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ON AFFINITY RELATING TWO POSITIVE MEASURES AND

THE CONNECTION COEFFICIENTS BETWEEN POLYNOMIALS

ORTHOGONALIZED BY THESE MEASURES

PAWE L J. SZAB LOWSKI

Abstract. We consider two positive, normalized measures dA (x) and dB (x)

related by the relationship dA (x) = C

x+D
dB (x) or by dA (x) = C

x2+E
dB (x)

and dB (x) is symmetric. We show that then the polynomial sequences {an (x)} ,
{bn (x)} orthogonal with respect to these measures are related by the relation-
ship an (x) = bn (x) +κnbn−1 (x) or by an (x) = bn (x) +λnbn−2 (x) for some
sequences {κn} and {λn} . We present several examples illustrating this fact
and also present some attempts for extensions and generalizations. We also
give some universal identities involving polynomials {bn (x)} and the sequence
{κn} that have a form of Fourier series expansion of the Radon–Nikodym
derivative of one measure with respect to the other.

1. Introduction

We study relationship between the pair of orthogonal polynomials and the pair
of measures that make these polynomials orthogonal. This problem has practical
importance. If solved in full generality would enable quick and easy way of find-
ing sets of orthogonal polynomials for a given measure simplifying the usual path
of the Gram-Smith orthogonalization. Besides it would provide quick and easy
way of finding ’connection coefficients’ between the two analyzed sets of orthogonal
polynomials. On its side ’connection coefficients’, as it is well known supply many
useful informations about the properties of the involved sets of polynomials. So
far in the literature devoted to connection coefficients like [15], [5], [2] the authors
studied the properties of these coefficients and their relationship to zeros of orthog-
onal polynomials in question without referring to the properties of orthogonalizing
measures.

We are solving the problem of affinity between connection coefficients and mea-
sures that make polynomials orthogonal only partially. There are still many chal-
lenging questions that we pose in Section 4 and which are unsolved to our knowl-
edge.

To be more precise we will assume throughout the paper the following setting:
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We consider two sequences of monic, orthogonal polynomials {an} and {bn} such
that their 3-term recurrences are as given below:

an+1 (x) = (x − αn)an (x)− α̂n−1an−1 (x) ,(1.1)

bn+1 (x) = (x− βn) bn (x)− β̂n−1bn−1 (x)(1.2)

with a−1 (x) = b−1 (x) = 0, a0 (x) = b0 (x) = 1.
In [14], Proposition 1 it was shown that if these measures are such that suppA =

suppB and dA (x) = 1
Pr(x)dB (x), where Pr is a polynomial of order r, then there

exist r sequences
{

c
(j)
n

}

n≥1,1≤j≤r
such that

(1.3) an (x) = bn (x) +

r
∑

j=1

c(j)
n bn−j (x) .

In the cited result it was not presented how to relate 3-term recurrence satisfied by
say the set {bn} and the form of the polynomial Pr to the form of the coefficients
{

c
(j)
n

}

n≥1,1≤j≤r
.

Remark 1. Notice that our assumptions mean in fact that dA << dB and dA(x)
dB(s)

= 1
Pr(x) , where

dA(x)
dB(s) denotes Radon–Nikodym derivative of dA with respect to dB.

Relationship like (1.3) between sets of orthogonal polynomials is called quasi-
orthogonality as defined in [3] and [4]. More precisely polynomials {an} that are
related to polynomials {bn} by (1.3) are called quasi-orthogonal provided b′ns are or-
thogonal. Thus our problem can be expressed in the following way: If the measures
dA and dB are related by dA (x) = 1

Pr(x)dB (x) , then there exists r sequences of

numbers
{

c
(j)
n

}

n≥1,1≤j≤r
such that quasi-orthogonal polynomials defined by (1.3)

are orthogonal (with respect to dA).
There exits also another, similar in a way, path of research followed by Pascal

Maroni and his associates. The results of their research were presented in the
series of papers [8]-[13]. The problem considered by Maroni concerns general linear
regular (i.e. possessing sets of orthogonal polynomials) functionals u and v (not
necessarily in the form of measure) defined on the linear space of polynomials and
related to one another by the relationship

xmu = λv,

where m is a fixed integer (in Maroni’s papers m ≤ 4) and λ a fixed complex
number. In majority of cases he assumes that regular v has a form < v, p >
=
∫

V (x)p(x)dx where p is a polynomial while V is a locally integrable function
rapidly decaying at infinity. Maroni is interested in conditions for the existence of
regular u and also in the relationship between the sets of polynomials orthogonal
with respect to v and u. In his studies he showed that orthogonal polynomials of
u must be linear combinations of the last m + 1 (i.e. are quasi-orthogonal). He
also obtained some (mostly in the case of m = 1) recursive relations relating sets
of orthogonal polynomials of u and v and coefficients of the quasi-orthogonality.

Notice that even if v is a measure u may be not. Moreover it is expressed (as it
follows from Maroni’s papers) by derivatives of Dirac’s delta and Cauchy’s principal
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value. The existence conditions are not simple and constitute major part of these
papers.

That is why although some of the results obtained below were first discovered
by Maroni we will repeat them for the sake of uniformity of treatment. Of course
we will point out which of them were mentioned in Maroni’s papers.

In the present paper we continue the research started in [14] and relate the 3-
term recurrence coefficients satisfied by {bn} and the exact form of the polynomial

Pr for r = 1, 2 to coefficients c
(1)
n for r = 1 and c

(1)
n , c

(2)
n for r = 2. We also give

the 3-term recurrence coefficients of the polynomials {an}. Besides we also provide

certain universal identities satisfied by the polynomials {bn} , coefficients
{

β̂n

}

,
{

c
(1)
n

}

and the parameters of the polynomials Pr.

The paper is organized as follows: In the next Section 2 we present our main
result concerning the case r = 1 and illustrate it by 3 examples concerning well
known families of polynomials like Jacobi or Charlier. Examples are presented in
Section 3. Less complete or less simple and nice results are presented in Section 4.
Here also we will illustrate the developed ideas by a few examples. Finally Section
5 contains less interesting or lengthy proofs of our results.

2. Main results

The simplest but also the most important case is when r = 1. This case is treated
by the theorem below:

Theorem 1. Let the sequence of monic, orthogonal polynomials {bn} be defined by
the 3-term recurrence (1.2). Suppose that dB (x) is the positive measure that makes
these polynomials orthogonal. Let us consider another normalized measure dA (x)
related to dB (x) by the relationship:

(2.1) dA (x) =
C

x+D
dB (x) ,

so that C
(x+D) ≥ 0 on the support of dB (and of dA).

Then there exists a number sequence {κn} defined by the relationship:

(2.2) κn = βn−1 −
β̂n−2

κn−1
+D,

n ≥ 2 with κ1 = β0 +D − C, such that the sequence of monic polynomials defined
by:

(2.3) an (x) = bn (x) + κnbn−1 (x) .

satisfies the 3-term recurrence (1.1) with:

αn = βn + κn − κn+1,(2.4)

α̂n−1 = κn
β̂n−2

κn−1
,(2.5)

and is orthogonal with respect to the measure dA (x) .

Remark 2. Recursive equations (2.2) and (2.4) were obtained by P. Maroni in [8]
as sidelines of his results obtained in a slightly different context. (2.5) was obtained
in a different but equivalent form.
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Proof. Is shifted to section 5. �

We have immediate remarks, observations and corollaries

Remark 3. All coefficients κn have the same sign i.e. are either all positive or all
negative. This follows the fact that since dA (x) and dB (x) are positive measures

we must have nonnegative both α̂n and β̂n. Then we use (2.5).

Remark 4. Notice that following relationship κ1 = β0 + D − C and (2.3), C
x+D

can be written as 1
a1(x)/C+1 which fits assumptions of Proposition 1 of [14].

Remark 5. Following (2.5) and the fact that α̂n−1 ≥ 0 we deduce that either βn

+D ≥ 0 or βn +D ≤ 0 for all n ≥ 1. Consequently either we have for all n ≥ 0

βn−1 +D ≤ κn ≤ 0 or 0 ≤ κn ≤ βn−1 +D.

Corollary 1. Under assumptions of Theorem 1 we have

(2.6) bn (x) = an (x) +
n
∑

j=1

(−1)j





n
∏

k=n−j+1

κk



 an−j (x)

for n = 0, 1, 2, . . . . Further under additional assumption that
∫

suppB
1

(x+D)2 dB (x) <

∞ we have:

1 +
∑

n≥1

(

n
∏

k=1

κk

β̂k−1

)2

= C2

∫

suppB

1

(x+D)2
dB (x)

and

(2.7)
C

x+D
= 1 +

∑

n≥1

(−1)n
(

n
∏

k=1

κk

β̂k−1

)

bn (x) ,

on suppB in L2 (suppB,B, dB (x)) . If additionally
∑

n≥1

(

∏n
k=1

κk

β̂k−1

)2

log2 n <

∞, then convergence in (2.7) is almost (dB (x)) pointwise on suppB.

Proof. Using (2.6) we have bn (x)+κnbn−1 (x) = an+
∑n

j=1 (−1)
j
(

∏n
k=n−j+1 κk

)

an−j (x)

+κnan−1 +
∑n−1

j=1 (−1)j
(

∏n
k=n−j κk

)

an−1−j (x) = an. Now we apply idea of ratio

of density expansion presented in [14] and use (2.6). On the way we notice that the
requirement that both measures (i.e. dA and dB) have densities with respect to
Lebesgue measure can be dropped. We also utilize the fact that

∫

suppB
b2
n (x) dB (x)

=
∏n−1

k=0 β̂k which follows Favard’s Theorem. The we also use Rademacher–Menshov
theorem concerning almost sure convergence of L2 converging Fourier series. �

3. Examples

To illustrate how simple and easy is to utilize the presented in the previous
section observations and rules let us consider the following few examples:

It should be remarked that although examples concerning Jacobi and Legendre
polynomials were considered by Maroni in [8] they were illustrating different phe-
nomena discovered by Maroni in this paper. In particular formulae (3.4), (3.5) and
(3.6) do not appear in Maroni’s paper. We present them in order to illustrate the
use of equations (2.2), (2.4), (2.5) and expansion (2.7).
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Example 1 (Jacobi polynomials). Recall (e.g. basing on [1] or [6]) that monic

Jacobi polynomials J
(α,β)
n (x) satisfy the following 3-term recurrence:

J
(α,γ)
n+1 (z) =

(

x+
α2 − γ2

(2n+ α+ γ + 2)(α+ γ + 2n)

)

J (α,γ)
n (x)(3.1a)

− 4n (α+ γ + n) (n+ α)(n+ γ)

(α+ γ + 2n− 1) (2n+ α+ γ)2(α+ γ + 2n+ 1)
J

(α,γ)
n−1 (z).(3.1b)

Besides one knows also that the normalized measure that makes these polynomials
orthogonal is the following:

f (x;α, γ) =
Γ (α+ γ + 2)

2α+γ+1Γ (γ + 1)Γ (α+ 1)
(1− x)

α
(1 + x)γ ,

where Γ (η) denotes value of the Gamma function at η, for |x| < 1 and α, γ > −1.
Now let us take α > 0, γ > −1, dB (x) = f (x;α, γ) dx and dA (x) = f (α− 1, γ) dx,

bn (x) = J
(α,γ)
n (x) and an (x) = J

(α−1,γ)
n (x) . One can easily notice that dA (x) =

C
(−1+x)dB (x) , where C = − 2α

α+γ+1 , hence D = −1. From (3.1) it follows also that

βn = − α2 − γ2

(2n+ α+ γ + 2)(α+ γ + 2n)
,(3.2)

β̂n−1 =
4n (α+ γ + n) (n+ α)(n+ γ)

(α+ γ + 2n− 1) (2n+ α+ γ)2(α+ γ + 2n+ 1)
.(3.3)

Thus κ1 = β0 + D − C = − α2−γ2

(α+γ+2)(α+γ) + 2α
α+γ+1 − 1 = −2 γ+1

(α+γ+1)(α+γ+2) and

consequently coefficients κn satisfy recursive equation:

κn = βn−1 − 1− β̂n−2

κn−1
,

for n ≥ 2. One can also easily notice that

(3.4) κn = − 2n(n+ γ)

(α+ γ + 2n) (α+ γ + 2n− 1)

satisfies above mentioned recursive equation. Hence

(3.5) J (α−1,γ)
n (x) = J (α,γ)

n (x) + κnJ
(α,γ)
n−1 (x).

As far as application of Corollary 1 is concerned we have the following identity
true for α > 1, γ > −1, and almost all |x| < 1 :

(3.6) 1 =
α+ γ + 1

2α
(1−x)(1+

∞
∑

n≥1

(α+ γ + 1)2n
2n(α+ γ + 1) (α+ 1)n (α+ γ + 1)n

J (α,γ)
n (x)),

where we use the so called Pochhammer symbol (a)n = a (a+ 1) . . . (a + n − 1).

This is so since κn

γn−1

= − (α+γ+2n+1)(α+γ+2n)
2(α+n)(α+γ+n) , by (3.3) and (3.4) and because

∫ 1

−1
1

(1−x)2 dB (x) < ∞ for γ > −1, α− 2 > −1.

Example 2 (Charlier polynomials). Basing on [7] let us recall that monic Charlier
polynomials {cn (x;λ)}n≥−1 are polynomials given by the following 3-term recur-
rence

cn+1 (x;λ) = (x− n− λ)cn (x;λ)− nλcn−1 (x;λ) ,
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with c−1 (x;λ) = 0, c0 (x;λ) = 1. For λ > 0 they are orthogonal with respect
to discrete measure concentrated at nonnegative integers with mass at n equal to
exp (−λ) λn

n! , n ≥ 0. Another words this measure is the Poisson normalized measure.

In order not to complicate too much let us take dB (n) = exp (−λ) λn

n! and dA (n)

= C
n+1dB (n) for n = 0, 1, . . . . Since

∑∞

n≥0
λn

(n+1)! = (exp(λ)−1)
λ we see that C =

λ exp(λ)
exp(λ)−1 . Naturally we have also D = 1 and βn = n+ λ and β̂n−1 = nλ, hence κ1

= λ+ 1− λ exp(λ)
−1+exp(λ) = exp(λ)−1−λ

exp(λ)−1 . Thus recursive equation satisfied by coefficients

κn is the following:

κn = n+ λ− (n− 1)λ

κn−1
,

n ≥ 2. In particular we have κ2 = 2 exp(λ)−1−λ−λ2/2
exp(λ)−1−λ , κ3 = 3 exp(λ)−1−λ−λ2/2−λ3/3!

exp(λ)−1−λ−λ2/2

and in general it is easy to see that

κn = n
exp (λ)−∑n

j=0
λj

j!

exp (λ)−
∑n−1

j=0
λj

j!

= n

∑

j≥n+1
λj

j!
∑

j≥n
λj

j!

.

Thus we have in particular

an (x) = cn (x) + κncn−1 (x) ,

αn = n+ λ+ κn − κn+1,

α̂n−1 =
λn(
∑

j≥n+1
λj

j! )
(

∑

j≥n−1
λj

j!

)

(
∑

j≥n
λj

j! )
2

.

As the application of Corollary 1 we have the following identity true for λ > 0 and
x = 0, 1, . . .

(3.7) eλ = (1 + x)(
eλ − 1

λ
+
∑

n≥1

(−1)
n
cn (x;λ)

∑

k≥n+1

λk−n−1

k!
).

This is so since κn

β̂n−1

=
exp(λ)−

∑n
j=0

λj

j!

λ(exp(λ)−
∑n−1

j=0

λj

j!
)
and consequently

∏n
k=1

κk

β̂k−1

=
exp(λ)−

∑n
k=0

λk

k!

λn

=
∑

k≥n+1
λk−n

k! . Let us observe that (3.7) is not satisfied for non-positive integer
x.

Example 3 (Legendre polynomials). As it is known Legendre polynomials are the
Jacobi polynomials with α, γ = 0. As dB (x) let us consider measure with the density
f(x; 0, 0) = 1/2 on [−1, 1]. As dA (x) let us consider measure with the density C

2(3−x)

on [−1, 1]. Parameter C we get by direct integration, namely C = −2
ln 2 while D =

−3. Further using (3.2) and (3.3) we get:

βn = 0, β̂n−1 =
n2

(2n− 1)(2n+ 1)
.

Hence κ1 = 0− 3 + 2
ln 2 and consequently coefficients κn are given by the following

recursive equation:

κn+1 = −3− n2

(2n− 1)(2n+ 1)κn
,



CONNECTION COEFFICIENTS AND ORTHOGONALIZING MEASURES 7

for n ≥ 1. In particular we get κ2 = −3 − 1
3(−3+2/ ln 2) = − (26 ln 2−18)

9 ln 2−6 . Finally we

deduce that polynomials defined by

an (x) = J (0,0)
n + κnJ

(0,0)
n−1 (x),

are orthogonal with respect to the measure with the density: 2
(3−x) ln 2 on [−1, 1].

4. Extensions and open problems

In this section we are going to present some generalizations of the results of
Section 2. The results are not as nice and compact as the ones presented above
that is why we present them here. We will also pose some open problems that
appeared immediately when writing the article.

Let us return to the setting that was presented in the Introduction and consider
the case r = 2. Let us assume that measures dA and dB are related to one another
by the relationship

(4.1) dA (x) =
C

x2 +Dx+ E
dB (x)

and that constants C,D,E are such that C
x2+Cx+E ≥ 0 on suppB and that measure

dA is normalized. Following cited already [14], Proposition 1 we deduce that then
polynomials {an} and {bn} orthogonal with respect to these measures are related
by the relationship

(4.2) an (x) = bn (x) + κnbn−1 (x) + λnbn−2 (x) ,

for some number sequences {κn} and {λn} . given in the Proposition below:

Proposition 1. Suppose normalized, positive measures dA and dB are related to
one another by (4.1). Let further polynomial sequences {an} and {bn} orthogonal
with respect to these measures satisfy respectively 3-term recurrence (1.1) and (1.2).
Then there exist two number sequences {κn} and {λn} such that (4.2) is satisfied.

Moreover number sequences {κn} , {λn}, {αn} {α̂n} , {βn} ,
{

β̂n

}

are related to

one another by the system of equations:

κn+1 + αn = βn + κn,(4.3)

λn+1 + αnκn + α̂n−1 = β̂n−1 + κnβn−1 + λn,(4.4)

αnλn + α̂n−1κn−1 = κnβ̂n−2 + λnβn−2,(4.5)

α̂n−1λn−1 = λnβ̂n−3.(4.6)

with λ1 = 0 and κ1, κ2 and λ2 defined as solutions of the system of 7 equa-
tions 0 =

∫

suppB (b1 (x) + κ1) dA (x) =
∫

suppB (b2 (x) + κ2b1 (x) + λ2) dA (x) =
∫

suppB
(b2 (x) + κ2b1 (x) + λ2) (b1 (x)+κ1)dA (x) =

∫

suppB
b1 (x)

(

x2 +Dx+ E
)

dA (x)

=
∫

suppB
b2 (x)

(

x2 +Dx+ E
)

dA (x) ,
∫

suppB

(

x2 +Dx+ E
)

dA (x) = C,
∫

suppB b2
1 (x)

(

x2 +Dx+ E
)

dA (x) = β̂0 with 4 additional unknowns
∫

suppB
b1 (x) dA (x) ,

∫

suppB
b2 (x) dA (x) ,

∫

suppB
b1 (x) b2 (x) dA (x),

∫

suppB
b2
2 (x) dA (x) .

Proof. Uninteresting proof is shifted to Section 5. �

Visibly it is hard to solve system of equations (4.3)-(4.6) for {κn, λn, αn, α̂n} in
general. Below we will present one example where it is simple.
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Example 4 (Kesten–McKay distribution). This example concerns measure that is
called Kesten–McKay. It appeared in probability in the context of random matrices.
One of the particular examples of its density is the density of the form:

f (x; y, ρ) =
(1 − ρ2)

√
4− x2

2π((1− ρ2)2 − ρ(1 + ρ2)xy + ρ2(x2 + y2))
,

for |x| , |y| ≤ 2, ρ2 < 1. To see that
∫ 2

−2
f (x; y, ρ) dx = 1 for all |y| ≤ 2 and ρ2 < 1

is difficult hence to obtain sequence of polynomials orthogonal with respect to it
by Gram-Schmidt procedure is quite hard. As one can easily see this density is a
particular example of the relationship (4.1) with dB(x) = 1

2π

√
4− x2dx, bn(x) =

Un(x/2), where Un(x) are the Chebyshev polynomials of the second kind (for details
see e.g. [1])). One can notice that polynomials bn satisfy the following 3-term
recurrence:

bn+1(x) = xbn(x)− bn−1(x),

with b−1(x) = 0, b0(x) = 1. First of all notice that if ρ = 0 then we deal with trivial

case. Hence let us assume that 0 < |ρ| < 1. We have βn = 0 and β̂n = 1 and

further C = (1−ρ2)
ρ2 , D = − (1+ρ2)y

ρ , E = (1−ρ2

ρ )2 + y2. By direct computation we

check that κ1 = κ2 = −ρy and λ2 = ρ2. Now inserting all of the ingredients to
equations (4.3)-(4.6) we see that κn = −ρy for n ≥ 1, λn = ρ2 for all n ≥ 2 , αn

= 0, and α̂n = 1 for all n ≥ 1. Thus an(x) = bn(x)− ρybn−1(x) + ρ2bn−2(x) for all
n ≥ 2.

Now let us simplify calculations by assuming that the measure dB and the poly-
nomial

(

x2 +Dx+ E
)

are symmetric which implies that polynomials orthogonal
with respect to dB (i.e. bn) must contain only either even or odd powers of x.
Hence coefficients βn are equal to zero for n ≥ 0 and also that D = 0. Conse-
quently measure dA must also be symmetric and by similar argument we deduce
that coefficients αn = 0 for n ≥ 0. This results in the fact that coefficients κn are
also zero for all n ≥ 0.

As a result we have the following Lemma which is in fact a corollary of the
Proposition 1.

Lemma 1. Suppose normalized, positive measures dA and dB are related to one
another by the relationship:

dA (x) =
C

x2 + E
dB (x) .

Let further respectively polynomial sequences {an} and {bn} orthogonal with respect
to these measures satisfy 3-term recurrence (1.1) and (1.2). With βn = 0 for n ≥ 0.
Then there exist a number sequences {λn} such that

(4.7) an (x) = bn (x) + λnbn−2 (x) ,

and αn = 0 for n ≥ 0. Moreover number sequence {λn}, satisfies the following
second order recursive equation for n ≥ 3 :

(4.8) λn+1 = λn + β̂n−1 −
λn

λn−1
β̂n−3,

with λ1 = 0, λ2 = β̂0 + E − C, λ3 = β̂1 + E − E
C−E β̂0.
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Coefficients α̂n are given by relationship:

α̂n =
λn+1

λn
β̂n−2.

Proof. We apply assumptions to the system of equations (4.3-4.6) getting:

λn+1 + α̂n−1 = λn + β̂n−1,

α̂n−1λn−1 = λnβ̂n−3,

from which we get (4.8). To get initial conditions we notice that a2 (x) = x2−β̂0+λ2

= x2 + E + (λ2 − β0 − E), so from the relationships
∫

suppB a2 (x) dA (x) = 0 and
∫

suppB
(x2 + E)dA (x) = C we get C + (λ2 − β0 − E) = 0. Now to get λ3 we

use relationship:
∫

suppB
a1 (x) a3 (x) dA (x) = 0, using on the way the fact that

a3 (x) = b3 (x) + λ3x = x(x2 − β̂0) − β̂1x + λ3x = x3 + x(λ3 − β̂0 − β̂1) and that
∫

suppB(x
2− β̂0)(x

2 +E)dA (x) = 0. We have: 0 =
∫

suppB((x
2 − β̂0)(x

2 +E)+(λ3−
β̂1−E)x2+β̂0E)dA (x) =

∫

suppB
((λ3−β̂1−E)(x2+E)+β̂0E−E(λ3−β̂1−E))dA (x)

= C(λ3 − β̂1 − E)− E(λ3 − β̂1 − E − β̂0) = 0. �

We will briefly illustrate this Lemma by the following example.

Example 5 (Jacobi polynomials revisited). Let us consider the symmetric case
i.e. assuming that parameters α and γ are equal say to a. Then βn = 0 and

β̂n−1 = n(n+2a)
(2a+2n−1)(2a+2n+1) . Parameters C and E are now equal to − 2a

2a+1 and −1

respectively. Hence

λ2 = β̂0 + E − C = − 2

(2a+ 1)(2a+ 3)

λ3 = β̂1 + E − E

C − E
β̂0 = − 6

(2a+ 3)(2a+ 5)
.

Besides one can easily check that the sequence
{

− n(n−1)
(2a+2n−1)(2a+2n−3)

}

satisfies

(4.8). So λn = − n(n−1)
(2a+2n−1)(2a+2n−3) , n ≥ 2. Hence we have:

J (α−1,α−1)
n (x) = J (α,α)

n − n(n− 1)

(2a+ 2n− 1)(2a+ 2n− 3)
J

(α,α)
n−2 .

In particular notice that for α = 1/2 we have J
(1/2,1/2)
n (x) = Un (x) /2

n where

Un are the Chebyshev polynomials of the second kind, while J
(−1/2,−1/2)
n (x) =

Tn (x) /2
n−1 for n ≥ 2 and J

(−1/2,−1/2)
n (x) = Tn (x) for n = 0, 1, where Tn (x) , are

the Chebyshev polynomials of the first kind. Besides
[

− n(n−1)
(2a+2n−1)(2a+2n−3)

]

α=1/2

= − 1
4 and we end up with well known relationship between Chebyshev polynomials

of the first and second kind:

Tn (x) = (Un(x)− Un−2 (x))/2.

Remark 6. Notice that we could have reached the result in the above mentioned
example by applying the procedure described in Section 2 twice once for monomial
1− x and then for 1 + x.
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Remark 7. Notice also that one could invert relationship (4.7) and find connec-
tion coefficients of polynomials {bn} expressed in terms of polynomials {an} . Like
in the setting of Corollary 1 they would be expressed in terms of products of coeffi-
cients {λn} (in fact either only with odd or even numbers) and consequently obtain
expansion similar (2.7) (in fact involving polynomials {bn} with even numbers).

4.1. Open problems.

• Is it possible to simplify equation (4.8) and reduce it to the first order
recursive equation?

• Is it possible to simplify system of equations (4.3-4.6) and reduce it to the
problem of solving system of the first order recursive equations?

• More generally is it possible to solve general system of equations presented
in Proposition 1 of [14] or at least deduce more properties of coefficients
{

c
(j)
n

}

n≥1,1≤j≤r
not only that for j > r they are zeros.

• Is it possible give some properties of connection coefficients between the two
sets of orthogonal polynomials given the fact that orthogonalizing measures
are related by the known relationship dA (x) = F (x) dB (x) for functions F
different from the reciprocal of a polynomial. It seems possible to consider
rational functions to start generalization.

5. Proofs

Proof of Theorem 1. Noticing that the proof of Proposition 1, iii) does not require
the measures dA (x) and dB (x) to have densities we can apply its assertion and
deduce that if positive, normalized measures are related by the relationship (2.1)
then the polynomial sequences {an} and {bn} orthogonal respectively with respect
to these measures are related by (2.3). Hence sequence {κn} exists and consequently
we have an (x) = bn (x) + κnbn−1 (x) . Remembering that sequences of polynomials
{an} and {bn} are orthogonal and satisfy the following 3-term recurrences:

an+1 (x) = (x − αn)an (x)− α̂n−1an−1 (x) ,

bn+1 (x) = (x− βn) bn (x)− β̂n−1bn−1 (x) .

So on one hand we have

xan (x) = an+1 (x) + αnan (x) + α̂n−1an−1

= bn+1 (x) + (κn+1 + αnκn)bn + (αnκn + α̂n−1)bn−1 (x) + α̂n−1κn−1bn−2 (x) .

On the other we have:

xan (x) = xbn (x) + xκnbn−1 (x)

= bn+1 (x) + (βn + κn) bn (x) + (β̂n−1 + κnβn−1)bn−1 + κnβ̂n−2bn−2 (x) .

Hence we must have:

κn+1 + αn = βn + κn,

αnκn + α̂n−1 = β̂n−1 + κnβn−1,

α̂n−1κn−1 = κnβ̂n−2

Now let us get αn from the first of the equations

αn = βn + κn − κn+1.
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We get further

α̂n−1 = −βnκn − κ2
n + κnκn+1 + β̂n−1 + κnβn−1.

So finally we have:

κn−1(−βnκn − κ2
n + κnκn+1 + β̂n−1 + κnβn−1) = κnβ̂n−2

dividing both sides by κnκn−1 we get:

κn+1 = κn +
β̂n−2

κn−1
− β̂n−1

κn
+ βn − βn−1

Now notice that we can rearrange terms on both sides of this equation in the
following way:

κn+1 +
β̂n−1

κn
− βn = κn +

β̂n−2

κn−1
− βn−1,

proving that quantity κn +
β̂n−2

κn−1
− βn−1 does not depend on n and is equal to κ2

+ β̂0

κ1
− β1.

We can easily find this quantity by finding directly quantities κ1 and κ2.
Naturally we have κ0 = 1. Remembering that dB (x) = (d+ cx)dA (x) , that

bn+1 (x) = (x− βn) bn (x) − β̂nbn−1 (x)

and since
∫

suppA
a1 (x) dA (x) = 0 we must have

1 =

∫

suppA

dA (x) =

∫

suppA

C

(D + x)
dB (x) .

Now since a1 (x) = b1 (x) + κ1 we have

0 =

∫

suppA

C (b1 (x) + κ1)

(D + x)
dB (x)

= C + (κ1 − β0 −D)

∫

C

x+D
dB (x) = C + κ1 − β0 −D,

So

κ1 = β0 +D − C.

To find κ2 we use the fact that a2 (x) = b2 (x) + κ2b1 (x) . Hence we have:

0 = C

∫

suppA

(b2 (x) + κ2b1 (x))

(D + x)
dB (x)

= C

∫

suppA

(

(−D − β1 + κ2)(b1 (x) + κ1 − κ1)− β̂0

)

(D + x)
dB (x)

= C

∫

suppA

(

(D + β1 − κ2)κ1 − β̂0

)

(D + x)
dB (x) =

(

(D + β1 − κ2)κ1 − β̂0

)

.

Hence we see that κ2 +
β̂
0

κ1
− β1 = D. �
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Proof of Proposition 1. Assuming that both sequences of polynomials i.e. {an} and
{bn} are orthogonal we have on one hand:

xan (x) = an+1 + αnan (x) + α̂n−1an−1 (x) =

= bn+1 (x) + (κn+1 + αn) bn (x) + (λn+1 + αnκn + α̂n−1) bn−1 (x)

+ (αnλn + α̂n−1κn−1) bn−2 (x) + α̂n−1λn−1bn−3 (x) .

and on the other:

xan (x) = x (bn (x) + κnbn−1 (x) + λnbn−2 (x))

= bn+1 + (βn + κn) bn (x) +
(

β̂n−1 + κnβn−1 + /λn

)

bn−1 (x) +
(

κnβ̂n−2 + λnβn−2

)

bn−2 (x) + λnβ̂n−3bn−3 (x) .

Comparing expressions by bn, bn−1, bn−2 and bn−3 we get equations (4.3-4.6). �
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