z5t5—|—
x3821 242526754 + x3gzlzgz5z6t4 + x4ozlzgz4z6t4 + x402123z4z5t4+
x50z1222526t4 + 335121222426754 + m51212224z5t4 + .’L‘5221222326t4+
3352;21222325754 + x53z12223z4t4 + x34zlz526t3 + x35zlz4ze,t3—|—
+x35zlz4z5t3 + x36212326t3 + x36212325t3 + x37212324t3
—|—x4721 2226153 + x4721 2225153 + x4821 2224153 + x4921 2223153
+£C44212’2t2 + x332123t2 + w322124t2 + x3lzlz5t2 + 231 2126t2.

In a third step, we choose those terms that can not be divided by different ones,
that is, we have the sum of the prime terms:

x31z2,Z3242526t5 + x44zlzgt2 + .T332:12:3t2 + x3221z4t2 + x312125t2 + x312126t2.

As the number of monomials in the later polynomial is 6, it follows that, |[W™| =
6. To compute the Deegan-Packel index of a player i € N we should add those
terms in which the variable z; is present, divided by the corresponding power
of the variable t, and, finally, we should divide the obtained result by |[W™]|.
For instance, to compute the Deegan-Packel index of player 4 we have that z4
appears in two terms, and dividing by the corresponding power of variable t, we
obtain 1/5+1/2 = 7/10, and dividing again by |W™| we get its Deegan-Packel
index 7/60.

We follow the same steps to compute the Deegan-Packel index for the other
players:
5 7 7 7 7 7
r(W) = (127&)’60’60’60’60)
In a similar way, we can compute the Public Good index from the last prime

terms taking into account the definition

(W) -
hi(W) = ——— sothat » h;(W)=1,
> e (W) =
j=1
where ¢;(W) = [W7| = |{S e W; A i€ S}. In the case of Example 2 the last
prime terms are
x312223z4z5z6t5 + ac44zlz2t2 + m332123t2 + x322124t2 + x3121 Z5t2 + x31z1 z6t2

and then we have

1
h =—(52222=—-, — = = = =~
) 15 (5,2,2,2,2,2) (15’15’15’15’15’15)



8.2. Shift power index and Shift Deegan-Packel power index

Now we present a method to compute Shift and Shift Deegan-Packel power
indices by means of the generating function in a weighted voting game.

As it happens with the Deegan-Packel index, we need to employ n + 2 variables,
one for each player, another to indicate the number of players in each coalition
and, finally, a variable that indicates the weight of the coalition.

Let (N,W) be a simple game, and let smi (W) be the number of shift
minimal winning coalitions of cardinality k& which the player 7 belongs to. The
shift power index of 4 in that game is equal to

n .
> smi(W)
k=1
> > smyp(W)
j=1k=1
Now, the first step consists of computing the function S (z, 21, 22, . . . , 2n, t) de-

scribed above. In the second step, we must remove such terms where the power
of z is less than ¢, that is, we choose only winning coalitions. We obtain a new
function S’ (x, 21, 22, . . ., Zn, t).

After this second step, we define a partition P = {Py, P, ..., Py} of the set
of players N in such a way that two players i, j € P, if they belong to the same
number of winning coalitions, that is, the number of terms of the function S’
that contains to z; coincides with the number of terms of the function S’ that
contains to z;. If r </, and ¢ € P, and j € P the number of terms of S’
that contains to z; is greater than the number of terms that contain to z;. It is
clear then, that 1 € P, and n € P,,. In this third step, we remove from S’ such
terms that can be divided among a different term of the function. We obtain a
new function S”. The total number of terms of this function coincides with the
number of minimal winning coalitions of the game, [W™|. This function S can
be written as:

S =8"(1)+8"(2)+5"3)+...+ 5" (n)

where a term of S” belongs to S”(k) if the power of t is equal to k, i.e., if the
number of players involved in that term is k.
From S” we remove the terms

a k "
T 2y iy et Zig_y Ry Rigyy et Zigg Rt €S (k)

with i; € P, if there exists a term
a k "
XY gy Ziy e Zig_y  Ziy iy e Zigoy  Zig ot €87 (K)

with i, € P and r < r’. After these deletions, we obtain a function S"”’. The
total number of terms of this new function S coincides with the number of
shift minimal winning coalitions of the game.



Finally, on the one hand, to obtain the Shift power index of player i € N we
only need to select those terms of the previous function S” in which the variable
z; appears.

Example 3. Consider the weighted voting game with representation
[5;4,3,1,1,1].

In a first step, we compute the function S (x,z1,z2a, ..., 25,t)
n
S(x,z1,22,...,25,t) = H (14 az%izt) =
j=1

(1 + x4z1t) (1 + x?’zgt) (14 z23t) (1 4+ x24t) (1 + 225t) =

x10212223z4z5t5 + ;v622z;>,24z5t4 + x7zlz3z4z5t4 + mgzleZ4z5t4+

x921z22325t4 + x92122Z3Z4t4 + x3232425t3 + x522Z4Z5t3—|—
(E5222325t3 + x5zgzgz4t3 + m6z124z5t3 + x6z123z5t3 + m621z3Z4t3+
+x8212225t3 + x8212224t3 + x8212223t3+
x721z2t2 + x52123t2 + 335,2124152 + x5zlz5t2+
z42223t2 + :c42224t2 + x42225t2 + :c223z4t2+
x223z5t2 + 332242'51?2—}—
x4zlt + x322t + xz3t + 24t + x25¢ + 1.

In a second step, we choose those terms in which the power of x is greater than
or equal to 5, that is,
S (z, 21,20, .., 25,t) =

.’1,'102122232425t5 + £C6Z2Z3Z4Z5t4 + x72123z4z5t4 + x9z12224z5t4+

x9212223z5t4 + x9212223z4t4 + x52224z5t3+

a:5zQz3Z5t3 + $5222324t3 + xﬁzl Z4Z5t3 + x621z3z5t3 + xﬁzl Z3Z4t3+

+x8zlzgz5t3 + x8212224t3 + x8212223t3+

x7z1zgt2 + ac5z1Z3t2 + x5zlz4t2 + m5z1z5t2.

The partition defined by the previous function is P = {{1},{2},{3,4,5}} be-
cause the respective number of monomials containing i for i = 1,2,3,4,5 is
15,12,11,11, 11.

In a third step, we choose those terms that can not be divided by different ones,
that is, we have the function:

5

" 3 5 3 5 3
S"(x, 21,29, ..., 25,t) = T°2024251° + T°2023251° + T 2023241° +

$72122t2 + m5z123t2 + x5zlz4t2 + x5z1z5t2.

As the terms a7 21 20t%, 2% 21 23t% € S”(2) and 2 € Py and 3 € Ps, we remove the
term x”z1 29t in S” to get S". To compute the shift power index of a player
1 € N we add those terms in S in which the variable z; is present, that is:
s; W) =3 for all i € N, and therefore f; (W) =1/5 for alli € N.

10



Analogously, for the Shift Deegan-Packel index we use S and for each
player i € N we add the converses of the power of ¢ for each monomial where i
is presented.

With this procedure, for Example 3 we obtain:

7 ifi=1
p W)y =< ¢+ ifi=2
% otherwise

4. Some comments on complexity

The computation of Deegan-Packel, Public Good, Shift and Shift Deegan-
Packel power indices are based on function

n
S(x, 21,22, 2n,t) = H (142" 2z t) .
k=1

The number of products to compute S(z, 21, 22, ..., 2,,t) is O(2"). Thus,
Deegan-Packel and Public Good power indices can be computed in O(2"),
whereas Shift and Shift Deegan-Packel power indices require O(2" n) because it
also needs to compute S”.

However, when computing S(z, 21, 22, . . . , 2n, t) we could stop the products
among monomials when the power a of = verifies that o > ¢. That is, we
could directly compute only the sum of the weights of the players that belong
to S € (LUW™). Thus, the complexity to compute Deegan-Packel and Public
Good power indices is

O Z s,
Se(Luwm)

whereas the complexity to compute Shift and Shift Deegan-Packel power indices
is

Oln Z s
Se(Luwm)

Note that, although the time complexity is high (not polinomial, in general)
as in other methods, here we have an advantage with the space complexity re-
quired because generating funtions need a minimum space to do sums and prod-
ucts. Moreover, it is easier to compute power indices with generating functions
than using other methods from the definition; see [37] to know other methods
to compute power indices.

5. Conclusions and Future Work

We present some known indices for simple games and some methods to
compute them. As far as we know, we define a new power index, the Shift

11



Deegan-Packel power index, which combines the ideas of the Shift power index
and the Deegan-Packel power index. We describe a new method to compute four
power indices (Deegan-Packel, Public Good, Shift and Shift Deegan-Packel) by
means of generating functions. The corresponding (exponential) complexity
depends on losing coalitions plus minimal winning coalitions.

For future work, it would be interesting to reduce the complexity with similar
techniques by means of generating functions, and to compare our techniques
with others like (Quasi-reduced and Ordered) Binary Decision Diagrams [8] or
polinomial algorithms [5].
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