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Abstract

A construction of the heat kernel diagonal is considered as element of generalized Zeta
function, that, being meromorfic function, its gradient at the origin defines determinant of
a differential operator in a technique for regularizing quadratic path integral. Some classes
of explicit expression in the case of finite-gap potential coefficient of the heat equation are
constructed.

1 Introduction

A necessity of a Green function diagonal study is directly connected with the generalized zeta-
function (GZF) theory of elliptic differential operators [1], which is successfully applied to a
regularization of the operators determinants [2]. Such elliptic problems, for example, appear
as Laplace transform of heat kernel equations, generally, with variable coefficients, which are
conventially named as potentials. An important application of the theory is evaluation of
semiclassical quantum corrections calculations to nontrivial classical solutions of important
nonlinear equations and field theory [3, 4]. The corrections are intimately linked to the fun-
damental solutions of related linear problems for the heat operator Laplace transform, which
diagonal enters the zeta-function definition. Such regularization, for example, is realized in
explicit form for kink solutions of the integrable Sine-Gordon equation [5, 6] as well as non-
integrable Landau-Ginzburg (φ4) models [4, 6]. The kink solution (as well as multikink one)
in this context corresponds to the case of point spectrum of the elliptic operators that appear
after division of variables.

This paper is devoted to investigation of a wide class of potentials which spectrum is con-
tinuous with eventual gaps - more precisely so-called finite-gap ones - see, e.g. the book [7].

Such potentials and, especially three-gap one, correspond to basic three-wave interaction,
which is important in many quasiperiodic processes description, an exemplary applications one
can find in [9].

In the Sec. 2, starting from Laplace transform of the heat equation by time, we derive
a nonlinear equation for the Green function diagonal, along ideas similar ones, mentioned in
[8, 7] in the context of other equations. We construct its solutions in cases which potentials
has direct link to the polynomial functions in appropriate variables (Sec. 3). The last section
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is devoted to examples and appendix contains a Mathematica program, related to a class of
illustrations.

2 The equation

We are interested in a class of problems, connected with the parabolic partial differential oper-
ator Green function (kernel of heat equation)

(

∂

∂y
+

∂2

∂x2
− U(x)

)

g(x, x0, y) = δ(x− x0)δ(y), (2.1)

where g(x, x0, y) ∈ S is the fundamental solution over Schwartz space S; δ(x − x0), δ(y) are
Dirac delta-functions. After Laplace transform:

(

p+
∂2

∂x2
− U(x)

)

ĝ(x, x0, p) = δ(x− x0) (2.2)

The construction of GZF in fact rely upon the Green function diagonal. In [6] a statement
about ĝ(p, x, x) = G(p, x), is used. Namely, G(p, x) solves the equation

2GG′′
xx − (G′

x)
2 − 4(U(x)− p)G2 + 1 = 0. (2.3)

on condition, that U(x) is bounded. The equation resembles one of derived by Hermit for [8].
Proof:

Let us consider homogeneous equation
(

p+
∂2

∂x2
− U(x)

)

f (p, x, x0) = 0. (2.4)

The fundamental solution of (2.4) is built by standard procedure [?]. It has two linearly
independent solutions, for example φ and ψ, converging respectively at −∞ and +∞. One
can represent ĝD through φ and ψ respectively for x < x0 and x > x0 with a sewing condition
determined by equation (2.2)

ĝD(p, x, x0) =

{

A(x0)φ(p, x), x ≤ x0
B(x0)ψ(p, x), x ≥ x0

. (2.5)

From continuity condition of ĝD one gets

A(x0)φ(p, x0) = B(x0)ψ(p, x0).

What leads to:
A(x0) = C(x0)ψ(p, x0),

B(x0) = C(x0)φ(p, x0).

Due to the symmetry of Green function in respect to exchanging x and x0, C(x0) is constant
(later referred as C). To obtain condition for derivatives of φ and ψ one integrates (2.2) over x
in an ε neighbourhood of x0:

∫ x0+ε

x0−ε

(

p+
∂2

∂x2
− U(x)

)

ĝD (p, x, x0) dx = 1, (2.6)



∂ĝD

∂x
(p, x, x0)

∣

∣

∣

∣

x0+ε

x=x0−ε

+

∫ x0+ε

x0−ε

(p− U(x)) ĝD (p, x, x0) dx = 1,

∂φ

∂x
(p, x0 + ε) Cψ(p, x0)−

∂ψ

∂x
(p, x0 − ε) Cφ(p, x0) +

∫ x0+ε

x0−ε

(p− U(x)) ĝD (p, x, x0) dx = 1.

In ε→ 0 limit above equation reduces to

∂φ

∂x
(p, x0) Cψ(p, x0)−

∂ψ

∂x
(p, x0) Cφ(p, x0) = 1. (2.7)

Since solutions of (2.4) are linear, one can assume C = 1. Then (2.7) reduces to

∂φ

∂x
(p, x0) ψ(p, x0) =

∂ψ

∂x
(p, x0) φ(p, x0) + 1. (2.8)

Actual proof will be made, by inserting (2.5) to (2.3). For brevity function arguments will
be omitted and ′ will denote a derivative with respect to x

2ψφ (ψ′′φ+ 2ψ′φ′ + ψφ′′)− (ψ′φ+ ψφ′)
2 − 4(U(x)− p)ψ2φ2 + 1 = 0

2ψ2φ (φ′′ − (U(x)− p)φ) + 2ψφ2 (ψ′′ − (U(x)− p)ψ) + 4ψ′φ′ψφ− (ψ′φ+ ψφ′)
2
+ 1 = 0.

Because of (2.4) two first elements are nullified. One also uses property (2.8):

4ψ′φ′ψφ− (2ψ′φ+ 1)
2
+ 1 = 0,

4ψ′φ′ψφ− 4ψ′2φ2 − 4ψ′φ− 1 + 1 = 0,

ψ′φ′ψφ− ψ′2φ2 − ψ′φ = 0, (2.9)

ψ′2φ2 + ψ′φ− ψ′2φ2 − ψ′φ = 0. (2.10)

Thus the proof is concluded.
It is important to note, that the transition is general and doesn’t rely on the nature of U(x)

as long as it’s bound. It’s usefulness is dependent on a few qualities of the potential though.

3 The main equation solution

3.1 Substitutions

We consider a class of solutions of the equation (2.3), to be written in a form

G(p, x) =
P (p, x)

2
√

Q(p)
. (3.11)

It is most useful, if there exists a variable transition x → z, U(x) → u(z), in which P and Q
are polynomials. Basic conditions for it to be possible are:

1. u is a polynomial in z,

2. (z′x)
2 is a polynomial in z (note, that z′′xx = 1

2
∂
∂z
(z′x)

2),



This does not ensure simplicity of solutions as will be shown further in the text. At this point, it
is important to notice, that the second condition restricts z(x) - apart from a class of elementary
functions - to elliptic and hyperelliptic functions - see, e.g. [7].

Let us assume, that (z′x)
2 and u are polynomials in the variable z of degree L + 1, and K

respectively, hence, z′′xx is a polynomial of the degree L. We also assume, that coefficient by
the highest power term of (z′x)

2 is equal to 1 (which is always attainable). After the change of
variables, the equation will take the form:

2P (P ′′(z′x)
2 + P ′z′′xx)− (P ′z′x)

2 − 4(u(z)− p)P 2 + 4Q = 0 (3.12)

We also assume solution in a given form:

P (p, z) =
∑N

n=0 p
n
∑Mn

l=0 Pn,lz
l

Q(p) =
∑2N+1

n=0 qnp
n

(3.13)

3.2 Classification

We will now proceed to analyse the solution by separating the equation in respect to powers of
p and z. The equation for p0, z2M0+max(K,L−1) takes following form:

If K > L− 1
4uKP0,M0

= 0 (3.14)

If K ≤ L− 1 ∧ M0 ≥ 1

2P 2
0,M0

(M0(M0 − 1) +
L+ 1

2
M0)− P 2

0,M0
M2

0 − 4uKP
2
0,M0

δK,L−1 = 0 (3.15)

M2
0 + (L− 1)M0 − 4uKδK,L−1 = 0 (3.16)

Note, that M0 = 0 leads to K = 0 (this case will be examined later in the text). Another
conclusion is, that K ≤ L− 1 is necessary for sought type of solutions. Furthermore, this leads
to following, more precise conditions:

L ≥ 1 (due to K ≥ 0)
K = L− 1 (for M0 to have positive value)

(3.17)

Equation for p2N+1

4

(

MN
∑

l=0

PN,lz
l

)2

+ 4q2N+1 = 0 (3.18)

leads to following conclusions:

MN = 0 ∧ P 2
N,0 = −q2N+1. (3.19)

Let us now look at subsequent equations for descending powers of p. For p2N we have

− 4u(z)P 2
N,0 + 8PN,0

MN−1
∑

l=0

PN−1,lz
l + 4q2N = 0, (3.20)



which leads to
MN−1
∑

l=0

PN−1,lz
l =

1

2

(

PN,0u(z)−
q2N

PN,0

)

, (3.21)

MN−1 = K. (3.22)

For p2N−1 we get (for the highest power of z): on condition MN−2 > MN−1 +K (z 6= x2)

4PN,0PN−2,MN−2
= 0, (3.23)

on condition MN−2 ≤MN−1 +K

2PN,0PN−1,MN−1
(MN−1(MN−1 − 1) + K+2

2
MN−1)

−2PN,0PN−1,MN−1
− 8uKPN,0PN−1,MN−1

+8PN,0PN−2,MN−2
δMN−2,L−1 + 4q2N−1 = 0.

(3.24)

It’s obvious, that MN−2 ≤ MN−1 +K is a necessary condition for (4). Now we can consider a
general rule for all remaining equations. Thesis: ∀0≤k<N−1Mk ≤ (N−k)K. Proof by induction:
If Mk > (N − k)K, then equation for pN+k+1 and highest power of z takes form:

4PN,0Pk,Mk
= 0 (3.25)

If Mk ≤ (N − k)K and ∀k<l<NMl = (N − l)K (possibility giving the highest possible value of
Mk), then equation for pN+k+1 and highest power of z takes form:

2PN,0Pk+1(Mk+1(Mk+1 − 1) + K+2
2
Mk+1)

+2
∑N−1

n=k+2 Pn,Mn
PN−n+k+1,MN−n+k+1

(MN−n+k+1(MN−n+k+1 − 1)

+K+2
2
MN−n+k+1)− 2

∑N−1
n=k+2 Pn,Mn

PN−n+k+1MN−n+k+1Mn

−4uK
∑N

n=k+1 Pn,Mn
PN−n+k+1

+4
∑N−1

n=k+1 Pn,Mn
PN−n+k,MN−n+k

+4δMk,Mk+1+L−1PN,0Pk,Mk
= 0

(3.26)

Thus the solution exists only if the thesis holds. This leads directly to a minimal condition on
N :

N ≥ M0

K
∀M0 ≥ K (3.27)

In summary: existence of solutions of form (4) depends on the power of the potential (K),
power of (z′x)

2 (L ≤ 1 can give abnormal results), amplitude of the highest power term of the
potential and there exists a definite formula for the minimal value of N .

3.3 Solving algorithm

1. If there exists a solution in the form (4) for a given N (which fulfils requirement (3.3)),
it can be obtained in a straightforward manner. Since the actual value of N is un-
known, one starts with the minimal possible value M0

K
. After separating the equation

in respect to powers of p one analyzes the resulting equations starting from the highest
power of p. All those equations can be written in a manner similar to (3.21) (here for the
pN+n+1withpossiblenfromN-1to0):

PN,0

(N−n)∗K
∑

l=0

Pn,lz
l = F (PN,0, PN−1,K , PN−1,K−1, . . . , Pn+ 1, 0, z)− qN+n+1

2
(3.28)



where F contains all elements of equation not written explicitly. It is easy to see, we can
obtain all coefficients, except for Pn,0, as solutions of linear equations, since all elements on
the RHS, except for qN+n+1 are known. As for the equation for z0, it is more convenient,
to express qN+n+1 in terms of Pn,0. Solving all equations down to pN+1 gives us all Pn,l as
well as some of qn in terms of {Pn,0}i∈{0,...,N}. It is important to note, that all calculations
done up to that point stay relevant, even if value of N will have to be increased.

2. In the next step, we use the equation for pN to calculate the possible values of Pn,0. Again,
if we start from the highest powers of z, we can obtain those coefficients as solutions of
linear equations, since any element containing Pn,0 is proportional to at most zK(N−n+1)

and any element containing P 2
n,0 is proportional to at most zK(N−2n+1) (negative exponent

means, that such coefficients are not present in equation for pN).

3. Subsequently we check the solution. If it doesn’t hold, we increase the value of n, add
relevant components to P and Q polynomials, calculate values of all new coefficients and
go back to step 2.

Since qn aren’t necessary for calculation of any Pn,l and checking the solution, we can slightly
simplify the algorithm by calculating qn after all other coefficients.
Described algorithm was implemented in Mathematica 7 and used to obtain solutions presented
in section 4.

3.4 On uniqueness of solutions

Using the above algorithm we obtain all coefficients as solutions of linear equations in respect
to sought coefficients. This leads to a simple conclusion, that for a given N solutions of form
(4) are unique except for constant u, in which case the solution has no dependence on z and
because of this, there is no relation between any of Pn,0 (4.1). As yet, there is no method of
finding all allowed N for a given potential. Therefore uniqueness of solutions is uncertain.

4 Exemplary solutions

4.1 Constant potential

Let’s consider a constant potential
U(x) = u (4.29)

It is obvious, that no change of variables is necessary, thus we can use z = x (L = −1).
Equation for p0z2M0 immediately gives

− 4uP 2
0,M0

+ 4q0δM0,0 = 0 (4.30)

Since u can have an arbitrary value, if we shift the p variable, this equation only holds for
M0 = 0. This means, that the simplest solution would be

G(p, x) =
1

2
√
u− p

(4.31)



This is not the only one, as will be shown. Let us consider a solution for potential (4.29) and
an arbitrary N . Equation for p2N+1 gives as usual

MN = 0 (4.32)

q2N+1 = −P 2
N,0 (4.33)

Equation for p2N gives
MN−1 = 0 (4.34)

PN−1,0 =
1

2

(

uPN,0 −
q2N

PN,0

)

(4.35)

Subsequent equations will look alike, with Mi = 0 for all i. It is easy to see, that one obtains a
total of 3N + 3 parameters with only 2N + 2 equations and one can obtain a solutions for any
value of N . In a sense, it’s a consequence of the condition (3.27), since 0

0
is an indeterminate

symbol.

4.2 Triple-gap cnoidal potential

Let’s take a solution one order higher then that for φ4 cnoidal solution:

U(x) = −12m2k2 cn2(mx; k) (4.36)

z = cn2(mx; k) (4.37)

(z′x)
2
= 4m2z(1 − z)(1 − k2 + k2z) (4.38)

z′′xx = 2m2(−3k2z2 + (4k2 − 2)z + 1− k2) (4.39)

M0 = 3 (4.40)

N = 3 (4.41)

Algorithm explained in section (3.3) gives (assuming P3,0 = 1 for simplicity):

P2 = −2m2(7 + k2(−14 + 3z)) (4.42)

P1 = m4(49 + k2(−256 + 78z) + k4(256 + 3z(−52 + 15z))) (4.43)

P0 = −3m6(12 + 8k2(−19 + 9z) + 3k4(128 + z(−121 + 45z)) + (4.44)

k6(−256 + 3z(121 + 5z(−18 + 5z)))) (4.45)

Q(p) = −((−4 + 8k2)m2 + p)((9− 96k2 + 96k4)m4 + 10(−1 + 2k2)m2p+ p2) (4.46)

((9− 42k2 + 33k4)m4 + 2(−5 + 7k2)m2p+ p2) (4.47)

(3k2(−8 + 11k2)m4 + 2(−2 + 7k2)m2p+ p2) (4.48)

5 Conclusion

Described equation allows calculation of heat equation’s Green function diagonal in a straight-
forward manner. Developed algorithm should be especially useful for finding solutions for
finite-gap potentials, which naturally emerge in periodic and quasi-periodic structures.
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