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Abstract

The weighted Moore-Penrose inverse of a matrix can be used to define a partial order on

the set of m × n complex matrices and to introduce the concept of weighted-EP matrices.

In this paper we study the weighted star partial order on the set of weighted-EP matrices.

In addition, some properties that relate the eigenprojection at zero with the weighted star

partial order are obtained.
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1 Introduction and Background

Partial orders on matrices have been considered by several authors and they are defined by using

different generalized inverses. Some classic references about matrices, generalized inverses and

partial orders on matrices can be found, for instance, in [4, 5, 13, 14, 16, 20]. Applications of

partial orders in areas such as statistics, generalized inverses, electrical networks, etc. can be

found in [2, 3, 14, 15, 17].

Let Cm×n denote the space of complex m × n matrices; in particular, In denotes the n × n

identity matrix. The symbols A∗, A−1, R(A) and N (A) stand for the conjugate transpose, the
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inverse (m = n), the range and the null space of a matrix A ∈ Cm×n, respectively. The symbol

A ⊕ B denotes the direct sum of two square matrices A and B.

The index of a matrix A ∈ Cn×n, denoted by ind(A), is the smallest nonnegative integer k

such that R(Ak) = R(Ak+1). The index of a nonsingular matrix A is 0. For a given integer

k ≥ 0, let Cn
k denote the set of all matrices A ∈ Cn×n of index k. The symbol A# stands for

the group inverse of A, which exists if and only if A has index at most 1. The group inverse

of A ∈ Cn×n is the unique matrix A# ∈ Cn×n that satisfies AA#A = A, A#AA# = A# and

AA# = A#A. More generally, for every matrix A ∈ Cn
k , there exists a unique matrix AD ∈ Cn×n,

called the Drazin inverse of A, such that ADAAD = AD, AAD = ADA and Ak+1AD = Ak. If

k ≤ 1 then AD = A#.

In [6, 7, 8, 9], the authors worked with the concept of eigenprojection at zero defined as

Aπ = I − AAD. Specifically, for a matrix A ∈ Cn×n of index at most 1, its eigenprojection at

zero becomes Aπ = I − AA#, which is the projector onto N (A) along R(A).

For every matrix A ∈ Cm×n, there is a unique matrix X ∈ Cn×m, called the Moore-Penrose

inverse of A and denoted by A†, which satisfies the four conditions: AXA = A, XAX = X,

(AX)∗ = AX, (XA)∗ = XA.

Let A, B ∈ Cm×n. It is said that A is below B under the star partial order [10, 1] if

A∗A = A∗B and AA∗ = BA∗ (or equivalently if A†A = A†B and AA† = BA†). It is denoted by

A ≤∗ B.

A square matrix A is called EP if the projectors AA† and A†A are equal (or equivalently

R(A∗) = R(A)). A characterization for a square matrix A to be EP is A† = A#. Several

representations were given for these matrices [5]. Moreover, Tian et al. summarize thirty five

characterizations of EP matrices in [18].

Throughout this paper, M ∈ Cm×m and N ∈ Cn×n will denote two Hermitian positive

definite matrices.

For every matrix A ∈ Cm×n, we recall that there is a unique matrix X ∈ Cn×m, called the

weighted Moore-Penrose inverse of A with respect to matrices M and N and denoted by A†(M,N) ,

which satisfies the four conditions: AXA = A, XAX = X, (MAX)∗ = MAX, (NXA)∗ =

NXA.

The following properties on the weighted Moore-Penrose inverse will often be used [4, 5, 18,

20, 21].

Let M1/2 and N1/2 denote the square roots of M and N , respectively. Then

A†(M,N) = N−1/2
(

M1/2AN−1/2
)†

M1/2. (1)
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The M -weighted inner product in Cm is defined by 〈x, y〉M = y∗Mx, for all x, y ∈ Cm. If S is

a subspace of Cm, then S⊥M denotes its orthogonal complementary subspace with respect to the

M -weighted inner product. When M = Im, we write ⊥ instead of ⊥Im
. A matrix P ∈ Cm×m is

called an M -orthogonal projector if P 2 = P and (MP )∗ = MP . Analogously, similar definitions

can be considered for the matrix N .

A matrix A ∈ Cn×n is called weighted-EP with respect to matrices M and N (for short, an

EP(M,N) matrix) if AA†(M,N) = A†(M,N)A [18]. For a given A ∈ Cn×n, it is also well known [18]

that the following conditions are equivalent:

(w.1) A is EP(M,N).

(w.2) rank(A) = rank(A2) and A# = A†(M,N) .

(w.3) A is both EP(M,M) and EP(N,N).

(w.4) MA and AN−1 are both EP .

(w.5) rank(A) = rank(A2) and AA# = AA†(M,M) = AA†(N,N) .

We denote EP(M,N) = {A ∈ Cn×n : A is EP(M,N)}.

The weighted Moore-Penrose inverse of A with respect to the matrices M = Im and N = In is

the classical Moore-Penrose inverse of A. In this case, we write EP and EP instead of EP(Im,In)

and EP(Im,In), respectively.

The weighted conjugate transpose matrix of A ∈ Cm×n was defined in [20, 21] by

A~(M,N) = N−1A∗M.

Moreover, when m = n we say that A is (M, N)-Hermitian if A~(M,N) = A.

Lemma 1.1 [18, 20] Let A ∈ Cm×n and Sm, Sn be subsets of Cm and Cn, respectively. Then

(a) R(AA†(M,N)) = R(A) and N (AA†(M,N)) = N (A~(M,N)).

(b) R(A†(M,N)A) = R(A~(M,N)) and N (A†(M,N)A) = N (A).

(c) S⊥M
m = M−1/2(M1/2Sm)⊥ and S⊥N

n = N−1/2(N1/2Sn)⊥.

(d) N (A~(M,N)) = (R(A))⊥M .

(e) R(A~(M,N)) = (N (A))⊥N .
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(f) AA†(M,N) is an M -orthogonal projector onto R(A) along N (A~(M,N)).

(g) A†(M,N)A is an N -orthogonal projector onto R(A~(M,N)) along N (A).

(h) Cm = M1/2R(A) ⊕⊥ M1/2N (A~(M,N)) = M1/2R(A) ⊕⊥ M−1/2N (A∗).

(i) Cn = N1/2R(A~(M,N)) ⊕⊥ N1/2N (A) = N−1/2R(A∗) ⊕⊥ N1/2N (A).

(j) R(A†(M,N)) = R(A†(M,N)A) = R(N−1A∗) and R((A†(M,N))∗) = R((AA†(M,N))∗) = R(MA).

This paper is organized as follows. In Section 2 some properties for EP(M,N) matrices are

given. Specifically, the weighted star partial order with respect to the matrices M and N is

studied in the class of EP(M,N) matrices. We also obtain characterizations for predecessors

and successors of a given EP(M,M) matrix. Finally, in Section 3, it is proved that the class of

EP(M,M) matrices is closed under eigenprojections at zero and this eigenprojection is related to

the weighted star partial order for EP(M,M) matrices.

2 Some properties of EP(M,N) matrices

In this section, some properties of EP(M,N) matrices are given. The weighted star partial order

with respect to the matrices M and N is defined for EP(M,N) matrices and some characterizations

for predecessors and successors of a given matrix are obtained.

For every matrix A ∈ Cm×n, we write

Ψ(M,N)(A) = M1/2AN−1/2.

Lemma 2.1 Let A, B ∈ Cm×n. The following conditions are equivalent:

(a) A~(M,N)A = A~(M,N)B and AA~(M,N) = BA~(M,N) .

(b) A†(M,N)A = A†(M,N)B and AA†(M,N) = BA†(M,N) .

(c) Ψ(M,N)(A) ≤∗ Ψ(M,N)(B).

Proof. (a) ⇐⇒ (c) The equality A~(M,N)A = A~(M,N)B holds if and only if N−1A∗MA =

N−1A∗MB. Pre-multiplying by N1/2 and post-multiplying by N−1/2 the last equality is equiv-

alent to (N−1/2A∗M1/2)(M1/2AN−1/2) = (N−1/2A∗M1/2)(M1/2BN−1/2), that is

(Ψ(M,N)(A))∗Ψ(M,N)(A) = (Ψ(M,N)(A))∗Ψ(M,N)(B). (2)
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Similarly, we get the equivalence between the second equality in (a) and

Ψ(M,N)(A)(Ψ(M,N)(A))∗ = Ψ(M,N)(B)(Ψ(M,N)(A))∗. (3)

Finally, the equalities (2) and (3) can be rewritten as Ψ(M,N)(A) ≤∗ Ψ(M,N)(B).

(b) ⇐⇒ (c) From (1), it is easy to see that A†(M,N)A = A†(M,N)B holds if and only if

N−1/2(Ψ(M,N)(A))†M1/2A = N−1/2(Ψ(M,N)(A))†M1/2B. Pre-multiplying by N1/2 and post-

multiplying by N−1/2 the last equality we get

(Ψ(M,N)(A))†Ψ(M,N)(A) = (Ψ(M,N)(A))†Ψ(M,N)(B). (4)

Similarly, we get the equivalence between the second equality in (b) and

Ψ(M,N)(A)(Ψ(M,N)(A))† = Ψ(M,N)(B)(Ψ(M,N)(A))†. (5)

Finally, the equalities (4) and (5) can be rewritten as Ψ(M,N)(A) ≤∗ Ψ(M,N)(B). �

Hence, the weighted star partial order with respect to the matrices M and N , for short the

(M, N)-star partial order, is defined as follows.

Definition 2.1 For two given matrices A, B ∈ Cm×n, it is said that A is below B under the

(M, N)-star partial order and denoted by A ≤~(M,N) B, if one of the equivalent conditions in

Lemma 2.1 holds.

Since ≤∗ is a partial order on Cm×n, we can assure that the binary relation above defined is

a partial order as well.

The following result is a version for EP(M,N) matrices of the Theorem 4.3.1 in [5] and a

result by Katz [12].

Theorem 2.1 Let A ∈ Cm×n. If m = n then the following conditions are equivalent:

(a) A is EP(M,N).

(b) R(A~(M,N)) = R(A) and N (A~(M,N)) = N (A).

(c) Cn = R(A) ⊕N (A), (R(A))⊥M = N (A) and (N (A))⊥N = R(A).

(d) There exist nonsingular matrices P, Q ∈ Cn×n such that A~(M,N) = AP and A~(M,N) = QA.

(e) There exist matrices X, Y ∈ Cn×n such that A~(M,N) = AX and A~(M,N) = Y A.
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Proof. (a) ⇐⇒ (b) It is clear that N (A~(M,N)) = N (A∗M) = N ((MA)∗) and R(A~(M,N)) =

R(N−1A∗) = R((AN−1)∗). By (w.4), A is EP(M,N) if and only if MA and AN−1 are EP ,

which is equivalent to N (A~(M,N)) = N (MA) = N (A) and R(A~(M,N)) = R(AN−1) = R(A).

(a) =⇒ (c) It follows directly from Lemma 1.1 (f), (g), (d) and (e).

(c) =⇒ (a) Since Cn = R(A) ⊕N (A), there exists a unique projector P such that R(P ) =

R(A) and N (P ) = N (A). Moreover, from (R(A))⊥M = N (A) and Lemma 1.1 (d) we have

N (A~(M,N)) = N (A). Thus, Lemma 1.1 (f) assures that P = AA†(M,N) . Analogously, from

(N (A))⊥N = R(A) and Lemma 1.1 (e) we get R(A~(M,N)) = R(A). Hence, by Lemma 1.1 (g),

P = A†(M,N)A.

(b) ⇐⇒ (d) It follows from basic results on equivalent matrices [13].

(a) =⇒ (e) The equality A = AN−1(NA†(M,N)A) implies A∗ = (NA†(M,N)A)∗N−1A∗ =

NA†(M,N)AN−1A∗. Then A~(M,N) = N−1A∗M = A†(M,N)AN−1A∗M = A†(M,N)AA~(M,N) . By

(a) we get A~(M,N) = AX taking X = A†(M,N)A~(M,N) . Similarly, we can prove that A~(M,N) =

A~(M,N)AA†(M,N) . Again, by (a) we have A~(M,N) = Y A taking Y = A~(M,N)A†(M,N) .

(e) =⇒ (b) Suppose that A~(M,N) = AX and A~(M,N) = Y A for some X, Y ∈ Cn×n.

Then R(N−1A∗) = R(A~(M,N)) = R(AX) ⊆ R(A). Since rank(N−1A∗) = rank(A), we get

rank(A~(M,N)) = rank(A). So, R(A~(M,N)) = R(A). Similarly, we have N (A~(M,N)) = N (A). �

Notice that, using Lemma 1.1 (h) and (i), the condition (c) of Theorem 2.1 can be rewritten

as

Cn = M1/2R(A) ⊕⊥ M1/2N (A) = N1/2R(A) ⊕⊥ N1/2N (A).

Lemma 2.2 If m = n then EP (M,N) = EP(M,M) ∩ EP(N,N).

Proof. The equality follows from the equivalences between (w.1) and (w.3). �

Remark 2.1 Notice that from (w.2) and (w.3) we have that the statement A ∈ EP (M,N) implies

A# = A†(M,N) = A†(M,M) = A†(N,N) by the uniqueness of the group inverse. Conversely, it is

immediate that A# = A†(M,M) = A†(N,N) implies (w.5). This leads to the following equivalent

condition for a matrix A to be EP(M,N):

(w.6) rank(A) = rank(A2) and A# = A†(M,M) = A†(N,N) .

Notice that MA and AN−1 are not EP simultaneously in general, unless A ∈ EP (M,N). For
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example, if we consider the matrices

A =

[

1 1

0 0

]

, M =

[

1 1

1 3

]

and N =

[

1 0

0 2

]

, (6)

it is easy to see that MA is EP but AN−1 is not EP .

From now on, we will consider M = N ∈ Cn×n a Hermitian positive definite matrix. More-

over, a, b stand for the rank of the matrices A, B ∈ Cn×n, respectively.

Remark 2.2 Let A ∈ Cn×n. The following statements hold:

(i) (A†(M,M))∗ = M1/2
(

M−1/2A∗M1/2
)†

M−1/2.

(ii) (A†(M,M))~(M,M) =
(

A~(M,M)
)†(M,M) .

(iii) The conditions MA is EP and AM−1 is EP are equivalent, i.e., the statement (w.4)

becomes MA is EP when M = N .

(iv) A is an idempotent (M, M)-Hermitian matrix if and only if A is an M -orthogonal projector.

Indeed, items (i) and (ii) follow from (1). In order to prove (iii), suppose that MA is EP .

Then R(A∗) = R(A∗M) = R((MA)∗) = R(MA) = MR(A). Hence, R(AM−1) = R(A) =

M−1R(A∗) = R(M−1A∗) = R((AM−1)∗), that is AM−1 is EP . The converse is similar. Item

(iv) follows from definitions.

The above Remark (iii), Remark 2.1 and Theorem 3.5 in [18] allow us to present some

characterizations for weighted-EP matrices when M = N .

Proposition 2.1 Let A ∈ Cn×n. The following conditions are equivalent:

(a) A is EP(M,M).

(b) rank(A) = rank(A2) and A# = A†(M,M) .

(c) MA is EP .

(d) AM−1 is EP .

(e) R(MA) = R(A∗).

(f) R(M−1A∗) = R(A).

(g) R(A†(M,M)) = R(A).
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(h) R((A†(M,M))∗) = R(A∗).

(i) N ((MA)∗) = N (A).

(j) N (AM−1) = N (A∗).

(k) Cn = R(M−1A∗) ⊕⊥ N (A∗).

(l) Cn = R(A∗) ⊕⊥ N (A∗M).

(m) Cn = R(MA) ⊕⊥ N (A).

(n) Cn = R(A) ⊕⊥ N (AM−1).

(o) r(A) = r(A2) and MAA# is Hermitian.

Proof.

(c) ⇐⇒ (e) MA is EP if and only if R(MA) = R((MA)∗) = R(A∗M) = R(A∗).

(c) ⇐⇒ (d) and (a) ⇐⇒ (c) follow from (w.1), (w.4) and Remark 2.2 (iii).

(e) ⇐⇒ (f) We have seen that R(MA) = R(A∗) is equivalent to MA is EP (see (c) ⇐⇒ (e)).

By using the equivalence (c) ⇐⇒ (d), it remains to prove the equivalence between (f) and the

condition that AM−1 is EP . Indeed, AM−1 is EP if and only if R(M−1A∗) = R((AM−1)∗) =

R(AM−1) = R(A).

(f) ⇐⇒ (g) and (e) ⇐⇒ (h) follow from Lemma 1.1 (j).

(c) ⇐⇒ (i) It follows from N (A) = N (MA).

(e) =⇒ (l) The decomposition Cn = R(MA) ⊕⊥ N ((MA)∗) is always true. Now, the

implication is direct.

(d) =⇒ (k) It is similar to (e) =⇒ (l) by using the decomposition Cn = R(AM−1) ⊕⊥

N ((AM−1)∗).

(k) =⇒ (d) From Cn = R(M−1A∗) ⊕⊥ N (A∗) it is easy to see that Cn = R((AM−1)∗) ⊕⊥

N ((AM−1)∗), that is, (AM−1)∗ is EP . Then, AM−1 is EP .

(l) =⇒ (c) It is similar to (k) =⇒ (d) by using that the decomposition Cn = R(A∗) ⊕⊥

N (A∗M) implies Cn = R((MA)∗) ⊕⊥ N ((MA)∗).

(i) =⇒ (m) It follows from the identity Cn = R(MA) ⊕⊥ N ((MA)∗).

(m) =⇒ (c) Since Cn = R(MA) ⊕⊥ N (A) = R(MA) ⊕⊥ N (MA), we get that MA is EP .

(d) ⇐⇒ (n) From Cn = R(AM−1) ⊕⊥ N ((AM−1)∗) and (d) we have Cn = R(A) ⊕⊥

N (AM−1), which is (n). The converse is trivial.

8



(d) ⇐⇒ (j) Since N (A∗) = N (M−1A∗) = N ((AM−1)∗), it is clear that AM−1 is EP if and

only if N (A∗) = N (AM−1).

(b) =⇒ (o) Since A# = A†(M,M) , we get MAA# = MAA†(M,M) = (MAA†(M,M))∗ =

(MAA#)∗.

(o) =⇒ (b) By hypothesis, AA#A = A, A#AA# = A#, (MAA#)∗ = (MAA#) and

(MA#A)∗ = (MA#A) hold. The uniqueness of the weighted Moore-Penrose inverse assures

that A# = A†(M,M) .

(b)⇐⇒ (a) It is immediate from (w.6). �

The characterizations presented in Theorem 2.1 can be simplified when M = N as follows.

Moreover, a representation for an EP(M,M) matrix is provided.

Theorem 2.2 Let A ∈ Cn×n. The following conditions are equivalent:

(a) A ∈ EP(M,M).

(b) Ψ(M,M)(A) ∈ EP.

(c) There exist a unitary matrix UA ∈ Cn×n and a nonsingular matrix CA ∈ Ca×a such that

A = M−1/2UA(CA ⊕ O)U∗
AM1/2. (7)

(d) R(A~(M,M)) = R(A).

(e) N (A~(M,M)) = N (A).

(f) Cn = R(A) ⊕⊥M N (A).

(g) There exists a nonsingular matrix P ∈ Cn×n such that A~(M,M) = AP .

(h) There exists a nonsingular matrix Q ∈ Cn×n such that A~(M,M) = QA.

(i) There exists a matrix X ∈ Cn×n such that A~(M,M) = AX.

(j) There exists a matrix Y ∈ Cn×n such that A~(M,M) = Y A.

If either (and hence all) of these statements hold then

A†(M,M) = M−1/2UA(C−1
A ⊕ O)U∗

AM1/2 (8)

and

A~(M,M) = M−1/2UA(C∗
A ⊕ O)U∗

AM1/2.
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Proof. (a) ⇐⇒ (b) From (1), we get (Ψ(M,M)(A))† = (Ψ(M,M)(A
†(M,M))). Then

Ψ(M,M)(A)(Ψ(M,M)(A))† = M1/2AA†(M,M)M−1/2

and

(Ψ(M,M)(A))†Ψ(M,M)(A) = M1/2A†(M,M)AM−1/2.

Now, the conclusion is evident.

(b) ⇐⇒ (c) It follows as a direct application of Theorem 4.3.1 in [5] and the definition of

Ψ(M,M).

The equivalences (a) ⇐⇒ (d) and (a) ⇐⇒ (e) follow from Proposition 2.1, items (f) and (i),

respectively.

(e) =⇒ (f) By Lemma 1.1 (f), we get Cn = R(A)⊕N (A~(M,M)) and R(A)⊥M = N (A~(M,M)),

then Cn = R(A) ⊕⊥M N (A) follows directly from (e).

(f) =⇒ (e) Since R(A)⊥M = N (A), from Lemma 1.1 (d) we have R(A)⊥M = N (A~(M,M)).

Then N (A~(M,M)) = N (A).

The implications (a) =⇒ (i), (a) =⇒ (j), (d) ⇐⇒ (g), (e) ⇐⇒ (h), (i) =⇒ (d) and (j) =⇒

(e) follow directly from Theorem 2.1. �

Since the function Ψ(M,M) : Cn×n → Cn×n defined by Ψ(M,M)(A) = M1/2AM−1/2 is bijec-

tive, Theorem 2.2 assures that

Ψ(M,M)

(

EP(M,M)

)

= EP. (9)

Next, we will characterize predecessors and successors of an EP(M,M) matrix under the

(M, M)-star partial order.

Notice that, from Theorem 2.2, if B ∈ Cn×n is EP(M,M) then there exist a unitary matrix

UB ∈ Cn×n and a nonsingular matrix CB ∈ Cb×b such that

B = M−1/2UB(CB ⊕ O)U∗
BM1/2. (10)

Theorem 2.3 Let B ∈ Cn×n be a non-zero EP(M,M) matrix written as in (10). The following

conditions are equivalent:

(a) There exists A ∈ Cn×n such that A ≤~(M,M) B.

(b) There exists X ∈ Cb×b such that A = M−1/2UB(X ⊕ O)U∗
BM1/2 with X ≤∗ CB.
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Proof. Assume that A ≤~(M,M) B with B ∈ EP(M,M). By Lemma 2.1, Ψ(M,M)(A) ≤∗

Ψ(M,M)(B). Moreover, Theorem 2.2 assures that Ψ(M,M)(B) is EP . By Theorem 3.1 in [11],

there exists X ∈ Cb×b such that A = M−1/2UB(X ⊕ O)U∗
AM1/2 and X ≤∗ CB. Then (a) =⇒

(b) converse follows by some algebraic manipulations. �

Theorem 2.4 Let A ∈ Cn×n be a non-zero EP(M,M) matrix written as in (7). The following

conditions are equivalent:

(a) There exists B ∈ Cn×n such that A ≤~(M,M) B.

(b) There exists T ∈ C(n−a)×(n−a) such that B = M−1/2UA(CA ⊕ T )U∗
AM1/2.

Proof. Assume A ≤~(M,M) B with A ∈ EP(M,M). By Lemma 2.1, Ψ(M,M)(A) ≤∗ Ψ(M,M)(B).

Moreover, Theorem 2.2 assures that Ψ(M,M)(A) is EP . By Theorem 3.3 in [11], there exists

T ∈ C(n−a)×(n−a) such that B = M−1/2UA(CA ⊕ T )U∗
AM1/2. Then (a) =⇒ (b) is shown. The

converse can be obtained in a similar way. �

Theorem 3.5 in [11] and the last two theorems provide the following corollary.

Corollary 2.1 Let A, B ∈ Cn×n be EP(M,M) matrices, A 6= O. The following conditions are

equivalent:

(a) A ≤~(M,M) B.

(b) There exist V ∈ Cn×n, C ∈ Ca×a and T ∈ C(b−a)×(b−a) such that A = M−1/2V (C ⊕ O ⊕

O)V ∗M1/2 and B = M−1/2V (C ⊕ T ⊕ O)V ∗M1/2, where V is unitary, C is nonsingular

and T is nonsingular or T = O.

3 On the eigenprojection at zero

It is well known that EP ⊆ Cn
0 ∪Cn

1 and moreover ind(A) = ind(Ψ(M,M)(A)) for every A ∈ Cn×n.

From (9) it is clear that EP (M,M) ⊆ Cn
0 ∪ Cn

1 . If A ∈ EP(M,M) is written as in (7) then by

Proposition 2.1 (b), Aπ = I − AA†(M,M) and, by (8), we have

Aπ = M−1/2UA(O ⊕ In−a)U
∗
AM1/2. (11)

Lemma 3.1 Let A ∈ Cn
0 ∪ Cn

1 . Then
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(a) Ψ(M,M)(A
#) = (Ψ(M,M)(A))# and Ψ−1

(M,M)(A
#) = (Ψ−1

(M,M)(A))#.

(b) Ψ(M,M)(A
π) = (Ψ(M,M)(A))π and Ψ−1

(M,M)(A
π) = (Ψ−1

(M,M)(A))π.

(c) (Ψ(M,M)(A))∗ = Ψ−1
(M,M)(A

∗) and (Ψ−1
(M,M)(A))∗ = Ψ(M,M)(A

∗).

(d) A is (M, M)-Hermitian if and only if Ψ(M,M)(A) is a Hermitian matrix.

(e) A is an M -orthogonal projector if and only if Ψ(M,M)(A) is an orthogonal projector.

Proof. (a) It follows from definition of group inverse.

(b) From (a) we get Ψ(M,M)(A)(Ψ(M,M)(A))# = Ψ(M,M)(AA#). Then (Ψ(M,M)(A))π =

In − Ψ(M,M)(A)(Ψ(M,M)(A))# = M1/2AπM−1/2 = Ψ(M,M)(A
π).

(c) It follows by definition.

(d) By definition, A is (M, M)-Hermitian when M−1A∗M = A. This equality is equivalent

to Ψ(M,M)(A) = M−1/2A∗M1/2 = (Ψ(M,M)(A))∗, that is Ψ(M,M)(A) is Hermitian.

(e) It is a consequence of (d) and Remark 2.2 (iv). �

However, in general Ψ(M,M)(A
†) 6= (Ψ(M,M)(A))†. Indeed, the matrices A and M given in

(6) provide a counterexample.

Lemma 3.2 Let A ∈ Cn
0 ∪ Cn

1 .

(a) If A is (M, M)-Hermitian then A ∈ EP (M,M).

(b) If A ∈ EP(M,M) then Aπ is (M, M)-Hermitian. Hence, Aπ is an M -orthogonal projector

onto M−1N (A∗) along R(A).

(c) If Aπ ∈ EP(M,M) then A ∈ EP(M,M).

Proof.

(a) If M−1A∗M = A then (MA)∗ = MA, that is MA is EP . Hence, A ∈ EP (M,M) by

Proposition 2.1.

(b) Since A ∈ EP(M,M), Theorem 2.2 implies that Ψ(M,M)(A) is EP . Thus, Ψ(M,M)(A
π) =

(Ψ(M,M)(A))π is Hermitian by Lemma 3.1 and Lemma 4.3 in [11]. Therefore, applying Lemma

3.1 (d) we get that Aπ is an (M, M)-Hermitian matrix. Furthermore, it is well known that

Aπ projects onto N (A) along R(A). From Proposition 2.1 (i) we have N (A) = N ((MA)∗) =

N (A∗M) = M−1N (A∗). Moreover, N (A∗M) = N (A~(M,M)). Thus the M -orthogonality of Aπ

follows from Lemma 1.1 (d).
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(c) Using Theorem 2.2 and Lemma 3.1 (a) we get that (Ψ(M,M)(A))π is EP . From Lemma

4.3 in [11], Ψ(M,M)(A) is EP . Hence, A is EP(M,M) by Theorem 2.2. �

We define the function f : Cn
0 ∪ Cn

1 −→Cn
0 ∪ Cn

1 by f(A) = Aπ for each A ∈ Cn
0 ∪ Cn

1 .

Lemma 3.3 Let A ∈ Cn
0 ∪Cn

1 be an EP(M,M) matrix. Then f(f(A)) = A if and only if A is an

M -orthogonal projector.

Proof. By Theorem 2.2, Ψ(M,M)(A) is EP . Applying Lemma 3.1 (b), it is clear that f(f(A)) =

A is equivalent to f(f(Ψ(M,M)(A))) = Ψ(M,M)(A). By Remark 4.1 in [11], this last equality

holds if and only if Ψ(M,M)(A) is an orthogonal projector. Now, the proof follows applying

Lemma 3.1 (e). �

Let us consider the sets

EEP(M,M) = {A ∈ Cn
0 ∪ Cn

1 : f(A) ∈ EP(M,M)}

and

EEP0
(M,M) = {A ∈ Cn

0 ∪ Cn
1 : f(A) ∈ EP(M,M) and f(A) 6= O}.

The next result provides a characterization for EP(M,M) matrices.

Theorem 3.1 The following statements hold.

(a) EEP(M,M) = EP(M,M).

(b) EEP0
(M,M) = EP(M,M) ∩ Cn

1 .

Proof.

(a) We have shown that A ∈ EP(M,M) if and only if Ψ(M,M)(A) ∈ Cn
0∪Cn

1 and f(Ψ(M,M)(A)) =

Ψ(M,M)(f(A)) ∈ EP. These last conditions are equivalent to A ∈ Cn
0 ∪ Cn

1 and f(A) ∈

EP(M,M), that is A ∈ EEP(M,M).

(b) Let A ∈ EP(M,M) be a matrix having ind(A) = 1. From Lemma 3.2 (b) and (a), f(A) ∈

EP(M,M) and A is a singular matrix, that is f(A) 6= O. Thus A ∈ EEP0
(M,M). Therefore

EP(M,M) ∩ Cn
1 ⊆ EEP0

(M,M). In order to see the other inclusion, let A be such that

f(A) ∈ EP(M,M) and f(A) 6= O. Then ind(A) = 1 and A is EP(M,M) by Lemma 3.2 (c).

Hence, EEP0
(M,M) ⊆ EP(M,M) ∩ Cn

1 .
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Remark 3.1 Let M -OPn be the set of all M -orthogonal projectors of size n×n. From Lemma

3.3, Lemma 3.2, Proposition 2.1 and Theorem 3.1 we obtain:

(a) f(EEP0
(M,M) − {O}) = M -OPn ∩ (Cn

1 − {O}) = (M -OPn ∩ EEP0
(M,M)) − {O}.

(b) f(EEP0
(M,M)) = (M -OPn ∩ (Cn

1 − {O})) ∪ {In} = ((M -OPn ∩ EEP0
(M,M)) − {O}) ∪ {In}.

From Lemma 3.2 (a) and (b), it is clear that f(EP(M,M)) ⊆ EP(M,M), but in general the

equality is not true as the matrices M = diag(1, 3) and A = diag(2, 0) show. In fact, the

matrix MA = diag(2, 0) is EP, therefore A is EP(M,M). Let us suppose that there exists

B ∈ C2×2 ∩ EP(M,M) such that A = f(B). Denoting by σ(A) the spectrum of A, we have

that 2 ∈ σ(A) = σ(f(B)), which is a contradiction because f(B) is a projector. Therefore,

EP(M,M) 6⊆ f(EP(M,M)).

Let the function g : EP −→ EP be the restriction of the function f to the set EP and

h : EP(M,M)−→EP(M,M) be the restriction of the function f to the set EP(M,M). It is clear that

g is well defined and, by Lemma 3.2 (a) and (b), h also is. Notice that Ψ(M,M) ◦ h = g ◦Ψ(M,M)

on EP(M,M). It is evident that h is not surjective. Moreover, h is not injective as the matrices

M = diag(1, 3), A = diag(2, 0), B = diag(3, 0) (12)

show.

The next lemma characterizes the interval

[O, h(A)] = {B ∈ Cn
0 ∪ Cn

1 : O ≤~(M,M) B ≤~(M,M) h(A)}.

for some given matrix A ∈ EP(M,M).

Lemma 3.4 Let A ∈ Cn×n be an EP(M,M) matrix written as in (7). Then

[O, h(A)] =
{

M−1/2UA(O ⊕ T )U∗
AM1/2 : T ∈ OPn−a

}

⊆ M -OPn.

Proof. Let A = M−1/2UA(CA ⊕ O)U∗
AM1/2 with UA ∈ Cn×n unitary and CA ∈ Ca×a nonsin-

gular. Thus, Ψ(M,M)(A) = UA(CA ⊕ O)U∗
A.

Let B ∈ [O, h(A)], that is O ≤~(M,M) B ≤~(M,M) h(A). By Lemma 2.1, O = Ψ(M,M)(O) ≤∗

Ψ(M,M)(B) ≤∗ Ψ(M,M)(h(A)) holds. Since Ψ(M,M)(A) is EP , from Lemma 3.1 (b) we obtain
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O ≤∗ Ψ(M,M)(B) ≤∗ g(Ψ(M,M)(A)). Applying Lemma 4.5 in [11] we get that Ψ(M,M)(B) is

an orthogonal proyector of size n × n given by Ψ(M,M)(B) = UA(O ⊕ T )U∗
A, with T ∈ OPn−a.

From Lemma 3.1 (e), B = M−1/2UA(O⊕T )U∗
AM1/2 is a M -orthogonal projector of size n×n. �

Theorem 3.2 The function h defined above is monotone decreasing.

Proof. Let A, B ∈ Cn×n be EP(M,M) matrices such that A ≤~(M,M) B. Then, Ψ(M,M)(A) ≤∗

Ψ(M,M)(B) by Lemma 2.1. From Theorem 4.2 in [11], g(Ψ(M,M)(B)) ≤∗ g(Ψ(M,M)(A)), which

is equivalent to Ψ(M,M)(h(B))) ≤∗ Ψ(M,M)(h(A))) by Lemma 3.1 (b). Finally, by Lemma 2.1

we get h(B) ≤~(M,M) h(A). �

However, considering the matrices given in (12) we have that A and B are EP(M,M) such

that h(A) ≤~(M,M) h(B) but B �~(M,M) A. In the following result we state the converse of

Theorem 3.2 for a smaller class of matrices.

Theorem 3.3 Let A, B ∈ M -OPn. If h(B) ≤~(M,M) h(A) then A ≤~(M,M) B.

Proof. Since A and B are M -orthogonal projectors, Ψ(M,M)(A) and Ψ(M,M)(B) are orthogonal

projectors. If h(B) ≤~(M,M) h(A) then Ψ(M,M)(h(B)) ≤∗ Ψ(M,M)(h(A)), which is equivalent

to g(Ψ(M,M)(B)) ≤∗ g(Ψ(M,M)(A)) by Lemma 3.1 (b). By Theorem 4.3 in [11] we obtain

Ψ(M,M)(A) ≤∗ Ψ(M,M)(B), that is A ≤~(M,M) B. �

Theorem 3.4 Let A ∈ Cn×n be an EP(M,M) matrix and B ∈ Cn
0 ∪ Cn

1 such that A ≤~(M,M) B.

Then f(B) ≤~(M,M) f(A) if and only if f(B) ∈ M -OPn.

Proof. By definition f(B) ≤~(M,M) f(A) means Ψ(M,M)(f(B)) ≤∗ Ψ(M,M)(f(A)), and from

Lemma 3.1 (b), it is equivalent to f(Ψ(M,M)(B)) ≤∗ f(Ψ(M,M)(A)). Since f(Ψ(M,M)(A)) ∈

EP, using Theorem 4.4 in [11] and Lemma 3.1 (b), the last inequality holds if and only if

Ψ(M,M)(f(B)) is an orthogonal projector, that is, f(B) is an M -orthogonal projector. �

We close this section with the following two remarks.

Remark 3.2 We can consider all the linear combinations Cα,β = αA + βB, α, β ∈ C, between

two given EP(M,M) matrices A and B in Cn×n [19]. A similar result to Theorem 4.7 in [11] can

be stated for EP(M,M) where the (M, M)-star partial order is used to compare the following
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pairs of matrices: A and Cα,β , Cα,β and B, Cα,β and Cγ,δ, f(Cα,β) and f(A), f(B) and f(Cα,β),

where α, β, γ, δ ∈ C.

Remark 3.3 Let A, B ∈ Cn×n. Let A = A1 + A2 and B = B1 + B2 be the core-nilpotent

decompositions of A and B respectively, where A1 is core part of A, B1 is core part of B, A2 is

nilpotent part of A and B2 is nilpotent part of B. In [14], it was defined that A ≤d B if and only

if A
#
1 A1 = A

#
1 B1 and A1A

#
1 = B1A

#
1 . This binary relation ≤d is a pre-order. Some algebraic

manipulations allow us to prove that A ≤d B implies Bπ = I − BBD ≤d I − AAD = Aπ.
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