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Abstract

We introduce various optimization schemes for highly accurate calculation of the eigenvalues and the eigen-
functions of the one-dimensional anharmonic oscillators. We present several methods of analytically fixing
the nonlinear variational parameter specified by the domain of the trigonometric basis functions. We show
that the optimized parameter enables us to determine the energy spectrum to an arbitrary accuracy. Also,
using the harmonic oscillator basis functions, we indicate that the resulting optimal frequency agrees with
the one obtained by the principle of the minimal sensitivity.
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1. Introduction

Eight decades after the discovery of quantum mechanics, the Schrödinger’s famous equation still remains
an interesting subject for various investigations, aiming at extending its applications and at developing
more efficient analytic and numerical methods for obtaining its energy eigenvalues and stationary states.
The interest in this subject ranges from various branches of mathematics, physics, and chemistry. This has
been the driving force behind the development of perturbative and nonperturbative methods for this kind of
problems. Among them are the factorization method [1, 2], semiclassical approximation [3], finite-difference
technique [4], optimized Rayleigh-Ritz variational scheme [5, 6], variational matrix solution [7], instanton
method [8], transfer matrix method [9] and many other specific methods.

One general approach to construct a continuous wave function ψ(x) is to represent its values on a set of
mesh (lattice) points xn which is the starting point of the various mesh methods. Although this approach is
simple, it is usually very inaccurate which is due to the fact that it only contains the local information of the
wave function. To overcome this problem, Schwartz proposed a method based on a global construction of an
approximate wave function which involves only the values ψn at the selected mesh points [10]. He showed
that using an optimized mesh spacing the obtained errors are as small as A−N or even 1/N ! where N is
the number of the mesh points. This shows the priority of this method over the usual numerical methods
that yield errors as small as 1/N , 1/N2, etc. The application of a set of orthogonal functions on a finite
domain for solving a wide class of problems such as function interpolation and the numerical solution of the
Schrödinger equation has attracted much attention in recent years (see Ref. [11] and references therein). For
instance, the variational sinc collocation based on the principle of minimal sensitivity (PMS) method can
be effectively used to obtain the highest precision with a given number of mesh points [12].

The second popular scheme is to expand the wave function in terms of an orthonormal set of the
eigenfunctions of a Hermitian operator, i.e., the basis-set expansion method. For instance, the trigonometric
basis functions obeying Dirichlet boundary condition (particle in a box basis) can be effectively used to
find the spectrum of an unbounded problem. The low lying energy levels are approximately equal to the
exact ones with high accuracy, if the boundedness parameter is in near vicinity of an optimal value upon
implementing the Rayleigh-Ritz variational method [13, 14]. The extension of this method for the periodic
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boundary condition is also discussed in Ref. [15]. For these cases, the variational parameter is the width of
the finite interval (the size of the box). On the other hand, if we expand the wave function in terms of the
harmonic oscillator eigenfunctions, the frequency of the oscillator would be the variational parameter.

In this paper, first we briefly outline the Schwartz’s method and its error analysis which is based on the
large distance behavior of the wave function. Then by defining the Schwartz’s length, which as we shall
show has a useful application in diagonalization of the Hamiltonian with the particle in a box basis set,
the nearly accurate results can be obtained if we use this length as the optimal width of the finite domain.
By imposing a physically acceptable relation between the potential energy at the optimal length and the
maximum available basis eigenenergy, we explain the physics behind the Schwartz’s length and obtain the
optimal length without need to the error analysis which is done in the Schwartz’s original paper. As it is
emphasized in Ref. [10], there is a close connection between the Schwartz’s scheme and the Fourier expansion
where we shall elaborate it in the next section. In this view, we improve our estimation and introduce some
alternative and more accurate optimal lengths for the particle in a box basis functions. Also we present the
optimal frequency for the expansion of the wave function in terms of the harmonic oscillator basis functions.

Another way for finding the optimal length is using the stationarity of the trace of the Hamiltonian [5, 6].
This method is based on the principle of minimal sensitivity but demands on fixing the values of nonlinear
parameters before diagonalization of the truncated matrix. In fact, this optimal value extremizes the trace
and results in highly accurate results. Here we apply this formalism for the trigonometric basis functions
and find the related optimal length for the anharmonic oscillators.

2. The Schwartz’s method

Let us consider an analytic reference function u(x) which has simple zeros at the real points x = xn to
approximate the wave function ψ(x). We can define an interpolating wave function ψ(x) to approximate
ψ(x) as

ψ(x) =
∑

m

ψm
u(x)

x− xm

1

u′(xm)
, (1)

where ψm = ψ(xm). So at the mesh points x = xn, the interpolating wave function takes the same values as

ψ(x) there. With this definition, the derivatives of ψ at the mesh points
dψ

dx

∣

∣

∣

∣

xn

or its integrals

∫ xn

x0

ψ(x)dx

only depend on ψm not the derivatives or integrals (see Ref. [10] for details). However, all ψm would
contribute to construct the corresponding values of ψ which means that the global information about the
wave function ψ is used to find the approximation.

We can write the above equation as an exact relation by introducing the error term ǫ as

ψ(x) =
∑

m

ψ(xm)
u(x)

x− xm

1

u′(xm)
+ ǫ. (2)

Note that, we are usually interested for the cases where the wave functions decreases rapidly for large x
(bound state solutions), so effectively the infinite sum over the mesh points can be truncated to a finite sum.
In fact, there are two sources of error in our analysis. First one ǫA due to the analytical approximation
and the second ǫT due to the truncation. If we make ǫA approximately equal to ǫT by choosing a relation
between the mesh spacing h and the truncation at n < N , the total error will be reduces considerably. This
will prevent us from using a too small h when the truncation error dominates or using a too large cutoff
when the mesh error has the dominant role.

To compute the errors, consider a bound state wave function which has the following behavior at large
distances

ψ(x) ∼ e−axp

, for largex, (3)

so the truncation error reads
ǫT ≈ e−a(Nh)p . (4)
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For the mesh size error, we need to perform a contour integral in the complex plane. By taking the reference
function as u(x) = sin(πz/h), the integral can be estimated by the stationary phase method and we obtain
[10]

ǫA ≈ e−bh−q

, (5)

where q = p/(p− 1) and

b =

(

πp

ap

)1/(p−1) (
p− 1

p

)

sin

[

π

2(p− 1)

]

. (6)

Now the optimal value of h for each N can be obtained by equating Eqs. (4) and (5)

hS =

(

b

aNp

)
p−1

p2

, (7)

which results in the exponential decrease of the error by increasing the number of the mesh points

ǫ ≈ e−CN , (8)

where C = b(a/b)1/p. To apply the method, let us consider the following dimensionless time-independent
one-dimensional Schrödinger equation1

(

− d2

dx2
+ xk

)

ψ(x) = E ψ(x), k = 2, 4, 6, . . . . (9)

For this case, the wave function has the asymptotic behavior for large x given by (3) with

p =
k + 2

2
, a =

2

k + 2
, (10)

which results in

b = π
k+2
k

(

k

k + 2

)

sin
(π

k

)

, and hS =

[

1

2
k π

k+2
k sin

(π

k

)

]
2k

(k+2)2

N−
k

k+2 . (11)

Now if we define the Schwartz’s length LS ≡ NhS, we have

LS(N) =

[

1

2
k π

k+2
k sin

(π

k

)

]
2k

(k+2)2

N
2

k+2 , (12)

where, as we shall show in the next section, it can be used as an accurate candidate for the optimal length
in the context of the Fourier expansion of the wave function.

At this point, it is worth to mention the connection between the above collocation method and the
Fourier expansion scheme. So let us define the generalized sinc functions as

Sm(h, x) ≡ sin [π(x −mh)/h]

π(x−mh)/h
, (13)

where m ∈ Z, uniform grid spacing h and x ∈ R. Now using Eq. (1) and u(x) = sin(πx/h) we obtain

ψ(x) =
∑

m

ψmSm(h, x), (14)

1Note that for V (x) = βxk we have E → β
2

k+2 E.
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which defines the sinc collocation method. It is also possible to write a similar equation in terms of the little
sinc functions [11]. Consider an orthonormal set of particle in a box basis functions vanishing at x = ±L

ϕn(x) =
1√
L
sin

[nπ

2L
(x+ L)

]

, n = 1, 2, . . . , (15)

and define

δN (x, y) =
2L

N

N
∑

n=1

ϕn(x)ϕn(y),

=
1

2N







sin
[

(2N+1)π(x−y)
4L

]

sin
[

π(x−y)
4L

] − (−1)N
cos

[

(2N+1)π(x+y)
4L

]

cos
[

π(x+y)
4L

]







, (16)

where N takes even values. Because of the completeness of the basis functions we have

lim
N→∞

N

2L
δN (x, y) = δ(x− y). (17)

By setting h = 2L/N , yk = kh and selecting even values of N , we define the set of (N − 1) little sinc
functions (LSF) as

sk(h,N, x) ≡
1

2N

{

sin
[(

1 + 1
2N

)

π
h (x− kh)

]

sin
[

π
2Nh (x− kh)

] − cos
[(

1 + 1
2N

)

π
h (x+ kh)

]

cos
[

π
2Nh (x+ kh)

]

}

. (18)

Therefore, LSF become the standard sinc functions when N goes to infinity, i.e.,

lim
N→∞

sk(h,N, x) =
sin[π(x− kh)/h]

π(x− kh)/h
= Sk(h, x). (19)

The LSF have some common properties with the sinc functions, for instance, we can approximate the wave
function on the interval (−L,L) as

ψ(x) =
∑

m

ψmsm(h,N, x), (20)

where can be understood using the definition of sk(h,N, x) in terms of the completeness relation. Therefore,
we can rewrite Eq. (20) as

ψ(x) =
∑

m

[

h
∑

k

ψkϕm(xk)

]

ϕm(x). (21)

In the limit N → ∞ this relation becomes

ψ(x) =
∑

m

[

∫ L

−L

ψ(x)ϕm(x)dx

]

ϕm(x) =
∑

m

amϕm(x), (22)

which is the well-known Fourier expansion. So there is a close relation between the sinc collocation method
and the trigonometric basis expansion.

3. The trigonometric basis expansion

In this section we study the diagonalization of the Hamiltonian in terms of the particle in a box eigen-
functions that is basically different from the Schwartz’s method. Then by imposing a constraint on the
potential energy at the optimal length and the maximum available basis eigenenergy, we analytically fix the
variational parameter. Before going further note that in the Schwartz’s scheme N is the number of mesh
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points whereas in this section N is the number of basis functions. However, in the Schwartz’s method the
reference function vanishes at the N mesh points and the N trigonometric basis functions have at most N
nodes. Also we have Nh = L. So we expect that there would be a close connection between the Schwartz’s
method and the trigonometric basis expansion which is also explicitly elaborated in the previous section.

For the potentials which are even functions of x, to avoid large matrices, we can use

φm(x) =

√

1

L
cos

[(

m− 1

2

)

πx

L

]

, and φm(x) =

√

1

L
sin

(mπx

L

)

, (23)

basis functions (m = 1, 2, . . . , N) for even and odd parity solutions, respectively, and write the wave function

as ψ(x) =
∑N

m=1Amφm(x) which vanishes at ±L. Now the approximate solutions are the eigenvalues and
the eigenfunctions of the (N ×N) Hamiltonian matrix HN where can be written as

Hmn =

(

m− 1

2

)2
π2

L2
δmn +

(

L

π

)k (

Dm+n−1 +Dm−n

)

, (24)

and

Hmn =
m2π2

L2
δmn +

(

L

π

)k (

Dm−n −Dm+n

)

, (25)

for even and odd states, respectively. Here, δmn is the kronecker’s delta and Ds is defined as

Ds =
1

π

∫ π

0

dxxk cos(sx) =



















k
2−1
∑

i=0

(−1)i+s

s2(i+1)

k!

(k − 2i− 1)!
πk−2i−2, s > 0,

πk

k + 1
, s = 0.

(26)

Now the good strategy is to choose a relation between the basis domain L and the truncation at n < N so
that the errors due to the basis domain and the truncation approximately suppress each other. This will
prevent us from choosing a too large domain for small N or a too large cutoff for small L.

Note that, the expansion the solutions in terms of particle in a box basis functions approximately
corresponds to confining the potential in an infinite potential well,2 i.e., V (x) = xk for |x| < L and V (x) = ∞
elsewhere. Moreover, each energy eigenvalue is a superposition in the form En =

∑N
m=1 Pnmεm where

∑N
m=1 Pnm = 1, Pnm ≥ 0, and εn = n2π2/L2. Since for |x| ≥ L this model is not identical with the original

potential, the basis functions with energies larger than V (L) would not have a useful contribution to the
sought-after solutions. In this case, we lose accuracy which is due to the small well’s width. Also, when
V (L) ≫ εN the solutions would be inaccurate which means that L is too large. Keeping these two points
in mind, we conclude that the value of the potential at Lop should be proportional to the maximum energy
of the basis functions εN , namely

Lk
op = α(k)

N2π2

L2
op

, (27)

where α(k) ≥ 1 and it is of order of one. From this equation we can find the optimal value of L as

Lop(N) =

(

π2α(k)

)
1

k+2

N
2

k+2 , (28)

which has the same functional form as LS(N) (12). This similarity is due to the relation L = Nh and
the fact that the maximum number of nodes in this method agrees with the number of mesh points in the

2This correspondence is exact as N goes to infinity.

5



ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì

ì

ì ì
ì ì

ì ì ì

ì
ì

ì ì ì ì ì ì

0 10 20 30 40
N

2

4

6

8

10

12

Lop HN L

k=8

k=6

k=4

k=2

Figure 1: The variationally obtained optimal lengths (black diamonds) versus N for V (x) = xk and the predicted optimal
length curves (29).

Schwartz’s method which both are represented by N . Now, it is only remained to determine α(k) which can
be found by choosing an acceptable ansatz and comparing with the variationally obtained results (Fig. 1).3

It is straightforward to check that for the simple harmonic oscillator (k = 2), the most accurate solutions can
be obtained when the value of the potential at Lop is equal to the maximum energy of the basis functions

εN , i.e., α(2) = 1. For this case using (28) we have Lop =
√
πN = LS. For other values of k, the simplest

choice is looking for a relation in the form α(k) = η
k−2
2 with constant η to ensure α(2) = 1. As Fig. 1 shows,

we can properly fit Eq. (28) to the variational values upon choosing η = π/2 which results in

αop(k) =
(π

2

)
k−2
2

, and Lop(N) =

√

π

2
k−2
k+2

N
2

k+2 , (29)

Note that, although the coefficients of N
2

k+2 in LS (12) and Lop (29) seems to be very different, they are

approximately equal especially for k < 10. For instance, for k = 4 we have Lop =
√

π/21/3N1/3 ≃ 1.579N1/3

which is nearly equal to LS = 21/9π1/3N1/3 ≃ 1.582N1/3. In Table 1, we have reported the accuracy of
the energy eigenvalues for k = {2, 4, 6, 8} which are in complete agreement with the variationally obtained
solutions [13].

Since α(k) for k ≫ 1 will not be of O(1), we expect that the validity of Eq. (29) breaks down for large
k. At this limit we have V (Lop) ≫ εN which would result in inaccurate solutions as a consequence of
too large Lop. To check this point, we consider the problem of V (x) = xk where k → ∞. For this case,

the predicted optimal length is limk→∞ Lop(N) ≃
√

π/2 ≃ 1.253. However, the optimal length predicted
by the Schwartz’s formula has the correct limiting value, i.e., limk→∞ LS(N) = 1 and gives the following
proportionality coefficient:

αS(k) =

[

k

2
sin

(π

k

)

]
2k

k+2

, (30)

where αS(2) = 1 and as we have desired, it is of the order of unity for all k, i.e., 1 ≤ αS ≤ π2/4. Also,
Fig. 2 shows that the error exponentially decreases with respect to the number of the basis functions. In
comparison, the calculations show that the usage of LS results in more accurate energy spectrum than those
obtained by Lop.

3From now on we show the relative error of the energy spectrum by ǫn ≡

∣

∣

∣

∣

En−Eexact
n

Eexact
n

∣

∣

∣

∣

.
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k Lop N n ǫn

2
√
30π 30 0 2.77×10−40

2 9.57×10−37

4 1.47×10−33

4

√
π 351/3

21/6
35 0 4.95×10−40

2 1.72×10−38

4 1.04×10−36

6
√
2π 51/4 40 0 3.31×10−36

2 1.57×10−35

4 8.22×10−35

8

√
π 451/5

23/10
45 0 2.03×10−32

2 7.19×10−32

4 4.57×10−31

Table 1: The relative errors of the energy spectrum of the anharmonic oscillator V (x) = xk.

5 10 15 20 25 30
N

-80

-60

-40

-20

logHΕL

n=2

n=1

n=0

5 10 15 20 25 30
N

-60

-50

-40

-30

-20

-10

logHΕL

n=2

n=1

n=0

Figure 2: The error versus N for k = 4 and Lop (left), and for k = 6 and LS (right).
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4. Other applications

The applicability of the introduced optimal lengths is not restricted to the particular form of the poten-
tials, boundary conditions, or differential equations. Indeed, the optimal length can be effectively used for
the following issues:

4.1. Polynomial potentials

Let us consider a symmetric polynomial potential V (x) =
∑k

i=2 aix
i where ak > 0 and i = 2, 4, . . . .

Since the optimal length related to each term behaves in a separate manner, we cannot simply use Eq. (29)
for this polynomial potential. However, for the large values of Lop, the dominant term near the boundaries
is xk. In other words, we can also use this equation for the polynomial potentials when we work with
a large set of the basis functions. To elaborate this fact, let us study the doubly anharmonic oscillator
V (x) = a2x

2 + a4x
4 + a6x

6. The ground state wave function of this potential should not have nodes and it
should vanish as x→ ±∞. Thus, we can examine the following solution

Ψ0(x) = exp

(

−1

4
b4x

4 +
1

2
b2x

2

)

, b4 > 0. (31)

It is easy the check that this trial wave function satisfies the corresponding Schrödinger with the eigenvalue

E0 = −b2, b2 = −1

2
a4a

−1/2
6 , b4 = a

1/2
6 and a constraint on the potential [13]

a2 = b22 − 3b4. (32)

For instance, the potential V (x) = −2x2 + 2x4 + x6 obeys this constraint and have the following ground
state eigenvalue and eigenfunction

Ψ0(x) = exp

(

−1

4
x4 − 1

2
x2

)

, E0 = 1. (33)

For this case, using the optimal length related to k = 6, i.e., Lop =
(

π2N/2
)1/4

, one can easily obtain the
ground state energy E0 with 28 and 36 significant digits accuracy for N = 30 and N = 40 basis functions,
respectively.

4.2. Periodic boundary condition

We have deduced Eq. (29) from diagonalization scheme for the Hamiltonian with the basis functions
which are vanishing at the boundaries, but we can also use it for the case of the periodic boundary condition
under some circumstances. Note that, for this case, we observe an inflection point instead of a minimum
value in the graph of the energy versus the domain of basis functions [15]. However, since for the large
optimal lengths the low-lying wave functions are almost zero at the boundaries, Eq. (29) is still valid for
case of the periodic boundary condition when Lop is large enough.

4.3. Multidimensional problems

In a d-dimensional space which the Hamiltonian is invariant under parity transformation, the basis
functions are in the form

φevenm1m2···md
(~x) =

d
∏

i=1

√

1

Li
cos

[(

mi −
1

2

)

πxi
Li

]

, (34)

φoddm1m2···md
(~x) =

d
∏

i=1

√

1

Li
sin

(

miπxi
Li

)

, (35)

where mi = 1, 2, . . . , N . Now the Hamiltonian is expressed as a Nd × Nd matrix. Therefore, even for the
small values of N , the resulting matrix is too large and the ordinary variational scheme cannot be applied

8



efficiently. In general, we need to find d optimal lengths for the accurate calculation of the eigenvalues
and the eigenfunctions. For instance, for the separable potential V (~x) =

∑d
i=1 V (xi), we can use the

introduced optimal length (29) which needs to be properly chosen for each direction to get the desired
accuracy. Moreover, if the Hamiltonian has the rotational symmetry, i.e., V (~x) = V (|~x|), we only need one
optimal length to diagonalize the N ×N Hamiltonian.

4.4. Wheeler-DeWitt equation

One approach to quantize gravity is based on the well-known Wheeler-DeWitt equation (WDW), i.e.,
HΨ = 0 where Ψ is the wave function of the universe [16]. After freezing out many degrees of freedom,
WDW equation is expressed in the minisuperspace and Ψ is a function of just a few variables such as the
scale factor, the scalar field, etc. This equation is a hyperbolic partial differential equation and can be cast
in the form of the Schrödinger-like equation in the vicinity of the boundaries. To solve the WDW equation,
the proper adjusting the width of the domain of the basis functions with the number of the basis functions
is also an important issue which results in accurate solutions [17–19].

5. Alternative proposals

To improve the estimation for the optimal length, we need to modify Eq. (29) in such a way that it takes
a finite value as k goes to infinity. For instance, consider the following proposal

α(1)
op (k) =

(π

2

)
k−2
k/2

, and L(1)
op (N) =

(

π4(k−1)

4k−2

)

1
k(k+2)

N
2

k+2 . (36)

For k = 2 and k = 4 this proposal coincides with Eq. (29) and for large k it agrees with Eq. (30), i.e.,

lim
k→∞

α(1)
op (k) = lim

k→∞

αS(k) =
π2

4
. (37)

Since α
(1)
op is nearly equal to αS for all k (see Fig. 3), the accuracy of this proposal is of the order of αS .

Up to now, the most accurate proposal for the optimal length is LS. However, the calculations show that
to find more accurate results, we need to slightly increase LS for all k and N . Therefore, since we always

have L
(1)
op < LS , the accuracy of Eq. (36) is slightly lesser than Eq. (29) which can be also confirmed by

explicit calculations. To find an optimal length that is more accurate than LS, note that the factor π/2 in

Eq. (36) is the first term in the asymptotic expansion of the term
k

2
sin

(π

k

)

in Eq. (30), i.e.,

k

2
sin

(π

k

)

=
π

2
− π3

12k2
+O(k−4). (38)

So a good idea is to add the second factor π3

12k2 to π/2 in Eq. (36) and write the optimal length as

α(2)
op (k) =

(

π

2
+

π3

12k2

)

k−2
k/2

=

(

1 +
π2

6k2

)

k−2
k/2

α(1)
op (k), (39)

and

L(2)
op (N) =

(

π4(k−1)

4k−2

)

1
k(k+2)

(

1 +
π2

6k2

)

2(k−2)
k(k+2)

N
2

k+2 =

(

1 +
π2

6k2

)

2(k−2)
k(k+2)

L(1)
op (N), (40)

which satisfies α
(2)
op (2) = 1 and limk→∞ α

(2)
op (k) = π2/4. It is straightforward to check that L

(2)
op (α

(2)
op )

is always slightly greater than LS (αS) (see Fig. 3). Indeed, calculations show that between the several

mentioned candidates for the optimal length, L
(2)
op gives the most accurate energy spectrum. As a simple

application, in Table 2, we have reported the ground state energy of the anharmonic oscillators using only

one basis function (N = 1) and the optimal length L
(2)
op . For these cases, the matrix of the Hamiltonian has

only one element and the relative error is less than 20%.
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k E0 Eexact
0 ǫ0

2 1.19 1.00 1.9×10−1

4 1.23 1.06 1.6×10−1

6 1.34 1.14 1.7×10−1

8 1.45 1.23 1.8×10−1

Table 2: The ground state energies and their relative errors using one basis function (N = 1) and L
(2)
op .

2 4 6 8 10
k

1.7337

Π
2

4

ΑHk L

ΑH¥L

Αop
H2L

ΑS

Αop
H1L

Figure 3: The proportionality coefficient α(k).

6. Stationarity of the trace of the Hamiltonian

In this section we apply the optimized Rayleigh-Ritz method proposed by Okopinska [5, 6] for the
trigonometric basis functions. This method is originally used for the harmonic oscillator eigenfunctions
and it is based on fixing the values of nonlinear parameters before diagonalization of the truncated matrix.
Before diagonalization, the only physical quantity that can be determined is the trace of the Hamiltonian

TrNH =

N
∑

n=1

〈n|Ĥ |n〉, (41)

which represents the Nth-order approximation to the sum of energies of the N lowest bound states. Now
the strategy is to choose the the values of nonlinear parameters so as to make TrNH stationary. Since the
only nonlinear parameter for the trigonometric basis functions is L we have

d

dL
TrNH = 0. (42)

Using Eq. (24) we can find TrNH as

TrNH =
π2

12L2
(4N2 − 1)N +

(

L

π

)k
[

N
∑

n=1

D2n−1 +ND0

]

, (43)

where D0 = πk/(k + 1) and

N
∑

n=1

D2n−1 =

k
2 −1
∑

i=0

πk−2i−2k!

(−4)i+1(k − 2i− 1)!

[

(

4i+1 − 1
)

ζ(2i+ 2)− ζ(2i + 2, N + 1/2)
]

, (44)
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Figure 4: The optimal lengths versus N for k = 2 (left) and k = 4 (right).

where ζ(s) and ζ(s, a) are the Riemann zeta function and the generalized Riemann zeta function, respectively.
After some algebra, Eq. (42) results in the following optimal length and αT

LT(N) = π















(4N2 − 1)N/(6k)

Nπk

k + 1
+

k
2−1
∑

i=0

πk−2i−2k!

(−4)i+1(k − 2i− 1)!

[

(

4i+1 − 1
)

ζ(2i + 2)− ζ(2i+ 2, N + 1/2)
]















1
k+2

,

≃
(

2(k + 1)π2

3k

)
1

k+2

N
2

k+2 , (45)

αT(k) ≃
2(k + 1)

3k
. (46)

For k = 2 we have LT(N) ≃
√
πN which agrees well with LS and Lop. However, the accuracy of this method

reduces for k > 2. In comparison with Lop, we should mention that for k < 10, Lop is more accurate as it
is apparent from Fig. 4 and l.h.s of Fig. 5.4 But for k > 10, LT is more closer to LS (r.h.s of Fig. 5) and
similar to LS tends to one as k goes to infinity. The accuracy of the energy spectrum of the anharmonic
oscillators for k = {2, 4, 6, 8} and N = 10 is reported in Table 3. As the table shows, the optimal length
obtained using LS or Lop formulas gives more accurate results in comparison with LT formula for a given
N . In Fig. 6, we depicted the coefficient of proportionality α(k) for the proposed schemes. Since αop grows

exponentially, it cannot be used efficiently for large k. On the other hand, αS , α
(1)
op , and α

(2)
op go to π2/4 and

αT goes to 2/3 at this limit.

7. The harmonic oscillator basis expansion

We can also find the energy spectrum of the anharmonic oscillators using the basis of the harmonic
oscillator eigenfunctions

φn(x) =

[

Ω√
π2nn!

]1/2

Hn(Ωx) e
−Ω2x2/2, (47)

4Note that for k = 2, we have Lop = LS , and for k = 4, Lop nearly coincides with LS .
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Figure 5: The optimal lengths versus N for k = 6 (left) and k = 16 (right).
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Figure 6: The proportionality coefficient versus k.

k = 4
n L ǫn
0 LS 1.53×10−11

Lop 1.65×10−11

LT 4.51×10−9

2 LS 1.88×10−10

Lop 2.10×10−10

LT 5.96×10−8

4 LS 6.05×10−9

Lop 6.59×10−9

LT 9.92×10−7

6 LS 2.12×10−7

Lop 2.08×10−7

LT 1.25×10−5

k = 6
n L ǫn
0 LS 1.57×10−9

Lop 1.14×10−10

LT 5.00×10−7

2 LS 9.03×10−9

Lop 2.48×10−9

LT 2.15×10−6

4 LS 8.07×10−8

Lop 8.93×10−8

LT 1.36×10−5

6 LS 4.88×10−7

Lop 1.58×10−6

LT 7.91×10−5

k = 8
n L ǫn
0 LS 4.10×10−8

Lop 7.36×10−8

LT 6.85×10−6

2 LS 1.30×10−7

Lop 1.91×10−7

LT 1.75×10−5

4 LS 7.04×10−7

Lop 5.70×10−7

LT 6.46×10−5

6 LS 4.03×10−6

Lop 8.73×10−7

LT 2.40×10−4

Table 3: The relative errors of various optimized schemes for N = 10 basis functions.
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where Hn(Ωx) are Hermite polynomials and the frequency Ω is the variational parameter. This frequency
can be fixed by the principle of minimal sensitivity, requiring the dependence on the variational parameter
be as weak as possible [20]. For the Hamiltonian

H =
1

2

[

− d2

dx2
+ ω2x2

]

+ λx4, (48)

the application of the PMS to the sum of N even and N odd basis functions gives [5]

Ω3
PMS − ω2ΩPMS = 8λ

(

N +
1

8N

)

. (49)

It is also possible to find a similar relation for the optimal frequency Ωop using the prescription presented
in Sec. 3. Here we have two potentials: one physical 1

2ω
2x2 + λx4 and one unphysical 1

2Ω
2x2 which we use

the eigenfunctions of the latter to approximate the solution of the former. The intersection points of these

potentials are given by xint = ±
√

Ω2
−ω2

2λ . So the potentials take the following value at these points:

V (xint) =
Ω2

4λ

(

Ω2 − ω2
)

. (50)

On the other hand, for N even and N odd basis functions, the maximal quantum number is 2N − 1 and
therefore the maximal energy reads

Emax = Ω

(

2N − 1

2

)

. (51)

Now since the basis functions with the energy larger than V (xint) would have no useful contribution to the
sought-after solutions, by equating Eq. (50) and Eq. (51) we obtain the relation for the optimal frequency
as

Ω3
op − ω2Ωop = 8λ

(

N − 1

4

)

, (52)

which agrees well with Eq. (49) especially for large N . At this limit, we have Ωop ≈ ΩPSM ≈ 2(λN)1/3.
Also, the N dependence of the optimal frequency coincides with the N dependence of the optimal length
in the trigonometric expansion for k = 4, i.e., Ωop ∼ N1/3 ∼ Lop. Note that, the accuracy of Ωop is of the
order of ΩPSM even for small N . In Fig. 7, we have depicted ΩPSM

2λ1/3 in terms of the total number of the basis

functions 2N for ω2 = {0, 12λ2/3, 20λ2/3}.

8. Conclusions

In this paper, we presented several optimal lengths for accurate calculation of the eigenvalues and eigen-
functions of the anharmonic oscillators using trigonometric basis functions obeying Dirichlet boundary con-
dition and the harmonic oscillator eigenfunctions. We indicated that the value of the potential at the optimal
length should be proportional to the maximum energy of the used basis functions. Since both V (Lop) ≫ εN
and V (Lop) ≪ εN are two sources of error, we demanded that the proportionality coefficient α(k) to be
of the order of one. For the trigonometric basis set, we suggested some ansatz for α(k) with the condition

α(2) = 1 and found that L
(2)
op gives the most accurate results. By defining LS we showed that it can be

also used as an accurate optimal length. Indeed, it is shown that the optimal number of the mesh points
(for fixed h) in the Schwartz’s scheme, where the reference function vanishes there nearly coincides with
the optimal number of the basis functions (for fixed L) which at most have the same number of nodes.
Moreover, αS is of the order of unity for all k. An alternative proposal is using the trace of the Hamiltonian
as an only physical quantity before diagonalization and to make it stationary at the optimal value LT. We
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Figure 7: The optimal frequency parameter versus 2N obtained via the principle of minimal sensitivity for ω2 =
{0, 12λ2/3, 20λ2/3}.

showed that this optimal length has the correct asymptotic value for large k and can be used as a good
approximation for k > 10. For all proposals except Lop the proportionality coefficient α(k) remains of order
of one for all k and they have the correct asymptotic value, i.e., limk→∞ L(N) = 1. We indicated that these
proposals can be also used for the multidimensional problems, and for large N , for the periodic boundary
condition and the polynomial potentials. The following schematic diagram shows the relative efficiency of
the proposed optimal lengths

LT
k<10−−−→ Lop

Lop −−−→
k>10

LT

−→ L(1)
op −→ LS −→ L(2)

op , (53)

where the right arrow indicates the direction of the increasing of the accuracy. For the harmonic oscillator
basis functions, we showed that the resulting optimal frequency agrees with the one obtained using the
principle of the minimal sensitivity.
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