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Identities of symmetry for Bernoulli polynomials arising
from quotients of Volkenborn integrals invariant under
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Abstract

In this paper, we derive eight basic identities of symmetry in three variables
related to Bernoulli polynomials and power sums. These and most of their
corollaries are new, since there have been results only about identities of
symmetry in two variables. These abundance of symmetries shed new light
even on the existing identities so as to yield some further interesting ones.
The derivations of identities are based on the p-adic integral expression of
the generating function for the Bernoulli polynomials and the quotient of
integrals that can be expressed as the exponential generating function for
the power sums.
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1. Introduction and preliminaries

Let p be a fixed prime. Throughout this paper, Z,, Q,, C, will respectively
denote the ring of p-adic integers, the field of p-adic rational numbers and
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the completion of the algebraic closure of Q,. For a uniformly differentiable
(also called continuously differentiable) function f : Z, — C, (cf. [4]), the
Volkenborn integral of f is defined by

pV -1
NWMZM—Zf

Then it is easy to see that

£z + D)du(2) /tf Jdu(z) + 1(0). (1)

Zp

Let | - |, be the normalized absolute value of C,, such that |p|, = %, and let

E={teC,lt], <p 7} (2)

Then, for each fixed t € E, the function f(z) = e* is analytic on Z,
and by applying (1) to this f, we get the p-adic integral expression of the
generating function for Bernoulli numbers B, :

/Z tdu(z) = L =3B (eh) (3)

So we have the following p-adic integral expression of the generating func-
tion for the Bernoulli polynomials B, (z) :

t S t"
/ 6(x+z)tdlu(z) = — 16xt — Bn(gj)— (t S E,ZE S Zp) (4)
Zp N

e n!
n=0

Here and throughout this paper, we will have many instances to be able
to interchange integral and infinite sum. That is justified by Proposition 55.4
n [4]. Let Si(n) denote the k-th power sum of the first n 4+ 1 nonnegative
integers, namely

n

S(n) =) i =0 41" .- 0k, (5)

=0
In particular,

1, for k=0,

S = 1, Si(0) =
o(n) =n+1, +(0) {O, for k£ > 0.
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From (3) and (5), one easily derives the following identities: for w € Z+,,

w [y, edp(z) L& tk

T, comdu(y) ~ ;e = kzzosk(w ) (t€B) (7)
In what follows, we will always assume that the Volkenborn integrals of
the various exponential functions on Z, are defined for ¢t € E (cf.(2)), and
therefore it will not be mentioned.

[1]-[3], [5] and [6] are some of the previous works on identities of symmetry
in two variables involving Bernoulli polynomials and power sums. For the
brief history, one is referred to those papers.

In this paper, we will produce 8 basic identities of symmetry in three vari-
ables wy, we, w3 related to Bernoulli polynomials and power sums(cf. (44),
(45), (48), (51), (55), (57), (59), (60)). These and most of their corollaries
seem to be new, since there have been results only about identities of symme-
try in two variables in the literature. These abundance of symmetries shed
new light even on the existing identities. For instance, it has been known
that (8) and (9) are equal(cf. [6, Cor.1], [3, Cor.2]) and (10) and (11) are
so (cf. [3, (13)], [6, Cor.4]). In fact, (8)-(11) are all equal, as they can be
derived from one and the same p-adic integral. Perhaps, this was neglected
to mention in [3]. Also, we have a bunch of new identities in (12)-(15). All
of these were obtained as corollaries (cf. Cor.9, 12, 15) to some of the basic
identities by specializing the variable w3 as 1. Those would not be unearthed
if more symmetries had not been available.

i (Z) Bi(wiy1)Sn—r(wy — Dwi " ws™! (8)

k=0
" /n ) )
= Z (k;) B (way1) Sp—pp(wy — 1wy wi™ (9)
k=0

_ ,,n—1 Ly B wa . 10

= Wy Z n(w2y1 + w—ll) ( )
=0

_ =1 oy B wy . 11

= Wy Z n(wlyl + w—zl) ( )
=0

= Z ( n )Bk(yl)sﬁ(wl_1)Sm(w2—1)wlf+m—1w]2g+g_1 (12)

k.. m
k+l+m=n ’



n wi—1 .
_ n 2 _
= w} ! g (k) g Bi(y1 + —wl)Sn_k(wg - 1)w’§ 1 (13)

k=0 =0
n wo—1 i
_ ,,n—1 n 7 b1
= W, kZ:O (k) ; Bi(y1 + w—2)5n_k(w1 — Dwy (14)
w1—1 wa—1 i j
= (wiwa)"™ Y0 D Bl + ——+ =), (15)

The derivations of identities is based on the p-adic integral expression of
the generating function for the Bernoulli polynomials in (4) and the quo-
tient of integrals in (7) that can be expressed as the exponential generating
function for the power sums. We indebted this idea to the paper [3].

¢II. Several types of quotients of Volkenborn integrals

Here we will introduce several types of quotients of Volkenborn integrals
on Z, or Zf, from which some interesting identities follow owing to the built-
in symmetries in wy, wo, ws. In the following, wy, wsy, w3 are positive integers
and all of the explicit expressions of integrals in (17), (19), (21), and (23) are
obtained from the identity in (3).

(a) Type ALy (for i =0,1,2,3)

fzg 6(w2w3x1+w1w3:c2+w1w2x3+w1w2w3(2?;§ yj))tdﬂ(l'l)dﬂ(lé)d,u(l'?,)

I(AL,) = :

( 23) (pr €w1w2w3w4tdﬂ(x4))l
(16)
(w1w2w3)2—it3—iew1w2w3(zg;i yj)t(ewlwgwgt _ 1)z 17
- (6w2w3t _ 1)(6w1U)3t _ 1)(6w1U)2t _ 1) ’ ( )

(b) Type Aly (for i =0,1,2,3)
[, el s S 0y ) s )

I(AL) = =2 (18)

(J, evvararidp(as))



(wlwgwg)1_it3_i6w1w2w3(zi;i yj)t(ewuugwgt o 1)2 "
= (ewlt _ 1)(€w2t _ 1)(€w3t _ 1) ) ( )

(c—0) Type A%,

1) :/ elwrertwazatwszstwawsytwrwsytorwa)t g (o V(o) dp(xs)  (20)
Zy
wlwz’UJgtg6(w2w3+w1w3+w1w2)yt

= et = e (e 1) 2

(c—1) Type Af,

L) - Jog ezt ese ) dp (o )dpa(wa) dpa () 2
Ty et e ) ()
_ (wiwpws) 7 (ew2wst — 1) (ewrwst — 1) (ewrw2t — 1). (23)
(e = T — e — 1)

All of the above p-adic integrals of various types are invariant under
all permutations of wy,ws, w3, as one can see either from p-adic integral
representations in (16), (18), (20), and (22) or from their explicit evaluations
in (17), (19), (21), and (23).

§III. Identities for Bernoulli polynomials

(a—0) First, let’s consider Type Ab,, for each i = 0,1,2,3. The following
results can be easily obtained from (4) and (7).

I(A3y)

:/ ew2w3(x1+w1y1)tdu(xl)/ 6w1w3(x2+w2y2)tdlu(x2)/ 6w1w2(9€3+w3y3)tdu(x3)
Zp Zp Zp

o Bi(wiyn) o Be(ways) o Bin(wsys) m
= (Z %(wzw?)t)k)(z #(wlwst)e)(z %(wlwﬂ) )

k=0 =0 m=0

(24)



- Z( Z (k / m) Bk(wlyl)Be(w2y2)Bm(w3y3)wf+mw§+mw§”)

aa
n=0 k4+l+m=n

where the inner sum is over all nonnegative integers k, ¢, m,with k+/{+m = n,

and |
n n!
(k,ﬁ, m) ~ klm! (25)

(a — 1) Here we write I(Al;) in two different ways:

1
(1) ](Aég): _/ 6w2w3(x1+w1y1)tdlu(ajl)/ ew1w3(x2+w2y2)tdu(x2)
Zp

w3 Zyp

Y R

26

pr ew1w2w3x4tdlu(l.4) ( )
_l/x (wawst)*\ (wywst)
- w_g(;Bk(wl 1) i ) (;Bg(wng) T )

- S 1 (wlet)m
. <Z m{ws = 1) m! )
m=0

- n

- Z ( Z Bi(w1y1) Be(wzyz) S (ws — 1)
k,l,m

n=0 k+Ll+m=n

< wf+mw§+mw§+£—1> % (27)

(2) Invoking (7), (26) can also be written as

I(A3)
wz—1

1
- Z

Fwaya+o2i)t
/ewzws(m1+w1y1)tdlu(x1)/ eﬂuws(mz w2y2 wsl) du(l’g)
i=0 “YZp Zp



1 > Woll t wqwst)*
= — (ZBk(wlyl = 3 )(ZBZ (woys + —2)7( 1€,3 ) )
Ws 5 =0 :
- n—1 - n = Wo n—k,  k t
=) <w3 . ) Brlwiy) > Bui(ways + w—sz)uﬁ w2> o (28)
n=0 k=0 i=0 ’

(a — 2) Here we write I(A2;) in three different ways:

ws [y, € dp(ay)
Jo, vzt dp ()

1

— _/ ewzws(m-i-uuyl)tdlu(xl) %
WaW3 J7z,

(1) 1(A3,)

w3 fZ wlwzwgtdﬂ(xs)
f ew1w2w3x4tdlu(x4)

:1(mem@%LXZ&W*&%ﬂ>

(29)

w23 =0
(3 st -0

= ( Z_n (k,Zm) Bi(wiyr)Se(wz — 1)Sp(ws — 1)

tn
X it mypktm=ly k= 1) . (30)
n!
(2) Invoking (7), (29) can also be written as
I (A§3)
wo—1 Wws ewlwzwgtdu(xg)
> / et g o) x BT g
'LU21U3 — Zp f EW1W2wW3T4 d,u($4)
wo—1
wowst)k wywyt)*
'LU21U3 i—o k! —o 14
o) n wa—1 tn
:Z<w;—1z< ) ZBk w1y1+—2)5n w(ws — Dwi ™ w5 1)@-
n=0 k=0 '
(32)



(3) Invoking (7) once again, (31) can be written as

I (Aég)

§ : § :/ wgwg(xl+w1y1+%i+%j)tdﬂ(xl)
w2w3 i—0 j=0 /Zp

i=0 ;=0

wo—1 wz—1

(i:: w1y1+—@+_j)M)

wzws P w3 n!
o] 1ws—1 tn

Z ( wyws) n_l By (wiy: + —Z + —J)) - (33)
n—0 i=0 =0 n

(a—3)
1 wq 6w2u}3w1tdu(xl) Wo ew1w3w2tdﬂ(1’2)
IAL) = Jz, Jz,
W WaWs pr ew1lu2u)3:v4tdlu(x4) pr €w1ll)2w3:v4tdlu(x4)

ws pr 6w1w2w3tdﬂ(x3)
pr ew1w2w3x4tdlu(x4)

_ wlulwg) (Zsk wy — 1)(“@+ﬁ> (ZSE wy — 1)%)

(S

_ i ( Z_n (kgm) Si(wy — 1)Se(ws — 1)S, (w3 — 1)

tn
X Ml ypkm =Ly et 1) . (34)
n!

(b) For Type Ai5(i = 0,1,2,3), we may consider the analogous things to
the ones in (a — 0), (a — 1), (e — 2), and (a — 3). However, these do not lead
us to new identities. Indeed, if we substitute wows, wiws, wywy respectively
for wy, we, w3 in (16), this amounts to replacing ¢ by wjwowst in (18). So,
upon replacing wy, we, w3 respectively by wows, wiws, wiws and dividing by



(wywews)™, in each of the expressions of (24), (27), (28), (30), (32)-(34), we
will get the corresponding symmetric identities for Type Ai;(i = 0,1,2,3).

(c=0)

1(A%) = / et g ) / 2@t g 17, / st g 1)
= By( wgy £ — Bi(wsy) N ( = Bm(w1y) m
- (Z . )(Z 7 (th))(ZO o (wst) )
=0 =0 m=

tn
( ( ) Bk(w2y)Bg(w3y)Bm(wly)w'fwgwg"”) —
k+l4+m=n 1 "

n=0

(35)
(c=1)
I(A,)

1 Wy fzp 6wwltd,u(:171) ws pr 6w2x2td,u(5172) wy pr 6w3x3td,u(:l?3)
X X
W1 WaW3 pr ew1w223tdlu(23) fZ €w2w321tdu(2’1) fZ em3w122tdu(z2)

:w1$2w3<§:25k(w2_1 wlt )(ZSE ws — 1) w2t)>

— i ( Z_ <k Zm) Si(wy — 1)Sp(ws — 1) Sy, (wy — 1) (36)

¢IV. Main theorems

As we noted earlier in the last paragraph of Section II, the various types
of quotients of Volkenborn integrals are invariant under any permutation of
w1, wo, w3. So the corresponding expressions in Section III are also invariant
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under any permutation of wi, ws,w3. Thus our results about identities of
symmetry will be immediate consequences of this observation.

However, not all permutations of an expression in Section III yield distinct
ones. In fact, as these expressions are obtained by permuting wy, wsy, w3 in
a single one labeled by them, they can be viewed as a group in a natural
manner and hence it is isomorphic to a quotient of S3. In particular, the
number of possible distinct expressions are 1,23, or 6.(a-0),(a-1(1)),(a-1(2)),
and (a-2(2)) give the full six identities of symmetry, (a-2(1)) and (a-2(3))
yield three identities of symmetry, and (c-0) and (c-1) give two identities of
symmetry, while the expression in (a-3) yields no identities of symmetry.

Here we will just consider the cases of Theorems 8 and 17, leaving the
others as easy exercises for the reader. As for the case of Theorem 8§, in
addition to (50)-(52), we get the following three ones:

Z ( : )Bk(wlyl)sz(wg — 1) S (wg — DwiT™wh T hws o (37)

k.0, m
k+l+m=n

n
Z <k ’ m) Bi(wayr)Se(wy — 1) Sy (ws — 1wy w1k =1 (38)
k+l+m=n »

Z ( " )Bk(wgyl)Sg(wg — 1)Sp(wy — DwE w1 (39)

k,l,m
k+l+m=n

But, by interchanging ¢ and m, we see that (37), (38), and (39) are
respectively equal to (50), (51), and (52).
As to Theorem 17, in addition to (60) and (61), we have:

Si(wy — 1)Sp(wz — 1)Sp(wy — Dt wi™ w1 (40)

Z " )Sk(wg — 1)Se(wy — 1)Sp(wy — Dws i w™™t, (41)
)Sk(wg — 1)Se(wy — 1)Sp(wy — Dwh i wi ™t (42)

Si(wy — 1)Sp(wy — 1) S (ws — Dwh wi w™™. (43)

10



However, (40) and (41) are equal to (60), as we can see by applying the
permutations k& — ¢,¢ — m,m — k for (40) and k — m,{ — k,m — {
for (41). Similarly, we see that (42) and (43) are equal to (61), by applying
permutations k — ¢, — m,m — k for (42) and k — m,{ — k,m — ¢ for
(43).

THEOREM 1. Let wq,ws, w3 be any positive integers. Then the following
expression is invariant under any permutation of wi, wq,ws, so that it gives
us six symmetries.

n
Z (k ) B’f(wlyl)Bf(wz?h)Bm(w3y3)wf+mw§+mw§+z

k+l+m=n g’m
n
Y Bi(w1y2) Be(wsys) By (ways )t "l
k,l,m
k+l+m=n
n
- Z <k:Em)B’“(w2y1)Bé(wlyz)Bm(w3y3)w§+mwlf+mw§+£
k+l+m=n o (44)
n
i Bi(wsy) Be(wsys) By (w1ys)uw§ "l
k,l,m
k+l+m=n
n
= X (ot ) el Bl B

n
= <k: 0 m) By (w3y1) Be(ways) By (w1ys)ws M wh ol
k+l+m=n

THEOREM 2. Let wq,wq,ws be any positive integers. Then the following
expression is invariant under any permutation of wy,ws, ws, so that it gives
us s1x symmetries.

n
Z (k,ﬁ, m) Bi(w1y1) Be(way2) Sy (w3 — 1)wf+mw§+mw§+£_1
. m m —
. (k ¢ m>Bk(w1y1>B€(w3yz)5m(w2— Dwi ™™ ws M ws o (45)
n
- Z (k: m) By (way1) Be(wiy2) Sy (w3 — 1wl tmaph 1

11



n
( )Bk<w2y1>Bz<w3y2>s (w1 — kgt
n
(k , )Bk(wg;yl)Bg(wgyg)S (wl . 1) Z+mwk+mwk+£ 1

n
B (wsy1) Be(w1y2) Sy, (we — 1 Z+mwk+mwk+£ g
iy <7€,€,m) i (wsy1) Be(wiy2) S (wo Jw

Putting w3 = 1 in (45), we get the following corollary.

COROLLARY 3. Let wy,wy be any positive integers.

n

Z(Z)Bk(uh?ﬁ)Bn_k(wzyz) wi ™ wy

- n
- Z (k;) By (wayr) Bn—i(w1y2)ws ~*wy

k=0
n
_ Z Bk(yl)BZ(w2y2)Sm(wl _ 1) k+m’w]f+€ 1 (46)
k.t,m
k+l+m=n
n
— Z (k’g’ m) Bk(w2yl)Bg(y2)Sm(wl _ 1) Z—i—mw]lg_;’_g 1
k+l+m=n
n
— Z (k E )Bk(yl)BZ(w1y2)Sm(w2 _ 1) k)—i—mwg_i_g 1
k+l+m=n s Ty
n
= Z Bk(wlyl)Bg(y2)Sm(w2 _ 1) Z+mw§+5 1
k.t,m
k+44+m=n

Letting further ws = 1 in (46), we have the following corollary.

COROLLARY 4. Let wy be any positive integer.

n

> (Z) By.(wiy1) Bu-r(y2)wi ™

k=0

n

— O(Z)Bk(yl)Bn_k(wlw)wlf

k=

12



= 0 () BBl =

k+l+m=n

THEOREM 5. Let wq,ws, w3 be any positive integers. Then the following
expression is invariant under any permutation of wy,wq,ws, so that it gives
us six symmetries.

n wi1—1
n— n n—
wy 12 (k:) By (wsy1) Z By (ways + w—ll)ws “ws
i=0
wi—1

_ n e
= wi™! (k) By (way1) Z By, (wsys + w—z)w2 Fawk
k=0
n wo—1
_ n .
= wy ! Z (k) By(w3y1) Z B (w1yo + —z) Ws kwlf (48)
k=0 =0
n wa—1
n— n n—
— w2 1 Z (k) Bk wlyl Z Bn k U)3y2 -+ w_Z)wl kwéﬂ
k=0 2
n w3z—1
n— n (00 n—
= wy ™! (k) By (wayr) Z B (w1y2 + w—gz)w2 Fap¥
k=0

n—k,  k
n—k(Way2 + —Z)wl wy.
ws

I
S
“9
M:
VRS
E
=
B
=
Mé%
Ua L

k
Letting ws = 11in (48), we obtain alternative expressions for the identities
n (46).

COROLLARY 6. Let wy,wy be any positive integers.

n

n
(k) Bi(w1y1) By (way2)wi ™ wh

k=0
“/n
= (k:) By (way1) B (wiy2)wh " w} (49)
k=0
n wi—1
_ n wo .
= wy 12 (k;) By (y1) Z B (ways + w—?z)w’;
k=0 =0

13



Putting further wy = 1 in (49), we have the alternative expressions for
the identities for (47).

COROLLARY 7. Let wy be any positive integer.

> (1) Bulon) Bac sty

k=0

n n
_ (k)Bk@g)Bn_k(wlyl)wf
k=0
w1—1

= wp™! z": (Z) Bi(y1) ; By i(y2 + wil)-

k=0

THEOREM 8. Let wy, wq, w3 be any positive integers. Then we have the fol-
lowing three symmetries in wy, wo, W3:

Z ( : )Bk(w1y1>sﬁ(w2 — 1)Sm(w3 - 1)wf+mw§+m_lw§+z_l (5())

k,l,m
k+l+m=n

= Z < nm) Bk(wgyl)Sg(wg—l)Sm(wl—1)w§+mw§+m_1w'f+£_1 (51)

k+l+m=n k E’
n

= 2 (k , m)Bk<w3y1>Se<w1—1>sm<w2—1>w§+mwf+m—1w§+f—l. (52)
k+l+m=n »

Putting w3 = 1 in (50)-(52), we get the following corollary.

14



COROLLARY 9. Let wq,wy be any positive integers.

n

> (Z)Bk(wlyl)Sn w(ws — 1wt Frph=1

k=0

= Z ( )Bk W31 S (wy = Dwy ™y ™ (53)

= Z < " )Bk(yl)Sg(wl—1)Sm(w2—1)wlf+m_1w§+z_l.

k,l,m
k+l+m=n »

Letting further we = 1 in (53), we get the following corollary. This is also
obtained in [6, Cor.2] and mentioned in [3].

COROLLARY 10. Let wy be any positive integer.

n

Butuwn) = Y- (1) Bl St~ Dt (54

k=0

THEOREM 11. Let wy,ws, w3 be any positive integers. Then the following
expression is invariant under any permutation of wi, wo,ws, so that it gives
us six symmetries.

B
Il
o

wy . .
Z By (wiyr + w—ll)sn—k(w?) — 1wy kwl?f ! (55)

B
Il
o

w; .
> Bi(wsys + w—gl)sn—k(wl — Dwy™ wy™!

Eod
o

wy . .
By (wiyr + w—lz)Sn r(wa — Dw]Fws™
3

15



n w3z—1
= wy” lz<k) ZBk w2y1+—2)5n w(wr = Dwy ™ wy™

k=0 =0

Putting w3 = 1 in (55), we obtain the following corollary. In Section I,
the identities in (53), (56), and (58) are combined to give those in (8)-(15).

COROLLARY 12. Let wy,ws be any positive integers.

(Z) Buluwan) S — gl (56)

)=

(n>B (w1y1)Sn—k(wy — D)w]™ kwlg 1

||
=
o
/—\
\_/
ngl
-
S
ET‘
<
=
_|_
3
Z'?‘
—~
S
¥
|
C‘/

wo—1
( ) Z Bre(yr + ) Sn-r(w1 — Dwy ™

Letting further wy = 1 in (56), we get the following corollary. This is the
well-known multiplication formula for Bernoulli polynomials together with
the relatively new identity mentioned in (54).

COROLLARY 13. Let wy be any positive integer.

wi—1

By (wyr) = wi™ ZB y1+



THEOREM 14. Let wy,wq, w3 be any positive integers. Then we have the
following three symmetries in wy, wq, w3 :

wi—1wo—1

n 1
B,( et S
(wiws) E E (wsy1 + l + w2])

=0 7=0

wo—1wz—1

w1 . w1 .
= (waws)""! ; ; B (wiyr + w— - w_;j) (57)

w3z—1w;—1

= (w3wy)" " Y Y By w2y1+—z+ j)

=0 j5=0

Letting ws = 1 in (57), we have the following corollary.

COROLLARY 15. Let wy,wy be any positive integers.

wi—1

Z B ( w2y1+—j)
7=0

wa—1

= wh™! Z By, (wyy; + —22) (58)

wi—1wo—1

= (wywa)"” ZZB y1+—+ j)

=0 j5=0

THEOREM 16. Let wy,wq, w3 be any positive integers. Then we have the
following two symmetries in wy, Wy, w3

: m
Z (k, g’ m) Bk (wly)Bg(wgy)Bm(w3y)w§w{w2

k+l+m=n

n m
= Z (l{;,ﬁ,m)Bk(w1y)Bz(w3y)Bm(wzy)wgwfwg'

k+l+m=n

(59)

THEOREM 17. Let wy,wq, w3 be any positive integers. Then we have the
following two symmetries in wy, Wy, W3

> ( ’n )Sk(wl —1)Sp(wy = 1) Sy, (w3 — Dwy ™' Mwy™" (60)

k,l,m
k+l+m=n ’

17



n o
— Z (]{;’g7 m) Sk(w1 - 1)Sz(w3 — 1)Sm(w2 _ 1)w§ 1w{ 1w3 L (61)

k+l+m=n

Putting ws = 1 in (60) and (61) and multiplying the resulting identity by
wiws, we get the following corollary.

COROLLARY 18. Let wy,wy be any positive integers.

n

) <Z> Se(wy = 1)S—g(wr — 1wy

k=0
n

- (Z) Su(wn — 1)S_i(ws — D)k,

k=
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