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Abstract

In the qualitative theory of ordinary differential equations, we can find many papers
whose objective is the classification of all the possible topological phase portraits of a given
family of differential system. Most of the studies rely on systems with real parameters and
the study consists of outlining their phase portraits by finding out some conditions on the
parameters. Here, we studied a susceptible-infected-susceptible (SIS) model described by the
differential system & = —bxy — ma + cy + mk, y = bxy — (m + ¢)y, where b, ¢, k, m are real
parameters with b # 0, m # 0 [3]. Such system describes an infectious disease from which
infected people recover with immunity against reinfection. The integrability of such system
has already been studied by Nucci and Leach [8] and Llibre and Valls [6]. We found out two

different topological classes of phase portraits.

Key-words: SIS epidemic model, global phase portrait, endemic and disease-free steady

states.

1 Introduction

There is a long time that scientists have been curious about the interaction between
portions of a population with particular characteristics, e.g. prey and predator interaction
[2]. In 1838, Verhulst [14] proposed the study of the population growth by means of the so
called logistic equation (see also [2]). In contrast, this equation has had other applications,
for instance in the study of the spread and the evolution of diseases. The means of how
diseases spread has stimulated the interest mainly within researchers of the biological field
[10].

As suggested above, the application of mathematical tools in different areas of sciences has
been frequent and has had a great impact on the scientific and/or experimental conclusions.

For example, Lotka (1925) and Volterra (1926) described independently the dynamics present
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in biological interactions between two species using ordinary differential equations (ODE).
Their model is now known as the Lotka-Volterra equations and they are the most studied
equations in the qualitative theory of ODE (see [2, 9] for more details).

Another approach of the ODE is their application in the study of infectious diseases.
According to Levin [5], this study represents one of the oldest and richest areas in mathe-
matical biology. Besides, continuous models composed by ODE have formed a large part of
the traditional mathematical epidemiology literature, mainly because mathematicians have
been attracted by applying the ODE’s tools, such as their qualitative theory, to the study of
infectious diseases in the attempt of using mathematics to contribute positively to the science
field and because the mathematical models become indispensable to inform decision-making.

Particularly, we consider the system of first-order ODE

T = —bry—mz+ cy+ mk, 1)

y = bzy—(m+oy,
where x and y represent, respectively, the portion of the population that has been susceptible
to the infection and those who have already been infected. System (1) is a particular case
of the class of classical systems known as susceptible-infected-susceptible (SIS) models, in-
troduced by Kermack and McKendrick [4] and studied by Brauer [3]|, who has assumed that
recovery from the nonfatal infective disease does not yield immunity. In system (1), k is the
population size (susceptible people plus infected ones), mk is the constant number of births,
m is the proportional death rate, b is the infectivity coefficient of the typical Lotka-Volterra
interaction term and c¢ is the recovery coefficient. As system (1) is assumed to be nonfatal,
the standard term removing dead infected people —ay in [3] is omitted. As usual in the lit-
erature, all the critical points of system (1) will henceforth be called (endemic) steady states
(e.g. see [13]). In the rest of the paper we will study the phase portraits of the differential
system (1) with bm # 0. Note that if b = 0, then system (1) becomes linear, and if m = 0,
then system (1) satisfies that @ + ¢ = 0. These last two cases are trivial and non interesting
from a biological point of view.

Much has been studied on SIS models. The great part of the studies present only local
stability results for which many mathematical tools are available. In contrast, global studies
of these models are very limited due to the lack of applicable theories. The main mathe-
matical tool which has been used for this purpose is the Lyapunov function. The principal
limitation is that such functions are not the same for all types of systems (see [11, 12| and
references there listed for further details).

Besides the stability of SIS models, their integrability has also been studied. For example,

Nucci and Leach [8] have demonstrated that (1) is integrable using the Painlevé test. Later,



Llibre and Valls [6] have proved that system (1) is Darboux integrable, and they have shown
the explicit expression of its first integral and all its invariant algebraic curves.
Alternatively, the attempt of outlining the global phase portraits of ODE systems is a
possible way to determine their global behavior.
Here, the purpose was to classify all the topological classes of the global phase portraits
of system (1) using some information in [6].

The main result in this paper is the following:

Theorem 1.1. The phase portrait on the Poincaré disc of system (1) is topologically equiva-

lent to one of the two phase portraits shown in Figure 1, modulo reversibility.

(a) (b)

Figure 1: Phase portraits in the Poincaré disc of system (1)

The paper is organized as follows. Basic definitions and stated results about singular
points on the plane and their classification are given in Section 2. The reader who is familiar
to these concepts can skip this section with no worries of missing new information. In Section
3, the local analysis of the finite and infinite singular points of system (1) is done, and so is
the existence of at least three invariant straight lines for such system. Section 4 collects all
the information provided in the previous sections and proves Theorem 1.1. Finally, Section

5 concludes and discusses the results from the biological point of view.

2 Basic results

In this section, we introduce some definitions and stated theorems which shall be used in
the next section for the analysis of the local phase portraits of finite and infinite singularities

of system (1).



2.1 Singular points

We denote by X (z,y) = (P(x,y),Q(z,y)) a vector field in R?, associated to the system

(2)

where P and @ are real polynomials in the variables x and y of degree at most n € N. We
recall that the degree n is defined by the maximum of deg(P) and deg(Q). We denote by
P, (R?) the set of all polynomial vector fields on R? of the form (2).

Definition 2.1. A point p € R? is said to be a singular point, or a singularity, of the
vector field X = (P,Q), if P(p) = Q(p) =0.

We denote by P, the partial derivative of P with respect to x. Suppose that p € R? is
a singular point of X and that P and @ are analytic functions in a neighborhood of p. Let

6 = Po(p)Qy(p) — Py(p)Qa2(p) and 7 = Pr(p) + Qy(p).
Definition 2.2. The singular point p is said to be non-degenerate if 6 # 0.

As a consequence, p is an isolated singular point. Furthermore, p is a saddle if § < 0, a
node if 72 — 46 > 0 (stable if T < 0, unstable if 7 > 0), a focus if 72 — 45 < 0 (stable if T < 0,

unstable if 7 > 0), and either a weak focus or a center if 7 =0 and § > 0 [7].

Definition 2.3. The singular point p is said to be hyperbolic if the two eigenvalues of the

Jacobian matriz JX (p) have nonzero real part.

Hence, the hyperbolic singularities are the non-degenerate ones, except the weak foci and

the centers.

Definition 2.4. The degenerate singular point p (i.e. § = 0), with 7 # 0, is called semi-
hyperbolic.

Again p is isolated in the set of all singular points. Specifically, the next theorem summa-
rizes the results on semi-hyperbolic singularities that shall be used later. For more details,

see Theorem 2.19 of [7].
Theorem 2.5. Let (0,0) be an isolated singular point of the vector field X given by

= Az,y),

(3)
Ay + B(z,y),

<.
I

where A and B are analytic in a neighborhood of the origin starting with at least degree 2

in the variables x and y. Let y = f(x) be the solution of the equation \y + B(x,y) = 0 in



a neighborhood of the point (0,0), and suppose that the function g(x) = A(z, f(x)) has the
expression g(x) = ax® + o(z®), where a > 2 and a # 0. So, when « is odd, then (0,0) is
either an unstable node, or a saddle, depending if a > 0, or a < 0, respectively. In the case of
the saddle, the separatrices are tangent to the x-azxis. If « is even, the (0,0) is a saddle-node,
i.e. the singular point is formed by the union of two hyperbolic sectors with one parabolic
sector. The stable separatriz is tangent to the positive (respectively, negative) x-axis at (0,0)
according to a < 0 (respectively, a > 0). The two unstable separatrices are tangent to the

y-axis at (0,0).

Definition 2.6. The singular points which are non-degenerate or semi-hyperbolic are called

elementary.
Finally, we present two other concepts that shall be used in the next sections.

Definition 2.7. A function H : U C R? = R of class C! is called a first integral of system
(2) if U is an open and dense subset of R? and H is constant over the solutions of system
(2) contained in U, i.e.

0H OH

P— _ =
Ox +Q8y 0,

on the points of U. If such H exists, then we say system (2) is integrable.

Definition 2.8. Let C[z,y] denotes the ring of complex polynomials in the variables x and

y. The polynomial f(x,y) € Clz,y] \ C is invariant under system (2) if

of

of
P o

for some K € Clx,y] called the cofactor of f.

We say the algebraic curve f(xz,y) = 0 is invariant, if f(z,y) is invariant under system

2).

2.2 Poincaré compactification

Let X € P,(R?) be a planar polynomial vector field of degree n. The Poincaré compacti-
fied vector field m(X) corresponding to X is an analytic vector field induced on S? as follows
(for more details, see [7]).

Let S? = {y = (y1,92,y3) € R?; y? +y3+y3 = 1} and T, S? be the tangent plane to S* at
point y. Identify R? with T(070,1)SQ and consider the central projection f : T(07071)S2 — 2.
This map defines two copies of X on S2, one in the northern hemisphere and the other in
the southern hemisphere. Denote by X’ the vector field Df o X defined on S? except on its
equador S' = {y € S?; y3 = 0}. Then, S! is identified to the infinity of R2.



In order to extend X’ to a vector field on S?, including S', X should satisfy suitable
conditions. In the case that X € P,(R?), m(X) is the only analytic extension of y§ !X’
to S2. On §?\ S! there exist two symmetric copies of X, and knowing the behavior of
7(X) around S!, one can conclude the behavior of X in a neighborhood of the infinity. The
Poincaré compactification has the property that S! is invariant under the flow of 7(X). The
projection of the closed northern hemisphere of S? on y3 = 0 under (y1,y2,¥y3) — (y1,y2) is

called the Poincaré disc, and it is denoted by D?.

Definition 2.9. Two polynomial vector fields X andY onR? are topologically equivalent
if there exists a homeomorphism on S? preserving the infinity S' carrying orbits of the flow

induced by (X)) into orbits of the flow induced by w(Y').

As §?% is a differentiable manifold, for computing the expression for 7(X), consider six
local charts U; = {y € S%; y; > 0} and V; = {y € S%; y; < 0}, where i = 1,2,3, and the
diffeomorphisms F; : U; — R? and G; : V; — R2?, for i = 1,2,3, which are the inverses
of the central projections from the tangent planes at the points (1,0,0), (—1,0,0), (0,1,0),
(0,—1,0), (0,0,1) and (0,0, —1), respectively. Denote by z = (u,v) the value of F;(y) and
Gi(y), for any i = 1,2,3 (so z represents different things according to the local charts under

consideration). Hence, after some easy computations, 7(X) has the following expressions:

ING) <Q (% %) —uP (% %) ,—vP (% %)) in Uy, (4)
A() <P <% %) —uQ (% %) 00 <% %)) in Us, (5)

A(z)(P(u,v), Q(u,v)) in Us, (6)

where A(z) = (u? 4 v? 4+ 1)~ ("=1/2_ The expression for V; is the same as that for U; except
for a multiplicative factor (—1)"~1. In these coordinates for i = 1,2, v = 0 always denotes
the points of S'.

After finding the infinite singular points, it is necessary to classify them. Among the
hyperbolic singular points at infinity only nodes and saddles can appear. All the semi-
hyperbolic singular points can appear at infinity.

If one of these hyperbolic or semi-hyperbolic singularities at infinity is a (topological)
saddle, then the straight line {v = 0}, representing the equator of S2, is necessarily a stable
or unstable manifold, or a center manifold (see Figure 2).

The same property also holds for semi-hyperbolic singularities of saddle-node type. They

can hence have their hyperbolic sectors split in two different ways depending on the Jacobian



matrix of the system in the charts U; or Us. The Jacobian matrix can be either

A * 0 x

, or

00 0 A

with A # 0. In the first case we say that the saddle-node is of type SN1 and in the second
case of type SN2. The two cases are represented in Figure 2. The sense of the orbits can also

be the opposite.

g@@

S SN1 SN2

Figure 2: (S) represents a hyperbolic or semi-hyperbolic saddle on the equator of S?; (SN1) and
(SN2) represent, respectively, saddle-nodes of types SN1 and SN2 of 7(X) in the equator of S?

3 Analysis of the system

Here, we provide a mathematical analysis of system (1).

Provided that b # 0, system (1) has only two finite singular points:
p = ((c+m)/b,(—c + bk —m)/b), usually known as endemic steady state, and ¢ = (k,0),
usually known as disease-free steady state. In addition, both finite singular points p and ¢
are the same if bk = c.

The names given above to each steady states are not an accident. In ¢, the number of
susceptible individuals is equal to the population size k, whereas the number of infected
people is null. On the other hand, the number of susceptible people in p is the recovery
coefficient plus the death rate divided by the infection coefficient, while the infected ones
are the rest of the population, which leads to the presence of infected people, since bm # 0.
Finally, note that only non-negative values of x and y are interesting here, because they
represent the number of individuals.

First, we start with the analysis of the endemic steady state p. Translating the singular

point p to the origin in system (1), we obtain

r = —bkx+cx— my— bxy,
gy = (—c+bk—m)x+ by,



which is equivalent to (1). The Jacobian matrix of (7) is given by

Ja.y) c— bk — by —m — bx
l‘?y = )
—c+ bk —m + by bx

which implies that

0=10(0,0) = (bk —c—m)m and 7=17(0,0)=—bk +c.

If (bk —c—m)m < 0, then p is a saddle point. On the other hand, if (bk —c—m)m > 0,
then p is a node point, because 72 — 4§ = (¢ — bk + 2m)? > 0.

In the case that (bk — ¢ — m)m = 0, or equivalently, m = bk — ¢, then p is degenerate.
Indeed, it is the case that both finite singular points are the same, i.e. p = ¢ = (k,0). Here,

system (7) becomes

T —mx — my — bxy,

(®)

y = by,

whose Jacobian matrix at (0,0) is

so that p is a semi-hyperbolic point. By a linear change of coordinates, system (8) can be put
on the form of system (3) and, applying Theorem 2.5, we conclude that p is a saddle-node
point.

From the biological point of view, when the death rate m is equal to the portion of the
population which becomes infected (bk) minus the recovery coeflicient, the dynamics around
the steady states p and ¢ changes and they become only one point which attracts (the node
part) and repels (the saddle part) the orbits in its neighborhood.

Now, we analyze the disease-free steady state g. Translating the singular point ¢ to the

origin in system (1), we obtain

T = —mx+ cy— bky — bxy,
(—c+ bk — m)y + bxy,

<.
Il

which is equivalent to (1). The Jacobian matrix of (9) is given by

Jey) —m — by c—blk+x)
T,Yy) =
by —c—m+ bk + x)



which implies that

0=26(0,0)=—(bk—c—m)m and 7=7(0,0) =bk —c— 2m.

If —(bk — ¢ — m)m < 0, then ¢ is a saddle point. In contrast, if
—(bk — ¢ —m)m > 0, then ¢ is a node point, because 72 — 46 = (c — bk)? > 0.

The case (bk — ¢ — m)m = 0, or equivalently m = bk — ¢, has already been studied, and
p = q is a semi-hyperbolic saddle-node point.

Finally, we have proved the following:

Proposition 3.1. Consider system (1) with bm # 0 and its two finite steady states p and
q. Then:

1. If either m > 0 and m > bk — ¢, or m < 0 and m < bk — ¢, then p is a saddle and q is

a node;

2. If either m > 0 and m < bk — ¢, or m < 0 and m > bk — ¢, then p is a node and q is a
saddle;

3. If m = bk — ¢, then p = q is a semi-hyperbolic saddle-node.

Having classified all the finite singular points, we apply the Poincaré compactification to
study the infinite singularities.
In the local chart Uy, where x = 1/v and y = u/v, we have:
i = u(b+bu—cv— cuv— kmv?),
(10)
0 = v(bu+mv — cuv — kmov?),
whose infinite singular points are (0,0) and (—1,0), which are a saddle-node of type SN1 (by
Theorem 2.5) and a node, respectively.

In the local chart Uz, where = u/v and y = 1/v, the system

4 = —bu—bu®+ cv+ cuv + kmo?,
(11)
v = v(=bu+ cv+mv)
has two infinite singular points (0,0) and (—1,0). The latter one is a node and is the same

as (—1,0) € Uy, while the former one is a saddle-node of type SN1.

We have just proved the following;:

Proposition 3.2. The infinite singular points of system (1) are the origin of charts Uy, V1,
Us and Vo, which are saddle-node points of type SN1, and (—1,0), belonging to each of the

charts Uy and Us, which is a node point.



Knowing the local behavior around finite and infinite singular points, another useful tool
to describe the phase portraits of differential systems is the existence of invariant curves.

The next result shows system (1) has at least three invariant straight lines.

Proposition 3.3. Let b # 0. System (1) has at least three invariant straight lines given

by fi(z,y) =y and folx,y) = k —x — vy, and additionally fs(xz,y) =k — x, if ¢ = bk.

Proof. By Definition 2.8, we can find K1 (x,y) = bx —m —c, Ko(z,y) = —m and K3(z,y) =
—m — by as the cofactors of f1(z,y), fo(x,y) and f3(x,y) (if ¢ = bk), respectively. O

4 Main result

From Propositions 3.1 and 3.2 we get all the information about the local behavior of
finite and infinite singular points, respectively. Using the continuity of solutions and primary
definitions and results of ODE (e.g. w-limit sets, existence and uniqueness of solutions, the
Flow Box Theorem etc. [7]) and the existence of invariant straight lines of system (1) stated
by Proposition 3.3, its global phase portraits can be easily drawn.

Essentially, we have only two cases. The finite steady state ¢ is the intersection of the
invariant curves f1(z,y) = fo(x,y) = 0, and the other finite steady state p lies on the curve
falz,y) =0.

According to items (1) and (2) of Proposition 3.1, p (respectively, ¢) is a saddle (re-
spectively, a node) the one way and the other a node (respectively, a saddle). The subtle
difference here is the position of point p. While ¢ remains on the line {y = 0}, p is in the
lower part of the Poincaré disc the one way and the other in the upper part. It is worth
mentioning that the four infinite singular points continue to be the same points no matter
what conditions are being considered. The phase portrait of both cases above is topologically
equivalent to the one which is shown in Figure 1(a).

Item (3) of Proposition 3.1 assumes the existence of only one finite singular point, p = gq.
Here, when m = bk —c, both p and g become only one degenerate singularity which bifurcates
into a saddle-node point. Again, no changes are applied to the infinite singular points. The
phase portrait of this case is topologically equivalent to the one which is shown in Figure
1(b).

Finally, Theorem 1.1 has been proved.

5 Conclusions and discussions

The last section proves the existence of only two classes of global phase portraits of the

quadratic system (1). In the qualitative theory of ODE it is quite important to know the

10



global behavior of solutions of systems and, in general, this is not an easy task. The most
frequently used tools for this propose are the study of local behavior along with the (local
and global stability), integrability, and also the global phase portrait, which was employed
in the present study.

In the case represented by Figure 1(a), it is clear that while the steady state ¢ characterizes
the presence of only susceptible individuals, p indicates the mutual presence of susceptible
and infected people. Besides, as ¢ is an asymptotically stable node, the disease seems to
be controlled and the whole population tends to be healthy but susceptible to be infected
again. As p is an unstable saddle steady state, it suggests that there is no harmony between
the number of susceptible people and infected ones, although some of the solutions tend to
q, indicating the control of the disease.

In case of Figure 1(b), all the solutions tend to ¢ (regarding that z,y > 0), i.e. if
m = bk — ¢, the disease is supposed to be controlled and the whole population is inclined to

be healthy but susceptible to the reinfection.
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