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Complete characterization by multistationarity of fully open

networks with one non-flow reaction

Badal Joshi

Abstract

This article characterizes certain small multistationary chemical reaction networks. We
consider the set of fully open networks, those for which all chemical species participate in
inflow and outflow, containing one non-flow (reversible or irreversible) reaction. We show
that such a network admits multiple positive mass-action steady states if and only if the
stoichiometric coefficients in the non-flow reaction satisfy a certain simple arithmetic rela-
tion. The multistationary fully open one-reaction networks are identified with the chemical
process of autocatalysis. Using the notion of ‘embedded network’ defined recently by Joshi
and Shiu, we provide new sufficient conditions for establishing multistationarity of fully
open networks, applicable well beyond the one-reaction setting.

Keywords: chemical reaction networks, CFSTR, fully open network, mass-action ki-
netics, multiple steady states, deficiency one theorem, deficiency one algorithm, atoms of
multistationarity.

1 Introduction

Chemical reaction networks are used to model systems that occur in chemical engineering and
systems biology. The property of existence of multiple positive steady states (also known as
multistationarity) provides the mathematical underpinnings for a biochemical network to act
as a switch [1, 2]. Therefore it is an important problem to determine which chemical reac-
tion networks admit multiple positive steady states. Determining whether a chemical reaction
network admits multiple positive steady states is difficult: for instance, in the mass-action ki-
netics setting, it requires determining existence of multiple positive solutions to a system of
multivariate polynomials with unknown coefficients. Several criteria exist which help rule out
multistationarity in chemical reaction networks. Important examples of such criteria are De-
ficiency Zero and Deficiency One Theorems of Horn, Jackson, and Feinberg [3, 4, 5, 6, 7], the
Jacobian criterion and the more general injectivity test of Craciun and Feinberg [8, 9, 10, 11, 12];
the graphical criteria of Soulé [13] and in more general settings than mass-action, the work of
Banaji et al. [14, 15]; also see the more recent extensions by Feliu and Wiuf [16], Joshi and
Shiu [17], and Gnacadja [18]. The results in these papers provide sufficient conditions for rul-
ing out multistationarity, which alternatively may be viewed as providing necessary conditions
for establishing multistationarity since avoiding the conditions is necessary for multiple steady
states. On the other hand, sufficient conditions for establishing multistationarity are relatively
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rare. Instances where multistationarity can be established include Feinberg’s Deficiency One
Algorithm [5] and Ellison and Feinberg’s Advanced Deficiency Algorithm [19]. These criteria
have been implemented in the Chemical Reaction Network Toolbox, software available online
for free download and use [20]. Other results on establishing multistationarity include the work
of Conradi et al. [21, 22].

Within the fully open network setting (a fully open network is a chemical reaction network
where all chemical species participate in inflow and outflow), recent results by Joshi and Shiu
[23] give a new approach for establishing multistationarity via ‘atoms of multistationarity’
(see Definition 4.12). Possessing an atom of multistationarity as an ‘embedded network’ (see
Definition 2.2) is a sufficient condition for multistationarity in fully open networks. Using
this approach, the problem of classifying fully open networks by multistationarity may be
reduced to two relatively simpler problems: 1) determining the atoms of multistationarity, and
2) determining whether a network possesses one of the known atoms of multistationarity as an
embedded network. Here we focus on the first problem, and provide an answer for the smallest
networks. The next examples illustrate the type of questions that the results in this article will
enable us to answer.

Example 1.1. Consider the following fully open networks N1-N3 in species A,B,C,D and E.
By the network property of being ‘fully open’ we mean that the flow reactions 0 ⇄ A, 0 ⇄ B,
0 ⇄ C, 0 ⇄ D, and 0 ⇄ E are included in all three networks.

N1: A+B → A+ C 2B → A+D A+ 2E → 3E.

N2: A+B → A+ C 2B → A+D A+ E → 2E.

N3: A+ C → A+B 2B → A+D A+ E → 2E.

Does the network N1 (or N2, or N3), when endowed with mass-action kinetics (see Definition
2.6), admit a choice of positive rate constants for which N1 (or N2, or N3) has multiple pos-
itive steady states? Note that N2 differs from N1 only in the third reaction and only in the
stoichiometric coefficients of the species E. Moreover, N2 differs from N3 only in the direction
of the first reaction. We will demonstrate the delicate dependence on the network structure by
showing that only N1 and N3 admit multiple positive steady states – both by virtue of possessing
known atoms of multistationarity, while N2 does not admit multiple steady states.

Example 1.2. Consider the following fully open networks M1-M3 appearing in the work of
Schlosser and Feinberg [24]. All networks have the ‘fully open’ property of having all chemical
species participate in the inflow and the outflow.

M1: A+B ⇆ 2A.

M2: 2A+B ⇆ 3A.

M3: A+ 2B ⇆ 3A.
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The main theorem (Theorem 4.1) in this article will show that in the mass-action setting, only
network M2 has the capacity for multiple positive steady states, while the networks M1 and M3
cannot admit multiple positive steady states no matter what positive reaction rate constants are
chosen.

In this work, we characterize the class of ‘smallest’ atoms of multistationarity, namely
those containing one non-flow reaction, which may be irreversible or reversible. This is a
continuation of the work in [23], where the authors catalog all two-reaction bimolecular atoms
of multistationarity. Atoms of multistationarity containing one non-flow reaction will be referred
to as one-reaction atoms of multistationarity. Consider the following general one-reaction fully
open network consisting of s species all of which are in the inflow and outflow:

0
ki
⇄

li

Xi , 1 ≤ i ≤ s

a1X1 + a2X2 + · · ·+ asXs

ka
⇄

kb

b1X1 + b2X2 + · · ·+ bsXs

where at least one of the rate constants ka or kb is assumed to be positive. The ki and li
are positive rate constants which denote the rate at which the species Xi flows in and out,
respectively. The stoichiometric coefficients ai and bi are assumed to be non-negative integers.
The main theorem (Theorem 4.1) in this article gives a simple arithmetic relation on the
stoichiometric coefficients which establishes whether the network is multistationary or not.

Two important results follow from Theorem 4.1. The first result is Theorem 4.13, which
gives a classification of the entire set of one-reaction atoms of multistationarity. We find that
the infinitely many one-reaction atoms of multistationarity can be classified into two types,
each type parametrized by two integers. The first type contains one chemical species and the
second type contains two chemical species. Furthermore, the non-flow reaction in both types of
atoms is irreversible. As corollaries of Theorem 4.13, we find that: 1) there are no one-reaction
atoms of multistationarity with a reversible non-flow reaction (in other words, if a one-reaction
network with a reversible non-flow reaction is multistationary, then it contains a multistationary
subnetwork which is fully open and has an irreversible non-flow reaction) and 2) a bimolecular
reaction network containing one non-flow reaction (which may be reversible or irreversible) does
not admit multiple steady states. The second result that follows from Theorem 4.1 is Theorem
4.14, which is obtained by combining Theorem 4.1 with the ‘embedded network theorem’ of
Joshi and Shiu [23] and extends the applicability of Theorem 4.1 beyond the setting of one-
reaction networks. Theorem 4.14 states that a fully open network with any number of non-flow
reactions admits multiple steady states if it possesses a one-reaction atom of multistationarity
as an embedded network.

We find that the multistationary one-reaction fully open networks including the one-reaction
atoms of multistationarity are identified with the chemical process of autocatalysis. More
precisely, a one-reaction fully open network is multistationary if and only if the network contains
a non-flow reaction with a set of species that are autocatalytic (i.e. they appear with a higher
stoichiometric coefficient in the product complex than in the reactant complex), and the sum of
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the stoichiometric coefficients of such autocatalytic species in the reactant complex is at least
two.

Other authors have previously approached the problem of identifying the smallest chemical
reaction networks with a certain specified property. Smallest multistationary chemical reaction
networks with the mass-preserving property have been studied in [25]. The smallest chemical
reaction outside the fully open network setting (smallest by number of species, number of
reactions, and number of terms in the differential equation) was studied in [26] and the smallest
chemical reaction network with Hopf bifurcation was studied in [27, 28]. Other examples of
classification by multistationarity of small networks include [29, 30, 31]. Recently, generalized
catalytic and autocatalytic networks have been studied in [32].

This article is organized as follows. Section 2 provides the background information on chem-
ical reaction networks including the basic definitions, notation and the Deficiency One Theorem
of Feinberg. Section 3 provides a review of the Deficiency One Algorithm of Feinberg. In Section
4, we state and prove our main theorem which gives a characterization of one-reaction fully open
networks by multistationarity. The first corollary gives a complete classification of one-reaction
atoms of multistationarity. As a second corollary we get sufficient conditions for establishing
multistationarity of larger networks by way of one-reaction atoms of multistationarity.

2 Chemical reaction network theory

We begin with a review of the notation and basic definitions related to chemical reaction
networks. An example of a chemical reaction is the following:

X1 + 2X2 → X2 +X3 . (1)

The Xi are called chemical species, and X1 + 2X2 and X2 +X3 are called chemical complexes.
For the reaction in (1), y := X1+2X2 is called the reactant complex and y′ := X2+X3 is called
the product complex, so we may rewrite the reaction as y → y′. We will often find it convenient
to think of the complexes as vectors, for instance, we may assign the reactant complex X1+2X2

to the vector (1, 2, 0) and the product complex X2 +X3 to the vector (0, 1, 1). In other words,
we are identifying the species Xi with the canonical basis vector whose i-th component is 1 and
the other components are 0. We let s denote the total number of species Xi and we consider
a set of r reactions, each denoted by yk → y′k, for k ∈ {1, 2, . . . , r}, and yk, y

′
k ∈ Z

s
≥0, with

yk 6= y′k. We index the entries of a complex vector yk by writing yk = (yk1, yk2, . . . , yks) ∈ Z
s
≥0,

and we will call yki the stoichiometric coefficient of species i in complex yk. For ease of notation,
when there is no need for enumeration we typically will drop the subscript k from the notation
for the complexes and reactions.

Many of the definitions in this paper follow those in Joshi and Shiu [23]; we start by defining
chemical reaction networks.

Definition 2.1. Let S = {Xi}, C = {y}, and R = {y → y′|y′ 6= y} denote finite sets of species,
complexes, and reactions, respectively. The triple {S, C,R} is called a chemical reaction network
if it satisfies the following:
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1. for each complex y ∈ C, there exists a reaction in R for which y is the reactant complex
or y is the product complex, and

2. for each species Xi ∈ S, there exists a complex y ∈ C that contains Xi.

For a chemical reaction network {S, C,R}, unless otherwise specified, we will denote the
number of species by s := |S|, the number of complexes by n := |C| and the number of reactions
by r := |R|.

A subset of the reactions R′ ⊂ R defines the subnetwork {S|C|R′ , C|R′ ,R′}, where C|R′

denotes the set of complexes that appear in the reactions R′, and S|C|R′ denotes the set of
species that appear in those complexes. We now define the notion of an embedded network, a
more general notion than a subnetwork.

Definition 2.2. Let G = {S, C,R} be a chemical reaction network.

1. Consider a subset of the species S ⊂ S, a subset of the complexes C ⊂ C, and a subset of
the reactions R ⊂ R.

• The restriction of R to S, denoted by R|S, is the set of reactions obtained by taking
the reactions in R and removing all species not in S from the reactant and product
complexes. If a reactant or a product complex does not contain any species from the
set S, then the complex is replaced by the 0 complex in R|S. If a trivial reaction (one
in which the reactant and product complexes are the same) is obtained in this process,
then that reaction is removed. Also removed are extra copies of repeated reactions.

• The restriction of C to R, denoted by C|R, is the set of (reactant and product)
complexes of the reactions in R.

• The restriction of S to C, denoted by S|C , is the set of species that are in the
complexes in C.

2. The network obtained from G by removing a set of reactions {y → y′} ⊂ R is the subnet-
work {

S|C|R\{y→y′}
, C|R\{y→y′}, R \ {y → y′}

}
.

3. The network obtained from G by removing a subset of species {Xi} ⊂ S is the network

{
S|C|R|S\{Xi}

, C|R|S\{Xi}
, R|S\{Xi}

}
.

4. Let G = {S, C,R} be a chemical reaction network. An embedded network of G, which is
defined by a subset of the reactions, R ⊂ R, and a subset of the species, S ⊂ S, where S
has the property that S = S|C|R|S

is the network {S, C|R|S , R|S} consisting of the reactions

R|S.
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Example 2.3. We demonstrate the operations of removing reactions, and of removing species
by considering the example of the following chemical reaction network:

A+ C ⇆ B + C

A+D ⇆ 2E

For this network S = {A,B,C,D,E}, C = {A + C,B + C,A + D, 2E}, R = {A + C ⇆

B + C,A+D ⇆ 2E}.
1. Consider the operation of removing the second reversible reaction; let R = {A + C ⇆

B +C} ⊂ R. So that C|R = {A+C,B +C} and S|C|R = {A,B,C}. Thus, removing the
reactions in R\R results in the subnetwork {{A,B,C}, {A+C,B+C}, {A+C ⇆ B+C}}.

2. Now consider the operation of removing the species A and B. Let S = S \ {A,B} =
{C,D,E}. In this case, R|S = {D ⇆ 2E}, C|R|S = {D, 2E}, and S|C|R|S

= {D,E}.
Thus, removing species A and B results in the embedded subnetwork {{D,E}, {D, 2E}, {D ⇆

2E}}. In general, S|C|R|S
is a subset of S but may not be equal to S, as this example il-

lustrates.

This article studies a class of chemical reaction networks called fully open networks, also
referred to as fully open CFSTRs in the literature (see for instance [8, 23]).

Definition 2.4. 1. A flow reaction contains only one species with the sum of the stoichio-
metric coefficient in the reactant and product complex for that species equal to one. In
more concrete terms, a flow reaction can be either an inflow reaction 0 → Xi or an outflow
reaction Xi → 0. A non-flow reaction is any reaction that is not a flow reaction.

2. A chemical reaction network is a continuous-flow stirred-tank reactor (CFSTR) if it con-
tains all outflow reactions Xi → 0 (for all Xi ∈ S) and a CFSTR is a fully open network
if it contains all inflow reactions 0 → Xi. We note that a fully open network is referred
to as a fully open CFSTR in [23].

3. A one-reaction fully open network is a fully open network with either one irreversible
non-flow reaction or one reversible non-flow reaction.

4. An autocatalytic reaction is a chemical reaction in which at least one chemical species
Xi appears in both the product and the reactant complex and the stoichiometric coefficient
of Xi is higher in the product complex than in the reactant complex. In this case, the
species Xi is referred to as an autocatalytic species. For instance, A + B → 2A + C is
an autocatalytic reaction and A is an autocatalytic species.

We define the function sign on real numbers by

sign(x) =





1 if x > 0

0 if x = 0

−1 if x < 0
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Definition 2.5. 1. The stoichiometric subspace of a network is the vector space spanned by
the reaction vectors of the network, S := span({y′ − y|y → y′ ∈ R}).

2. Two vectors α, β ∈ R
s are said to be stoichiometrically compatible if β − α ∈ S.

3. A set of all stoichiometrically compatible positive vectors forms a positive stoichiometric
compatibility class. For instance, the positive stoichiometric compatibility class containing
the vector α ∈ Rs

>0 is Pα = (α+ S) ∩ Rs
≥0.

4. A vector µ ∈ R
s is said to be sign compatible with the stoichiometric subspace if there

exists a λ ∈ S such that sign(µi) = sign(λi), for 1 ≤ i ≤ s.

Definition 2.6. Let xi represent the concentration of the chemical species Xi and let x =
(x1, . . . , xs). Let yk = (yk1, . . . , yks) be the stoichiometric coefficients of the species (X1, . . . ,Xs)
in the reactant complex of the k-th reaction. For a vector of positive reaction rate constants
(κ1, κ2, . . . , κr) ∈ R

r
>0, let the reaction rate be given by:

κkx
yk := κkx

yk1
1 xyk22 · · · xykss (2)

where by convention 00 = 1.
A chemical reaction network G is said to be endowed with mass-action kinetics if for a

specified set of positive reaction rate constants (κ1, κ2, . . . , κr) ∈ R
r
>0, x(t) is governed by the

following ODEs (which we will refer to as mass-action ODEs):

ẋ(t) =
r∑

k=1

κkx(t)
yk(y′k − yk) =: f(x(t)) . (3)

Definition 2.7. 1. A concentration vector x ∈ R
s
>0 is a (positive) steady state of the sys-

tem (3) if f(x) = 0.

2. A steady state x is nondegenerate if Im df(x) = S. (Here, “df(x)” is the Jacobian matrix
of f at x: the s× s-matrix whose (i, j)-th entry is equal to the partial derivative ∂fi

∂xj
(x)).

3. A chemical reaction network G endowed with mass-action kinetics is said to admit mul-
tiple steady states if there exist positive reaction rate constants (κ1, κ2, . . . , κr) ∈ R

r
>0

such that the resulting system of mass-action ODEs, ẋ(t) = f(x(t)) has multiple posi-
tive steady states within some positive stoichiometric compatibility class. If a network G

admits multiple steady states (MSS) we will say that G is multistationary.

4. If a network G admits MSS and these steady states are nondegenerate, we will say that
G admits nondegenerate MSS.

Note that (3) implies that a trajectory x(t) that begins at a positive vector x(0) ∈ R
s
>0

remains in the stoichiometric compatibility class containing x(0), Px(0) = (x(0) + S) ∩ R
s
≥0 for

all positive time. In other words, Px(0) is forward-invariant with respect to (3) [33].
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In the case of a fully open network, the reaction vector for the i-th inflow reaction is the
i-th canonical basis vector of Rs, so the stoichiometric subspace is S = R

s. It follows that for a
fully open network, the unique positive stoichiometric compatibility class for all positive vectors
x ∈ R

s
>0 is the nonnegative orthant: Px = R

s
≥0.

A chemical reaction network can be viewed as a graph whose vertex set is C and whose edge
set is R. The next few definitions address the graph-related structure of a chemical reaction
network.

Definition 2.8. 1. The complexes y and y′ are adjacent if either y = y′ or y → y′ ∈ R or
y′ → y ∈ R.

2. A linkage class L is a subset of C such that if y ∈ L and z ∈ L then there exists a set
{y =: y1, y2, . . . , yn−1, yn := z} ⊂ C such that yi is adjacent to yi+1 for 1 ≤ i ≤ n− 1. We
will use the notation l for the number of linkage classes of a network.

3. A complex y is said to react to the complex y′, denoted by y ❀ y′, if either y = y′ or there
exists a set {y =: y1, y2, . . . , yn−1, yn := y′} ⊂ C such that {y1 → y2, y2 → y3, . . . , yn−2 →
yn−1, yn−1 → yn} ⊂ R.

4. A strong linkage class is a set of complexes C ⊂ C such that for y, z ∈ C, y ❀ z and
z ❀ y.

5. A terminal strong linkage class is a strong linkage class C ⊂ C such that if y ∈ C and
z ∈ C \ C, then y does not react to z.

Definition 2.9. The deficiency of a chemical reaction network denoted by δ is defined to be
δ = n − l − d where n is the number of complexes in the network, l is the number of linkage
classes and d is the dimension of the stoichiometric subspace.

The Deficiency Zero Theorem and the Deficiency One Theorem establish that a network
with deficiency zero and a certain subclass of networks with deficiency one cannot admit MSS.

Theorem 2.10 (Deficiency Zero Theorem [3, 6, 7]). Suppose that a chemical reaction network
N has deficiency 0 and that each linkage class of N is a terminal strong linkage class. For all
positive reaction rate constants, the mass-action ODEs have precisely one steady state in each
positive stoichiometric compatibility class.

Theorem 2.11 (Deficiency One Theorem [4]). Consider a chemical reaction network endowed
with mass action kinetics, and with l linkage classes, each containing just one terminal strong
linkage class. Suppose that the deficiency of the network is δ, that the deficiencies of the individ-
ual linkage classes are δj, j = 1, . . . , l, and that these numbers satisfy the following conditions:

(i) δj ≤ 1, 1, . . . , l.

(ii)
∑l

j=1 δj = δ.

Then, for an arbitrary choice of rate constants, the chemical reaction network does not admit
multiple steady states within a positive stoichiometric compatibility class.
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The Deficiency One Algorithm stated in Section 3 requires the following regularity condition
on the network. Most networks arising as models of chemical processes satisfy this regularity
condition.

Definition 2.12. A network is considered to be regular if it satisfies the following conditions:

1. The reaction vectors of the network are positively dependent. In other words, there exists
a set of positive numbers {αy→y′ |y → y′ ∈ R} such that

∑
R αy→y′(y

′ − y) = 0.

2. Each linkage class in the network contains just one terminal strong linkage class.

3. For each pair of adjacent complexes {yi, yj} in a terminal strong linkage class of the
linkage class L, let R{yi,yj} := {yi → yj, yj → yi} ∩ R. The number of linkage classes
in the reaction network {S|C|R\R{yi,yj}

, C|R\R{yi,yj}
,R \ R{yi,yj}} is strictly greater than

the number of linkage classes in {S, C,R}. (The linkage class L disconnects when the
reactions in R{yi,yj} are removed.)

3 A review of the Deficiency One Algorithm

Here we review the Deficiency One Algorithm of Feinberg [5]. The Deficiency One Algorithm
takes as input a regular deficiency one network with two or more linkage classes, each of defi-
ciency zero, and determines whether the network permits multiple steady states or not. The
algorithm has two variations depending on whether or not the network contains an irreversible
reaction. We now describe the two algorithms. In the following we will let s := |S| denote
the number of species, r := |R| denote the number of reactions, and n := |C| the number of
complexes. Let µ = (µ1, . . . , µs) ∈ R

s.

3.1 Deficiency one algorithm for a network that contains irreversible reac-

tions

Input: A regular deficiency one network with two or more linkage classes, each of deficiency
zero and such that there is at least one irreversible reaction in the network.

Step 1. Determine a set of numbers, {g1, g2, . . . , gn} not all zero, such that the following hold:

(a)
∑n

i=1 giyi = 0.

(b) The gi corresponding to complexes in each linkage class sum to zero. In other
words, for each linkage class L,

∑
i:yi∈L

gi = 0.

(c) The gi corresponding to complexes in each terminal strong linkage class T sum
to a nonnegative number. In other words, for each terminal strong linkage class
T ,
∑

i:yi∈T
gi ≥ 0.
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Step 2. For a pair of adjacent complexes yp and yq in a terminal strong linkage class contain-
ing two or more complexes, remove the reaction arrows between the pair. Because of
regularity Condition 3, the linkage class containing this terminal strong linkage class
disconnects into two disjoint components. Sum over the gi associated with the com-
plexes in one of the resulting two components of the linkage class. Write yp·µ−yq ·µ > 0
(respectively = 0, or < 0) depending on whether the sum is positive (respectively is
zero, or is negative). Repeat this step on the original network for every distinct pair
of adjacent complexes in all terminal strong linkage classes.

Step 3. Partition the set of reactant complexes in the network into three subsets U,M and L
as follows:

(a) All complexes that do not belong to a terminal strong linkage class are placed in
the subset M .

(b) All complexes in the same terminal strong linkage class are placed in the same
subset.

Step 4. For the partition chosen in step 3, for each pair of distinct complexes {yi, yj} in the
subset M , write the relation yi · µ = yj · µ.

Step 5. For the partition chosen in step 3, do the following.

(a) For each complex yi in U and each complex yj in M write yi · µ > yj · µ.
(b) For each complex yj in M and each complex yk in L write yj · µ > yk · µ.
(c) For each complex yi in U and each complex yk in L write yi · µ > yk · µ.

Step 6. For the partition chosen in step 3, do the following.

(a) For each adjacent pair of complexes in each terminal strong linkage class con-
tained in U , write the inequality from Step 2.

(b) For each adjacent pair of complexes in each terminal strong linkage class con-
tained in L, write the inequality from Step 2 with the inequality sign reversed.

Step 7. Gather all the relations obtained in Steps 4-6 which results in the inequality system
for the partition chosen in Step 3.

Step 8. Determine if there exists a nonzero vector µ which satisfies the inequality system corre-
sponding to the partition chosen and which is sign compatible with the stoichiometric
subspace of the network. If there does exist such a vector then the network admits
multiple positive steady states.

Step 9. If Step 8 returns a nonzero vector µ then the algorithm is terminated. If not, then
return to Step 3 and choose a new partition of the reactant complexes. Repeat Steps
4-8, and if necessary repeat this step.
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Output: If there exists a nonzero vector µ which is sign compatible with the stoichiometric
subspace of the network and which satisfies the inequality system for some partition chosen in
Step 3, then the network admits MSS. Otherwise, no matter what positive rate constants are
chosen, the network does not admit MSS.

3.2 Deficiency one algorithm for reversible networks

Input: A regular deficiency one network with two or more linkage classes, each of deficiency
zero and such that all reactions in the network are reversible.
Carry out the same algorithm as the one for a network which contains irreversible reactions. If
at the end of the algorithm, multistationarity is not established for the network, then repeat
the algorithm with the signs of the gi chosen in Step 1 reversed.
Output: Similar to Section 3.1; establishes multistationarity or otherwise of a regular deficiency
one reversible network.

4 Multistationarity in One-Reaction fully open networks

Now we are ready to state our main theorem. The theorem stated below provides a complete
characterization by multistationarity of one-reaction fully open networks. The proof of the
theorem involves an application of Feinberg’s Deficiency One Algorithm [5], along with the
Deficiency Zero and Deficiency One theorems.

Theorem 4.1. 1. Consider a fully open network endowed with mass action kinetics and
which contains only one (irreversible) non-flow reaction:

a1X1 + a2X2 + · · ·+ asXs → b1X1 + b2X2 + · · ·+ bsXs ,

where ai, bi ≥ 0. Then the fully open network admits MSS if and only if the following
holds: ∑

i: bi>ai

ai > 1 . (4)

Moreover, these multistationary fully open networks admit nondegenerate steady states.

2. Consider a fully open network endowed with mass action kinetics which contains the
following reversible non-flow reaction:

a1X1 + a2X2 + · · ·+ asXs ⇆ b1X1 + b2X2 + · · ·+ bsXs ,

where ai, bi ≥ 0. The fully open network admits MSS if and only if the following holds:

∑

i: bi>ai

ai > 1 or
∑

i: ai>bi

bi > 1 . (5)

Moreover, these multistationary fully open networks admit nondegenerate steady states.
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Remark 4.2. Theorem 4.1 establishes a relation between autocatalysis and multistationarity in
one-reaction fully open networks. More precisely, conditions (4) or (5) may be interpreted as
follows: a one-reaction fully open network is multistationary if and only if it has an autocatalytic
reaction and the sum of the stoichiometric coefficients of the autocatalytic species in the reactant
complex is at least two.

Before we prove the theorem, we need a few technical lemmas. In the following two lem-
mas, we establish that certain simple but important one-reaction fully open networks admit
nondegenerate MSS.

Lemma 4.3. Let a2 > a1 > 1. Consider the following fully open network N containing one
non-flow reaction:

0
kX
⇄

lX

X a1X
k→ a2X (6)

Let k∗ :=
1

a2 − a1

(
lX
a1

)a1 (a1 − 1

kX

)a1−1

. Then the following holds:

If k





∈ (0, k∗) N has two nondegenerate positive mass-action steady states

= k∗ N has one doubly degenerate positive mass-action steady state

> k∗ N has no positive mass-action steady states.

Proof. Let x represent the concentration of the species X. The network (6) when endowed with
mass-action kinetics results in the following dynamical system:

ẋ = f(x) = kX − lXx+ k(a2 − a1)x
a1

First note that by Descartes’ rule of signs, since there are two sign changes in the coefficients of
f(x), the polynomial f(x) has at most 2 positive roots (in fact, when counted with degeneracy
f(x) can have either 2 or 0 positive roots).

Clearly f(0) = kX > 0 and f(x) → ∞ as x → ∞. Suppose a minimum of f(x) occurs at

x∗. Since f ′(x∗) = −lX + ka1(a2 − a1)(x
∗)a1−1 = 0, we have x∗ =

(
lX

ka1(a2−a1)

) 1

a1−1

showing

that there is a unique minimum and f(x∗) = kX + lX

(
1
a1

− 1
)
x∗. If f(x∗) < 0 (= 0, > 0) then

there are two (one, zero resp.) positive steady states. Solving these inequalities for k gives the
desired condition. For the case where there are two steady states, say x1 and x2(6= x1), since
x1 6= x∗ and x2 6= x∗, we have f ′(x1) 6= 0 and f ′(x2) 6= 0, so two steady states x1 and x2 are
nondegenerate. When k = k∗, we have that f(x∗) = f ′(x∗) = 0, so x∗ is the unique steady
state and x∗ has degeneracy 2.

Example 4.4. Letting a1 = 5, a2 = 8, kX = 4, lX = 15 in (6) results in the following network:

0
4
⇄
15

X 5X
k→ 8X (7)
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for which
f(x) = 3kx5 − 15x+ 4.

f(x) attains the minimum at x∗ =
(
1
k

)1/4
. We calculate that k∗ = 81 and consider three cases

where: 1) k ∈ (0, k∗), 2) k = k∗, and 3) k > k∗.

1. For k = 50 < 81 = k∗, f(x) = 150x5 − 15x + 4 has a pair of complex conjugate roots
(x± ≈ −0.0596238 ± 0.578275i), a negative root (x1 ≈ −0.615306) and two positive roots
(x2 ≈ 0.285702 and x3 ≈ 0.448851).

2. For k = 81 = k∗, the Jacobian function is f(x) = 243x5 − 15x+ 4 for which we find that

x∗ =
(

lX
ka1(a2−a1)

) 1

a1−1

= 1
3 is a root with degeneracy 2, and the other roots are either

complex (with non-zero imaginary part), or are negative.

3. For k = 100 > k∗, f(x) = 300x5 − 15x+ 4 has no positive real roots.

Lemma 4.5. Let b1 > 1 and b2 > 1. The following fully open network M containing one
non-flow reaction admits MSS.

0
kX
⇄

lX

X 0
kY
⇄

lY

Y X + Y
k→ b1X + b2Y (8)

Furthermore, M has two positive nondegenerate mass-action steady states if and only if the
parameters satisfy the following inequality:

lY
4k(b1 − 1)lXkX

(
lX +

k

lY
(kX (b2 − 1)− kY (b1 − 1))

)2

> 1 (9)

In the case of equality in the above equation, M has one doubly degenerate positive mass-action
steady state, and in the case of the reverse inequality M has no positive mass-action steady
states.

Proof. Let x and y represent the concentrations of the species X and Y respectively. The
network (8) when endowed with mass-action kinetics results in the following dynamical system.

(
ẋ
ẏ

)
=

(
f1(x, y)
f2(x, y)

)
=

(
kX − lXx+ k(b1 − 1)xy
kY − lY y + k(b2 − 1)xy

)
(10)

Some straightforward calculation reveals that the zeros of
f(x, y) := (f1(x, y), f2(x, y)) coincide with the zeros of the following system

y =
kY
lY

− 1

lY

(
b2 − 1

b1 − 1

)
(kX − lXx)

g(x) := kX −
(
lX +

k

lY
(kX(b2 − 1)− kY (b1 − 1))

)
x+ k(b1 − 1)

lX
lY

x2 = 0 (11)
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So that N has two distinct positive steady states if and only if the second equation in (11)
has two distinct positive roots which occurs when g(x∗) < 0 where x∗ is the minimum of g(x).
The inequality g(x∗) < 0 is easily shown to be equivalent to (9). It only remains to show
that the set of positive parameters satisfying the inequality (9) is non-empty. To this end, let

kY := kX

(
b2−1
b1−1

)
, k := lY

2(b1−1)lX
, and lX = kX + 1. With these choices, the left side of (9) is

(kX+1)2

2kX
which is greater than 1 for all positive kX . The nondegeneracy of the two steady states

is clear. When g(x∗) = 0, x∗ is a steady state with degeneracy 2, since g′(x∗) = 0.

Example 4.6. For the network in (8), let

H =
lY

4k(b1 − 1)lXkX

(
lX +

k

lY
(kX(b2 − 1)− kY (b1 − 1))

)2

.

Let b1 = b2 = 2, kX = kY and lY
k = 2lX , so that H =

l2
X

2kX
and using the definition in (11),

g(x) = kX − lXx+ 1
2x

2. We consider three cases:

1. lX = kX = 1 results in the network

0
1
⇄
1
X 0

1
⇄

2k
Y X + Y

k→ 2X + 2Y

so that g(x) = 1 − x + 1
2x

2, which has no positive roots and thus the network has no
positive steady states.

2. lX = kX = 2 results in the network

0
2
⇄
2
X 0

2
⇄

4k
Y X + Y

k→ 2X + 2Y

and g(x) = 2−2x+ 1
2x

2, which has the doubly degenerate root x = 2. A simple calculation
shows that (x∗, y∗) = (2, 16k) is the unique steady state of the network with degeneracy 2.

3. lX = 2, kX = 1 results in the network

0
1
⇄
2
X 0

1
⇄

4k
Y X + Y

k→ 2X + 2Y

and g(x) = 1− 2x+ 1
2x

2 which has the two positive roots 2±
√
2 resulting in the distinct

nondegenerate steady states of the network, (2−
√
2, 8k(2−

√
2)) and (2+

√
2, 8k(2+

√
2)).

Remark 4.7. The reaction networks studied in the Lemmas 4.3 and 4.5 are ‘one-reaction atoms
of multistationarity’ (see Definition 4.12). The lemmas establish that these one-reaction atoms
admit nondegenerate MSS and that the one-reaction atoms admit positive rate parameters for
which there are two positive steady states. By a theorem of Joshi and Shiu (Lemma 4.9), it
follows that any fully open network which contains one of these atoms of multistationarity as
an embedded network admits at least two positive nondegenerate mass-action steady states.
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Lemma 4.8. Let {a1, a2, . . . , as, b1, b2, . . . , bs} be a set of nonnegative integers. Consider the
following system of inequalities:

s∑

i=1

aiµi > max
1≤j≤s

µj > 0 (12)

sign(µi) = sign(bi − ai) (1 ≤ i ≤ s). (13)

This system has a solution µ∗ ∈ R
s \ {0} if and only if

∑
i:bi>ai

ai > 1.

Proof. We first assume that the inequality system has a nonzero solution denoted by µ∗. So
the set {j|µj > 0} = {j|bj > aj} is nonempty and

∑

i:bi>ai

aiµ
∗
i ≥

∑

i:bi>ai

aiµ
∗
i +

∑

i:bi<ai

aiµ
∗
i +

∑

i:bi=ai

aiµ
∗
i

=

s∑

i=1

aiµ
∗
i > max

j:1≤j≤s
µ∗
j = max

j:bj>aj
µ∗
j > 0.

where in the last line we used (12) twice. This shows that

∑

i:bi>ai

aiµ
∗
i > max

j:bj>aj
µ∗
j (14)

If
∑

i:bi>ai
ai ≤ 1, then there exists at most one ĩ such that b̃i > ãi > 0. So that

∑
i:bi>ai

aiµ
∗
i ≤

µ∗
ĩ
which contradicts (14). So we must have

∑
i:bi>ai

ai > 1.

Conversely, assume that
∑

i:bi>ai
ai > 1. For all i such that bi > ai, choose µi = 1, for all k

such that bk = ak, choose µk = 0, and for all j such that bj < aj , choose µj = −ǫ where ǫ > 0.
This choice clearly satisfies (13) and

s∑

i=1

aiµi =
∑

i:bi>ai

aiµi +
∑

i:bi<ai

aiµi

=
∑

i:bi>ai

ai − ǫ
∑

i:bi<ai

ai ≥ 2− ǫ
∑

i:bi<ai

ai > 1 = max
1≤j≤s

µj > 0

where the last inequality follows by choosing ǫ sufficiently small.

A steady state x0 of a system of ODEs, ẋ = f(x) for x ∈ R
n, (or a steady state of a network

which generates mass-action ODEs) is said to be exponentially stable if there is a neighborhood
V of x0 and a positive constant a such that |x(t)− x0| < e−at as t → ∞ for all x0 in V .

If a fully open network N is an embedded network of a fully open network G, then we can
extend the steady states of N to G using the following result.

Lemma 4.9. [Theorem 4.2 and Corollary 4.6 of Joshi and Shiu [23]] Let N be a fully open
network embedded in a fully open network G.

15



• If N admits nondegenerate MSS, then so does G. Moreover, if N admits finitely many
such steady states, then G admits at least as many.

• If N admits multiple positive exponentially stable nondegenerate steady states then so
does G. Moreover, if N admits finitely many such steady states, then G admits at least
as many.

The following lemma deals with some simple cases of one-reaction fully open networks
appearing in the statement of Theorem 4.1, which can be handled by using either Deficiency
Zero Theorem or Deficiency One Theorem [4].

Lemma 4.10. Consider the following one-reaction fully open network N :

0 ⇄ Xi (1 ≤ i ≤ s)

ya ⇄ yb

where yb → ya may have a zero reaction rate constant (in other words, the non-flow reaction is
possibly irreversible). If {ya, yb} ∩ {0,X1, . . . ,Xs} 6= ∅ then N does not admit MSS.

Proof. We will show that if {ya, yb}∩{0,X1, . . . ,Xs} 6= ∅ holds then the network has a deficiency
of either zero or one, so that either by applying Deficiency Zero or Deficiency One Theorem,
multiple mass-action steady states can be ruled out. Since we are assuming that ya → yb is a
non-flow reaction, it is not the case that one of the complexes {ya, yb} is the 0 complex and the
other is a unimolecular complex. So suppose that one of the complexes (either ya or yb but not
both) in the non-flow reaction is either the 0 complex or is unimolecular. Then the network
has only one linkage class (l = 1) and n = s+2 complexes so that the deficiency of the network
is δ = n− l − d = (s+ 2)− (1)− (s) = 1. If the reaction yb → ya has a positive rate constant,
then the network is reversible and the entire unique linkage class is a terminal strong linkage
class. Otherwise, the unique linkage class has exactly one terminal strong linkage class, either
yb or C \ya, depending on whether ya ∈ {0,X1, . . . ,Xs} or yb ∈ {0,X1, . . . ,Xs}, respectively. In
either case, the hypotheses of the Deficiency One Theorem (Theorem 2.11) are satisfied which
rules out multiple steady states for such a network.

On the other hand if both ya and yb are unimolecular, then N has one linkage class (l = 1),
and n = s + 1 complexes. So the deficiency of N is δ = n − l − d = (s + 1) − (1) − (s) = 0.
Whether the rate constant for the reaction yb → ya is zero or positive, the entire unique linkage
class is a terminal strong linkage class. So by the Deficiency Zero Theorem (Theorem 2.10), N
does not admit MSS.

Now we are ready to prove the one-reaction fully open network theorem.

Proof of Theorem 4.1. We define ya := a1X1+a2X2+ . . .+asXs and yb := b1X1+ b2X2+ . . .+
bsXs. The network under study is the following fully open network:

0 ⇄ Xi (1 ≤ i ≤ s)

ya ⇄ yb

16



where yb → ya may have a zero reaction rate constant.
Assume first that {ya, yb} ∩ {0,X1, . . . ,Xs} 6= ∅; in other words, at least one of the com-

plexes ya or yb is unimolecular or is the zero complex, which implies that
∑

i: bi>ai
ai ≤ 1 and∑

i: ai>bi
bi ≤ 1. Furthermore by Lemma 4.10, the one-reaction network does not admit MSS.

So it suffices to assume that {ya, yb} ∩ {0,X1, . . . ,Xs} = ∅. From hereon, we will assume it
to be the case that each of ya and yb is at least bimolecular. For the general one-reaction fully
open network,

a. The set of species is S := {Xi|1 ≤ i ≤ s}.

b. The set of complexes is C = {Xi|1 ≤ i ≤ s} ∪ {0} ∪ {∑s
i=1 aiXi,

∑s
i=1 biXi}. We relabel the

complexes yi := Xi for 1 ≤ i ≤ s, ys+1 := 0, ys+2 := ya and ys+3 := yb.

c. The set of reactions is eitherRirrev = {0 ⇄ Xi|1 ≤ i ≤ s}∪{ya → yb} orRrev = {0 ⇄ Xi|1 ≤
i ≤ s} ∪ {ya → yb} ∪ {yb → ya} depending on whether the non-flow reaction is irreversible
or reversible. The two linkage classes of the network partition the set of complexes into
C1 := {Xi|1 ≤ i ≤ s} ∪ {0} and C2 := {∑s

i=1 aiXi,
∑s

i=1 biXi}.

The proof will proceed by application of the Deficiency One Algorithm. In 1 through 4 in the
following, we lay the groundwork for application of the Deficiency One Algorithm by checking
the conditions of validity of the algorithm. In 5, we apply the Deficiency One Algorithm to
the one-reaction fully open network containing an irreversible non-flow reaction. In 6, we apply
the Deficiency One Algorithm to the one-reaction fully open network containing a reversible
non-flow reaction, and finally in 7, we establish the nondegeneracy of the steady states for the
multistationary fully open networks.

1. Dimension of the stoichiometric subspace. For a fully open network, the stoichio-
metric subspace has ‘full’ dimension. For s species, the dimension of the stoichiometric
subspace is d = s.

2. Deficiency of the network. Since we are assuming that neither of the two complexes in
the non-flow reaction is the 0 complex or is unimolecular, {ya, yb} ∩ {0,X1, . . . ,Xs} = ∅.
The number of complexes is n = s+3, the number of linkage classes is l = 2 and the total
deficiency is δ = n − l − d = (s + 3) − (2) − (s) = 1. On the other, the deficiency of the
two linkage classes is given by

(a) {0 ⇄ Xi|1 ≤ i ≤ s}: δ1 = n1 − 1− d1 = (s+ 1)− (1)− (s) = 0.

(b) For {ya ⇄ yb}: δ2 = n2 − 1− d2 = (2) − (1) − (1) = 0.

Such networks satisfy the hypotheses of the Deficiency One Algorithm [5] provided they
are also regular. In the following we check the regularity of the network.

3. Regularity of the network.

(a) Regularity Condition 1: The inflow reaction 0 → Xj results in the canonical basis
reaction vector Xj whose j-th component is 1 and all other components are 0. On
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the other hand, the outflow reaction Xj → 0 results in the reaction vector −Xj .
The reaction vectors for the non-flow reactions are v := (b1− a1, b2− a2, . . . , b2− as)
and (a1 − b1, a2 − b2, . . . , as − bs) = −v. We will define a set of positive numbers
{αy→y′ |y → y′ ∈ R} which satisfies

∑
R αy→y′(y

′ − y) = 0.

Case 1. In the case where the non-flow reaction is reversible, we let α0→Xj
= αXj→0 =

1 for all j and we let αya→yb = αyb→ya = 1. So,
∑

R αyi→yj(yj − yi) =∑
j (Xj −Xj) + v − v = 0, which shows that the reaction vectors are posi-

tively dependent.

Case 2. When the non-flow reaction is irreversible, we let αya→yb = 1, and for all j
we let α0→Xj

= aj + 1 > 0 and αXj→0 = bj + 1 > 0.
∑

R αyi→yj (yj − yi) =∑
j ((aj + 1)Xj − (bj + 1)Xj

+bjXj − ajXj) = 0.

(b) Regularity Condition 2: The entire linkage class {0,X1, . . . ,Xs} is a terminal strong
linkage class. Either the linkage class {ya, yb} is a terminal strong linkage class or
contains the terminal strong linkage class {yb} depending on whether the non-flow
reaction is reversible or not.

(c) Regularity Condition 3: If the inflow and outflow reactions of some species j are
removed or if the non-flow reaction were to be removed, the linkage class containing
that reaction will be disconnected into two linkage classes.

This shows that the network under consideration satisfies the hypotheses of the Deficiency
One Algorithm.

4. Sign compatibility with the stoichiometric subspace. Since the network under
consideration is a fully open network, the stoichiometric subspace has “full” dimension.
In other words, the stoichiometric subspace S = R

s. Every vector µ∗ = (µ1, . . . , µs)
is contained in S and therefore is trivially sign compatible with S. Thus it suffices to
determine an inequality system for a partition obtained in Step 3 of the algorithm and
then to determine if the inequality system has any solution. If there is such a solution for
any partition, then the network admits multiple steady states.

5. Application of the Deficiency One Algorithm to a network containing at least

one irreversible reaction. Suppose first that the non-flow reaction is not reversible.
In other words (yb → ya) /∈ R. The set of reaction vectors for the network is Rirrev =
{Xi, −Xi|i ∈ S} ∪ {∑s

i=1(bi − ai) Xi}, so that r = |R| = 2s + 1.

Step 1. Let

gi := ai − bi, (1 ≤ i ≤ s)

gs+1 :=
s∑

i=1

(bi − ai), gs+2 := −1, gs+3 := 1. (15)

We now check that the gi satisfy the three required conditions.
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(a)
n∑

i=1

giyi =
s∑

i=1

(ai−bi)Xi+

(
s∑

i=1

(bi − ai)

)
0+(−1)

s∑

i=1

aiXi+(+1)
s∑

i=1

biXi =

0.

(b) It is clear that the gi sum to zero for the two linkage classes C1 = {Xi|1 ≤
i ≤ s} ∪ {0} and C2 = {∑s

i=1 aiXi,
∑s

i=1 biXi}.
(c) C1 is a terminal strong linkage class while {∑s

i=1 biXi} is a terminal strong
linkage class within C2. The corresponding gi sum to 0 and 1, respectively.

Step 2. C2 contains only one complex in its terminal strong linkage class, and thus there
are no pairs of complexes to consider for C2. In C1, all adjacent pairs of complexes
are of the type {0,Xi} for some i. For a fixed k, let yp := {Xk} and yq := {0}.
So the sum over gi in yp is gk = ak − bk and yp · µ− yq · µ = Xk · µ− 0 = µk. So
that for all k we get the following system of inequalities:

sign(µi) = sign(ai − bi) (1 ≤ i ≤ s) (16)

Step 3. The set of reactant complexes is C \ {yb}.
(a) ya is the only complex that does not belong to a terminal strong linkage

class and so ya ∈ M .

(b) C1 is a terminal strong linkage class and so all the complexes in C1 must be
placed in the same subset. The three choices of where to place the complexes
in C1 lead to the following three partitions of the reactant complexes.

(i) U = ∅, M = {ya} ∪ {0} ∪ {Xi|1 ≤ i ≤ s}, L = ∅.
(ii) U = ∅, M = {ya}, L = {0} ∪ {Xi|1 ≤ i ≤ s}.
(iii) U = {0} ∪ {Xi|1 ≤ i ≤ s}, M = {ya}, L = ∅.

It is straightforward to show that if the inequality system resulting after step 7
from partition (ii) has a solution µ∗, then the inequality system resulting after
step 7 from partition (iii) has a solution which is equal to −µ∗. This is true
whenever two partitions are related by switching the contents of the sets U and
L [5]. Thus, since partition (iii) does not provide any new information, we will
restrict attention to partitions (i) and (ii).

Step 4. For partition (i), we get µi = 0 (1 ≤ i ≤ s). Since we are looking for a nonzero
solution µ∗ = (µ∗

1, . . . , µ
∗
s), we may discard partition (i) and it suffices to consider

partition (ii) only. Beginning here and in all the following steps, we will assume
that we are considering partition (ii) even when this is not explicitly stated. For
partition (ii), there is only one complex in M and so we do not get any equations
from applying this step.

Step 5. Since there is one complex in M and s+ 1 complexes in L, we get the following
system of s+ 1 inequalities

s∑

i=1

aiµi > 0,

s∑

i=1

aiµi > µj (1 ≤ j ≤ s)
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Step 6. For each adjacent pair of complexes in L, we write the inequality from Step 2
with the inequality reversed.

sign(µi) = sign(bi − ai) (1 ≤ i ≤ s)

Step 7. We gather all the inequalities from Steps 4-6 to get the inequality system.

s∑

i=1

aiµi > 0,

s∑

i=1

aiµi > µj (1 ≤ j ≤ s),

sign(µi) = sign(bi − ai) (1 ≤ i ≤ s).

The first inequality holds only if there exists a j such that µj > 0. So the first
s + 1 inequalities are equivalent to

∑s
i=1 aiµi > max1≤j≤s µj > 0. The system

of inequalities to be solved may be written as:

s∑

i=1

aiµi > max
1≤j≤s

µj > 0

sign(µi) = sign(bi − ai), (1 ≤ i ≤ s) (17)

Step 8. By Lemma 4.8 the system of inequalities (17) has a solution if and only if∑
i:bi>ai

ai > 1.

Step 9. We have already shown in Steps 3 and 4 that we only need to consider partition
(ii) since the other two partitions (i) and (iii) do not provide any new information.

This completes the proof of the theorem for networks that contain at least one irreversible
reaction.

6. Application of the Deficiency One Algorithm to a reversible network. Now
suppose that the non-flow reaction is reversible which results in a reversible network, in
other words a network containing only reversible reactions. The set of reaction vectors
for the network is Rrev = {Xi, −Xi|i ∈ S} ∪ {∑s

i=1(bi − ai)Xi} ∪ {∑s
i=1(ai − bi)Xi}.

The three networks Rrev = {0 ⇄ Xi|1 ≤ i ≤ s} ∪ {ya → yb} ∪ {yb → ya}, Rirrev = {0 ⇄

Xi|1 ≤ i ≤ s} ∪ {ya → yb}, and R̃irrev = {0 ⇄ Xi|1 ≤ i ≤ s} ∪ {yb → ya} generate
the same stoichiometric subspace. By Lemma 4.9, if either Rirrev or R̃irrev admits MSS
then so does Rrev. This shows that if either

∑
i:bi>ai

ai > 1 or
∑

i:ai>bi
bi > 1, then Rrev

admits multiple steady states.

Assume now that
∑

i:bi>ai
ai ≤ 1 and

∑
i:ai>bi

bi ≤ 1. It only remains to show that the
network does not permit multiple steady states. Note that for reversible networks we
need to go through the steps of the algorithm twice – once for the gi chosen according to
Step 1, and then again for gi which are negative of those chosen according to Step 1.

Step 1. For 1 ≤ i ≤ s + 2, we let gi be the same as in (15). Since the complexes and
the linkage classes are the same as in the irreversible case, there is nothing to
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check in parts (a) and (b). For part (c), we note that for a reversible network
every terminal strong linkage class is a linkage class and so the gi corresponding
to complexes in all terminal strong linkage classes sum to zero.

Step 2. We obtain the same set of inequalities as in (16) for the terminal strong linkage
class C1. For the linkage class C2 = {ya, yb}, we note that 1 = gs+3 > gs+2 = −1,
so we get the following system of inequalities:

sign(µi) = sign(ai − bi) , 1 ≤ i ≤ s
s∑

i=1

(bi − ai)µi > 0

Step 3. The only constraint is that all complexes in C1 belong to the same subset and all
complexes in C2 belong to the same subset. Thus there are 9 distinct partitions.
However, Remark 4.1.G in Feinberg [5] tells us that we only need to examine
partitions for which both subsets U and L are nonempty, since the condition that
all terminal strong linkage classes contain more than one complex is satisfied.
Furthermore, as in the irreversible case, interchanging contents of the subsets U
and L result in equivalent inequality systems in the sense that if one inequality
system has a solution then so does the other. Thus we only need to consider
the following partition U = C2 = {∑s

i=1 aiXi,
∑s

i=1 biXi}, M = ∅, L = C1 =
{0} ∪ {Xi|1 ≤ i ≤ s}.

Step 4. Since M = ∅, no equations result from this step.

Step 5. Comparing complexes in U and L we get the following system

s∑

i=1

aiµi > 0,

s∑

i=1

aiµi > µj (1 ≤ j ≤ s)

s∑

i=1

biµi > 0,
s∑

i=1

biµi > µj (1 ≤ j ≤ s).

Step 6. We write the inequality from Step 2 with the inequality corresponding to the
complex in L reversed.

sign(µi) = sign(bi − ai) , 1 ≤ i ≤ s
s∑

i=1

(bi − ai)µi > 0

Step 7. We gather all the inequalities from Steps 4 to 6.

s∑

i=1

biµi >

s∑

i=1

aiµi > max
1≤j≤s

µj > 0

sign(µi) = sign(bi − ai), (1 ≤ i ≤ s) (18)

21



Step 8. By Lemma 4.8 this system of inequalities has no nonzero solutions for
∑

i:bi>ai
ai ≤

1.

As mentioned earlier, for the reversible case, we need to carry out the algorithm again
with signs of all gi reversed. This results in an interchange of the roles of ai and bi and
so it is straightforward to see that we get the following system of inequalities in Step 7.

s∑

i=1

aiµi >
s∑

i=1

biµi > max
1≤j≤s

µj > 0

sign(µi) = sign(ai − bi), (1 ≤ i ≤ s) (19)

Since by hypothesis
∑

i:ai>bi
bi ≤ 1, it follows from Lemma 4.8, that the above system of

inequalities does not have a nonzero solution. This completes the proof of the theorem
for the reversible case.

7. Nondegeneracy of the steady states for the multistationary fully open net-

works. We have shown that every multistationary one-reaction fully open network has
an embedded fully open network of the form satisfying the hypotheses of either Lemma 4.3
or of Lemma 4.5. Since the fully open networks appearing in Lemma 4.3 and Lemma 4.5
admit MSS, by Lemma 4.9, it follows that if one of the one-reaction fully open networks
admits MSS, then it admits nondegenerate MSS.

This completes the proof of the theorem.

Example 4.11 (Example 1.2 continued). Theorem 4.1 immediately helps classify the fully open
networks M1-M3 in Example 1.2 by multistationarity.

1. For network M1, in the notation of the proof of Theorem 4.1 we let ya := A + B and
yb := 2A, and we find that

∑
i:bi>ai

ai = 1 and
∑

i:ai>bi
bi = 0. So by Theorem 4.1, M1

does not admit MSS.

2. For network M2, ya := 2A + B and yb := 3A and so
∑

i:bi>ai
ai = 2 which implies that

M2 admits nondegenerate MSS.

3. For network M3, ya := A+ 2B and yb := 3A and so
∑

i:bi>ai
ai = 1 and

∑
i:ai>bi

bi = 0,
thus M3 does not admit MSS.

We recall the following definition of CFSTR atom of multistationarity of Joshi and Shiu
[23].

Definition 4.12. 1. A fully open network is a CFSTR atom of multistationarity if it admits
nondegenerate MSS and it is minimal with respect to the embedded network relation among
all such fully open networks.

2. A one-reaction atom of multistationarity is a CFSTR atom of multistationarity containing
one non-flow (irreversible or reversible) reaction.
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3. A fully open network G is said to possess a CFSTR atom of multistationarity if there
exists an embedded network N of G that is a CFSTR atom of multistationarity.

As a corollary of Theorem 4.1, we get a complete classification of all one-reaction atoms of
multistationarity. We state this result as a theorem.

Theorem 4.13. 1. A one-reaction fully open network is a CFSTR atom of multistationarity
if and only if it consists of one irreversible non-flow reaction and that non-flow reaction
has one of the following two forms:

a1X → a2X , or X + Y → b1X + b2Y , (20)

where a2 > a1 > 1, or, respectively, b1 > 1 and b2 > 1.

2. A one-reaction fully open network possesses a CFSTR atom of multistationarity as an
embedded network if and only if it admits nondegenerate MSS.

Proof. Evidently, the one-reaction fully open networks in (20) admit nondegenerate MSS by
Lemmas 4.3 and 4.5. Furthermore, it is clear that both types of fully open networks are
minimal in the class of multistationary fully open networks with respect to the embedded
network relation.

On the other hand, assume that N is a one-reaction fully open network with multiple steady
states. Then by Theorem 4.1, N has a subnetwork containing a reaction of the following form:

c1X1 + c2X2 + · · ·+ csXs → d1X1 + d2X2 + · · ·+ dsXs

with
∑

i:di>ci
ci > 1. If there exists a j such that dj > cj > 1, then we let X = Xj , a1 = cj ,

and a2 = dj . Otherwise, there exists a pair of indices (i, j) such that ci = cj = 1, di > 1 and
dj > 1. In that case, we let (X,Y ) = (Xi,Xj), b1 = di, and b2 = dj.

Finally, the second part of the theorem follows from Lemma 4.9. This completes the proof.

The one-reaction atoms of multistationarity are useful beyond the one-reaction setting. If
a one-reaction atom of multistationarity is an embedded network of a fully open network N
with possibly more than one non-flow reaction, then the ‘embedding theorem’ of Joshi and
Shiu (Lemma 4.9), may be used to infer that N has nondegenerate MSS. We state as a theorem
the following important corollary of Theorem 4.1, whose scope of application is beyond the
one-reaction setting.

Theorem 4.14. A fully open network (which may contain more than one non-flow reaction)
admits MSS if it contains as an embedded network a reaction of one of the following forms:

1. a1X → a2X with a2 > a1 > 1.

2. X + Y → b1X + b2Y with b1 > 1 and b2 > 1.
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Recall from [23] that bimolecular networks are such that each complex in the network has
at most two molecules. In other words, a complex in a bimolecular network has one of the
following forms: 0, A, 2A or A+B. Theorem 4.1 establishes that there are no bimolecular one-
reaction fully open networks with multiple steady states. This in turn implies that the smallest
(by number of reactions) bimolecular fully open networks with multiple steady states should
contain at least two non-flow reactions (where one reaction is not merely the reverse of the other
reaction). In fact, there do exist bimolecular two-reaction CFSTR atoms of multistationarity
and this set has been fully catalogued in [23].

Example 4.15 (Example 1.1 continued). We can now answer the question posed in Example
1.1.

1. For network N1 the fully open network G1 containing the non-flow reaction 2E → 3E
is an embedded network. Since G1 is a one-reaction atom of multistationarity, it follows
that N1 is multistationary.

2. For the fully open network N3, first remove the reaction A+E → 2E, and then remove the
species C and D. This gives the fully open network G3 containing the non-flow reactions:
A → A + B and 2B → A. G3 is one of the known two-reaction bimolecular atoms of
multistationarity [23] and therefore N3 is multistationary.

3. A straightforward calculation shows that N2 possesses no known atoms of multistation-
arity. In fact, plugging the fully open network N2 into the Chemical Reaction Network
Toolbox [20] reveals that N2 does not admit multiple positive steady states.

We end by posing the question of identifying and characterizing ‘larger’ CFSTR atoms of
multistationarity, i.e. the ones that contain more than one non-flow reaction. Since tests that
involve checking whether a certain large atom of multistationarity is embedded in a network
may be computationally difficult, characterization of the CFSTR atoms of multistationarity in
terms of general principles may be particularly helpful.
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