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Av. João Naves de Ávila, 2121, 38408-100, Uberlândia, MG, Brasil

Odemir M. Bruno†

Instituto de F́ısica de São Carlos (IFSC), Universidade de São Paulo,
Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brasil

(Dated: June 7, 2021)

Texture plays an important role in computer vision. It is one of the most important visual
attributes used in image analysis, once it provides information about pixel organization at different
regions of the image. This paper presents a novel approach for texture characterization, based on
complexity analysis. The proposed approach expands the idea of the Mass-radius fractal dimension,
a method originally developed for shape analysis, to a set of coordinates in 3D-space that represents
the texture under analysis in a signature able to characterize efficiently different texture classes in
terms of complexity. An experiment using images from the Brodatz album illustrates the method
performance.

I. INTRODUCTION

Texture is a visual attribute that performs an impor-
tant role in computer vision, image analysis and pattern
recognition. There are a lot of applications using tex-
tures in different areas of knowledge, ranging from med-
ical images [1], passing by remote sensing [2], analysis of
geological images [3], etc.

The full definition of texture is a complex task. In-
deed, there is no formal definition in the literature that
is capable of explaining it completely. This occurs, due to
the nature of the texture that can be modeled in different
ways. Texture can be formed by simple repetitions of set
of pixels or simple patterns, but it can also be formed by
complex arrangements. These arrangements can be con-
stituted by tiles of natural patterns such as leaves, rocks,
clouds or even for more abstract patterns. In fact, even
the absence of patters can characterize a texture (e.g., a
region formed by noise in an image). If, on one hand, tex-
ture is very difficult to be formally defined, on the other
hand, the importance of the attribute and its application
has been motivated the development of many algorithms
and methods. Over the years, many approaches have
been proposed to describe texture patterns: second-order
statistics [4, 5], spectral analysis [6–12], wavelet packets
[13, 14] and fractal dimension [15–17].

This paper presents a novel approach for texture char-
acterization, based on fractal analysis. The proposed
approach expands the methodology of the Mass-radius
fractal dimension. The Mass-radius fractal dimension
was originally developed to deal with binary images and
shape analysis. The proposed method considers the pix-
els of an image as a set of coordinates in 3D-space, where
the z-axis is the pixel intensity. In this way, it estimates
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the fractal dimension of the surface of the image and,
consequently, it is capable of dealing with textures. Be-
sides the extension of the Mass-radius fractal dimension
method, the paper approach uses a signature, obtained
by a vector calculated by the fractal dimension, to char-
acterize textures. The method is described in detail and
an experiment using images from Brodatz album shows
the method performance. The proposed method is com-
pared with popular texture ones.

II. PROPOSED APPROACH

In this work, a novel approach for texture analysis is
proposed. The approach is based on the mass-radius
method for shape complexity analysis [18–20]. This
method consists of covering the shape with circles of ra-
dius r and to compute the amount of shape that is inter-
cepted by the circle as the radius increases.

Consider an image texture as a set of coordinates S.
Each texture pixel is represented as a triple s = (y, x, z),
s ∈ S, where y and x are the Cartesian coordinates of
the pixel at the original image and z is the gray-level
associated to the pixel (y, x). Note that now an image
is represented as a set of points in a 3D-space. Thus,
the circle employed in the original method is replaced
by a sphere of radius r and the amount of points s ∈ S
intercepted by the sphere is computed.

One important step in the method is to select the total
number of spheres that will be employed to sample the
texture complexity. Each sphere is centered at a specific
point si ∈ S, u = 1, 2, . . . , N , randomly chosen. So, the
number of points intercepted by a sphere of radius r,
Vi(r), is defined as:

Vi(r) = |{si ∈ S|∃s ∈ S : |s− si| ≤ r}| , (1)

where si is a point in S which dists r or less from s. For
N spheres, we consider the occupied volume V (r) as

ar
X

iv
:1

41
2.

78
44

v1
  [

cs
.C

V
] 

 2
5 

D
ec

 2
01

4

mailto:backes@facom.ufu.br
mailto:bruno@ifsc.usp.br


2

V (r) =
1

N

∑
i=1:N

Vi(r) (2)

From occupied volume V (r), the fractal dimension D
is estimated as

D = lim
r→0

log V (r)

log r
. (3)

III. TEXTURE SIGNATURE

From log-log curve computed from proposed approach,
the fractal dimension can be easily estimated by applying
linear regression over the curve log r×log V (r), where the
resulting line presents angular coefficient α and D = α is
the estimated fractal dimension.

However, a single non-integer value may not be suitable
to represent all complexity and self-similarity present in
the image. In fact, if we analyze the computed log-log
curve we may note that it presents considerable informa-
tion along the scales that are lost during the process of
linear regression.

Thus, we propose to compute the linear regression at
different sections of the log-log curve. Each linear regres-
sion is computed for a section of the curve composed by
M points in sequence and one single point is not allowed
to belong to two different curve sections (Figure 1).

As a result, a vector ~ϕ = {α1, α2, . . . , αk, } capable of
describing the complexity changes at different portions
of the log-log curve is yielded, where k is the number of
line segments computed, thus providing a more efficient
texture characterization.

Figure 1. Example of texture signature computed for M = 10,
resulting in k = 8 line segments. Log-log curve computed for
r = 10.

IV. EXPERIMENTS

The proposed approach was evaluated considering im-
ages collected from Brodatz album [21]. These images
were selected once they are widely employed by literature
as benchmark for texture analysis methods in computer
vision and image processing applications. Each image
considered has 200 × 200 pixels of size, with 256 gray
levels. The image set used contains 400 images grouped
into 40 Brodatz classes, with 10 samples each. Figure 2
presents one example of each texture class considered in
the experiment.

Figure 2. Example of each Brodatz texture class considered.

The proposed signature was computed for each tex-
ture and analysis step was carried out applying a Linear
Discriminant Analysis (LDA) [22, 23]. The LDA is a su-
pervised method which enables us to find a feature space
where the distribution of classes presents good discrim-
inative properties. Descriptors are considered ”good”
when the variance between classes is larger than the vari-
ance within classes in this feature space. Leave-one-out
cross-validation scheme was also employed during the
analysis.

V. RESULTS AND DISCUSSION

An important issue from the proposed approach that
claims for attention refers to the number of spheres N
used by the method to sample the texture pattern un-
der analysis. Each sphere is centered at random over the
texture and a small number of spheres may produce an
unsuitable texture sampling. This may result in an un-
derestimated fractal dimension value or even in different
fractal dimensions for different executions of the method
over a same texture sample. Otherwise, after a given
number of spheres, the texture is over sampled, i.e., no
relevant information is add to the log-log curve by each
additional sphere. Figure 3 shows the fractal dimension
value D estimated for a given texture sample according
to the number of spheres N used during the sampling
step. In this experiment, for each value of N , the frac-
tal dimension D was estimated 30 times and its average
computed. As a result, we note that fractal dimension is
stable for N ≥ 4000, which corresponds to select 10% of
the texture pixels during its sampling step.
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Figure 3. The fractal dimension D as a function of the number
of points N considered for texture sampling.

Figure 4. Success rate as a function of the slope interval (M)
considered. Best classification (98.50 %) is achieved when
using M = 10.

Another important parameter of the method is the
number of points M used to compute the texture sig-
nature. Figure 4 shows the success rate of the proposed
approach according to the number of point M used to
compute each line segment during the texture signature
making process. In the experiments, a maximum radius
r = 20 was considered, thus resulting in a log-log curve
containing 335 points. Each point in the curve corre-
sponds to a radius value at interval [0, radius] in the dis-
creet 3D-space. According to the length of the line seg-
ments, different sections of the log-log curve are selected,
so emphasizing details at different resolutions. As the
line segment increases, more information is used to com-
pute a single angular coefficient. We have that different
oscillations in the log-log curve are now represented by

the same angular coefficient. These oscillations are due
to the volume of the spheres do not increase equally in all
texture points sampled. Small variations in the texture
pattern disturb how the influence volume V (r) increases,
and this makes V (r) very sensitive to structural changes
on texture patterns. Thus, an increase in the line seg-
ment size tends to decrease the relevance of the details
present in that section of the curve. Moreover, longer line
segments produce a smaller set of linear coefficients and,
as a consequence, a less discriminative texture signature.
In fact, a subtle decrease in success rate is perceived as
M increase and the best result (98.50 %) is found when
M = 5 is considered.

Results yielded by different texture analysis methods
are presented in Table I. The methods considered for
comparison are: Fourier descriptors [11], Co-occurrence
matrices [4] and Gabor filters [8, 9, 24]. A brief descrip-
tion of the methods is presented as follows:

Fourier descriptors: it is a set containing the energy of
the 99 most meaningful coefficients of the Fourier Trans-
form applied over the image. Each coefficient represents
the sum of the spectrum absolute values from a given
radial distance from the center transformation.

Co-occurrence matrices: they represent the joint prob-
ability distributions between the gray-levels of pairs of
pixels at a given orientation and distance. Energy and
entropy were computed from non-symmetric matrices ob-
tained for distances of 1 and 2 pixels with angles of −45 ◦,
0 ◦, 45 ◦, 90 ◦, totalizing 16 descriptors.

Gabor filters: an input image is convolved by a fam-
ily of filter, where each filter is a bi-dimensional gaussian
function moduled with an oriented sinusoid in a deter-
mined frequency and direction. In this paper, 16 filters
(4 rotation filter and 4 scale filters), with lower and up-
per frequencies equal to 0.01 and 0.3, respectively, were
employed. Energy from the resulting images was used as
its descriptors.

The proposed approach performs texture analysis di-
rectly over texture pixels, i.e., no transformation is ap-
plied over the image pixels. However, its result overcomes
the ones from traditional texture analysis methods, such
as Fourier descriptors and Gabor filters. These meth-
ods employ more complexes and sophisticated comput-
ing than the proposed approach, and this contributes to
validate our approach as a feasible texture descriptor.

VI. CONCLUSION

This paper presented a novel approach for texture dis-
crimination using complexity analysis. The proposed ap-
proach is based on the idea of the mass-radius method,
which is used in literature to compute the fractal dimen-
sion of shapes. By considering texture as a set of coordi-
nates in 3D-space, the original method is easily expanded
from shape analysis to texture analysis, thus enabling us
to estimate the fractal dimension of a texture pattern. An
experiment using the texture signature computed using
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Method Images correctly classified Success rate (%)

Co-occurrence matrices 330 82.50

Fourier descriptors 351 87.75

Gabor Filters 381 95.25

Proposed Method 394 98.50

Table I. Comparison results for different texture methods.

the proposed approach and linear discriminant analysis
to classify texture samples extracted from Brodatz album
was performed. Results show that the method presents
great potential to be used in texture identification/clas-
sification tasks.

ACKNOWLEDGMENTS

A.R.B. acknowledges support from FAPESP
(2006/54367-9). O.M.B. acknowledges support from
CNPq (306628/2007-4 and 484474/2007-3).

[1] C. M. Wu, Y. C. Chen, K. S. Hsieh, Texture features for
classification of ultrasonic liver images, IEEE Transac-
tions on Medical Imaging 11 (1992) 141–152.

[2] C. Q. Zhu, X. M. Yang, Study of remote-sensing image
texture analysis and classification using wavelet, Interna-
tional Journal of Remote Sensing 19 (16) (1998) 3197–
3203.

[3] F. Heidelbach, K. Kunze, H. R. Wenk, Texture analysis
of a recrystallized quartzite using electron diffraction in
the scanning electron microscope, Journal of Structural
Geology (2000) 91–104.

[4] R. M. Haralick, Statistical and structural approaches to
texture, Proc. IEEE 67 (5) (1979) 786–804.

[5] V. Murino, C. Ottonello, S. Pagnan, Noisy texture clas-
sification: A higher-order statistics approach, Pattern
Recognition 31 (4) (1998) 383–393.

[6] L. Shen, L. Bai, A review on gabor wavelets for face
recognition, Pattern Anal. Appl 9 (2-3) (2006) 273–292.

[7] F. Bianconi, A. Fernández, Evaluation of the effects of
gabor filter parameters on texture classification, Pattern
Recognition 40 (12) (2007) 3325–3335.

[8] A. K. Jain, F. Farrokhnia, Unsupervised texture segmen-
tation using Gabor filters, Pattern Recognition 24 (12)
(1991) 1167–1186.

[9] J. Daugman, C. Downing, Gabor wavelets for statistical
pattern recognition, in: M. A. Arbib (Ed.), The Hand-
book of Brain Theory and Neural Networks, MIT Press,
Cambridge, Massachusetts, 1995, pp. 414–419.

[10] B. S. Manjunath, W.-Y. Ma, Texture features for brows-
ing and retrieval of image data, IEEE Trans. Pattern
Anal. Mach. Intell 18 (8) (1996) 837–842.

[11] R. Azencott, J.-P. Wang, L. Younes, Texture classifica-
tion using windowed fourier filters, IEEE Trans. Pattern
Anal. Mach. Intell 19 (2) (1997) 148–153.

[12] R. K. Bajcsy, Computer identification of visual surfaces,
Computer Graphics Image Processing 2 (1973) 118–130.

[13] A. Sengür, I. Türkoglu, M. C. Ince, Wavelet packet neu-
ral networks for texture classification, Expert Syst. Appl
32 (2) (2007) 527–533.

[14] M. Unser, Texture classification and segmentation using
wavelet frames, IEEE Trans. Image Processing 4 (11)
(1995) 1549–1560.

[15] A. R. Backes, O. M. Bruno, A new approach to estimate
fractal dimension of texture images, in: ICISP, Vol. 5099
of Lecture Notes in Computer Science, Springer, 2008,
pp. 136–143.

[16] Y. Q. Chen, G. Bi, On texture classification using fractal
dimension, IJPRAI 13 (6) (1999) 929–943.

[17] C. Tricot, Curves and Fractal Dimension, Springer-
Verlag, 1995.

[18] E. Fernndez, H. F. Jelinek, Use of fractal theory in neu-
roscience: Methods, advantages, and potential problems.

[19] F. Caserta, W. D. Eldred, E. Fernandez, R. E. Hausman,
L. R. Stanford, S., V. Bulderev, S. Schwarzer, H. E. Stan-
ley, Determination of fractal dimension of physiologically
characterized neurons in two and three dimensions, Jour-
nal of Neuroscience Methods 56 (2) (1995) 133 – 144.

[20] G. Landini, J. W. Rippin, Notes on the implementation of
the mass-radius method of fractal dimension estimation,
Computer Applications in the Biosciences 9 (5) (1993)
547–550.

[21] P. Brodatz, Textures: A photographic album for artists
and designers, Dover Publications, New York, 1966.

[22] B. S. Everitt, G. Dunn, Applied Multivariate Analysis,
2nd Edition, Arnold, 2001.

[23] K. Fukunaga, Introduction to Statistical Pattern Recog-
nition, 2nd Edition, Academic Press, 1990.

[24] M. Idrissa, M. Acheroy, Texture classification using gabor
filters, Pattern Recognition Letters 23 (9) (2002) 1095–
1102.


	Texture analysis using volume-radius fractal dimension
	Abstract
	I Introduction
	II Proposed Approach
	III Texture signature
	IV Experiments
	V Results and Discussion
	VI Conclusion
	 Acknowledgments
	 References


