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Abstract

In this paper, the dynamics of the Chebyshev-Halley family is studied
on quadratic polynomials. A singular set, that we call cat set, appears in
the parameter space associated to the family. This cat set has interesting
similarities with the Mandelbrot set. The parameters space has allowed us to
find different elements of the family such that can not converge to any root
of the polynomial, since periodic orbits and attractive strange fixed points
appear in the dynamical plane of the corresponding method.

1 Introduction
The application of iterative methods for solving nonlinear equations f(z) = 0,
with f : C → C, give rise to rational functions whose dynamics are not well-
known. The simplest model is obtained when f(z) is a quadratic polynomial and
the iterative process is Newton’s method. The study on the dynamics of Newton’s
method has been extended to other point-to-point iterative methods used for solv-
ing nonlinear equations, with convergence order up to three (see, for example [1],
[2] and, more recently, [3] and [4]).

∗This research was supported byMinisterio de Ciencia y Tecnologı́a MTM2011-28636-C02-02
and by Vicerrectorado de Investigación, Universitat Politècnica de València PAID-06-2010-2285.
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The most of the well-known point-to-point cubically convergent methods be-
long to the one-parameter family, called Chebyshev-Halley family,

zn+1 = zn −
(

1 +
1

2

Lf (zn)

1 − αLf (zn)

)
f (zn)

f ′ (zn)
, (1)

where
Lf (z) =

f (z) f ′′ (z)

(f ′ (z))2 , (2)

and α is a complex parameter. This family includes Chebyshev’s method for
α = 0, Halley’s scheme for α = 1

2
, super-Halley’s method for α = 1 and Newton’s

method when α tends to ±∞. As far as we know, this family was already studied
by Werner in 1981 (see [5]), and can also be found in [6] and [7]. Moreover, a
geometrical construction in studied in [8]. It is interesting to note that any iterative
process given by the expression:

zn+1 = zn − H (Lf (zn)) , (3)

where function H satisfies H(0) = 0, H ′(0) = 1
2
and |H ′′(0)| < ∞, generates an

order three iterative method (see [9]).
The family of Chebyshev-Halley has been widely analyzed under different

points of view. For example, in [10], [11] and [12], the authors studied the condi-
tions under the global and semilocal convergence of this family in Banach spaces
are hold. Also, the semilocal convergence of this family in the complex plane is
presented in [13].
Many authors have introduced different variants of these family, in order to

increase its applicability and its order of convergence. For instance, Osada in [14]
showed a variant able to find the multiple roots of analytic functions and a pro-
cedure to obtain simultaneously all the roots of a polynomial. On the other hand,
in [15], [16] and [17] the authors got multipoint variants of the mentioned fam-
ily with sixth order of convergence. Another trend of research about this family
have been to avoid the use of second derivatives (see [18] and [19]) or to design
secant-type variants (see [20]).
From the numerical point of view, the dynamical behavior of the rational func-

tion associated to an iterative method give us important information about its sta-
bility and reliability. In this terms, Varona in [21] described the dynamical behav-
ior of several well-known iterative methods. More recently, in [3] and [22], the
authors study the dynamics of different iterative families.

1.1 Basic concepts
The fixed point operator corresponding to the family of Chebyshev-Halley de-
scribed in (1) is:

G (z) = z −
(

1 +
1

2

Lf (z)

1 − αLf (z)

)
f (z)

f ′ (z)
. (4)

In this work, we study the dynamics of this operator when it is applied on quadratic
polynomials. It is known that the roots of a polynomial can be transformed by an
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affine map with no qualitative changes on the dynamics of family (1) (see [23]).
So, we can use the quadratic polynomial p (z) = z2 + c. For p(z), the operator (4)
corresponds to the rational function:

Gp (z) =
z4 (−3 + 2α) + 6cz2 + c2 (1 − 2α)

4z (z2 (−2 + α) + αc)
, (5)

depending on the parameters α and c.
P. Blanchard, in [24], by considering the conjugacy map

h (z) =
z − i

√
c

z + i
√

c
, (6)

with the following properties:

i) h (∞) = 1, ii) h
(
i
√

c
)

= 0, iii) h
(−i

√
c
)

= ∞,

proved that, for quadratic polynomials, the Newton’s operator is always conjugate
to the rational map z2. In an analogous way, it is easy to prove, by using the same
conjugacy map, that the operator Gp (z) is conjugated to the operator Op(z)

Op (z) =
(
h ◦ Gp ◦ h−1

)
(z) = z3 z − 2 (α − 1)

1 − 2 (α − 1) z
. (7)

In addition, the parameter c has been obviated in Op(z).
In this work, we study the general convergence of methods (1) for quadratic

polynomials. To be more precise (see [25] and [26]), a given method is generally
convergent if the scheme converges to a root for almost every starting point and
for almost every polynomial of a given degree.

1.1.1 Dynamical concepts

Now, let us recall some basic concepts on complex dynamics (see [27]). Given a
rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a point
z0 ∈ Ĉ is defined as:

z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...

We are interested in the study of the asymptotic behavior of the orbits depending
on the initial condition z0, that is, we are going to analyze the phase plane of the
map R defined by the different iterative methods.
To obtain these phase spaces, the first of all is to classify the starting points

from the asymptotic behavior of their orbits.
A z0 ∈ Ĉ is called a fixed point if it satisfies: R (z0) = z0. A periodic point

z0 of period p > 1 is a point such that Rp (z0) = z0 and Rk (z0) �= z0, k < p.
A pre-periodic point is a point z0 that is not periodic but there exists a k > 0
such that Rk (z0) is periodic. A critical point z0 is a point where the derivative of
rational function vanishes, R′ (z0) = 0.
On the other hand, a fixed point z0 is called attractor if |R′(z0)| < 1, superat-

tractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.
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The basin of attraction of an attractor α is defined as the set of pre-images of
any order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.
The set of points z ∈ Ĉ such that their families {Rn (z)}n∈N

are normal in
some neighborhood U (z) , is the Fatou set, F (R) , that is, the Fatou set is com-
posed by the set of points whose orbits tend to an attractor (fixed point, periodic
orbit or infinity). Its complement in Ĉ is the Julia set, J (R) ; therefore, the Julia
set includes all repelling fixed points, periodic orbits and their pre-images. That
means that the basin of attraction of any fixed point belongs to the Fatou set. On
the contrary, the boundaries of the basins of attraction belong to the Julia set.
The invariant Julia set for Newton’s method is the unit circle S1 and the Fatou

set is defined by the two basins of atraction of the superattractor fixed points:
0 and ∞. On the other hand, the Julia set for Chebyshev’s method applied to
quadratic polynomials is more complicated than for Newton’s method and it has
been studied in [28]. These methods are two elements of the family (1). In the
following sections, we look for the Julia and Fatou sets for the rest of the elements
of the mentioned family.
The rest of the paper is organized as follows: in Section 2 and 3 we study

the fixed and critical points, respectively, of the operator Op(z). The dynamical
behavior of the family (1) is analyzed in Section 4. We finish the work with some
remarks and conclusions.

2 Study of the fixed points
We are going to study the dynamics of the operator Op (z) in function of the
parameter α. In this section, we calculate the fixed points of Op (z) and in the
next one, its critical points. As we will see, the number and the stability of the
fixed and critical points depend on the parameter α.
The fixed points of Op (z) are the roots of the equation Op (z) = z, that is,

z = 0, z = 1 and

z =
−3 + 2α ±√

5 − 12α + 4α2

2
, (8)

which are the two roots of z2 + (3 − 2α)z + 1 = 0 denoted by s1 and s2.

The number of the finite fixed points depends on α. Moreover, s1 =
1

s2

, so
that, these points are equal only if s1 = s2 = ±1; this happens when 5 − 12α +
4α2 = 0, i.e., for α = 1

2
and α = 5

2
.

For α = 1
2
, s1 = s2 = −1, so z = −1 is a fixed point with double multiplicity.

For α = 5
2
, s1 = s2 = 1, so z = 1, has multiplicity 3.

Summarizing:

• If α �= 1
2
and α �= 5

2
, there are five different fixed points with multiplicity 1.

• If α = 1
2
, there are four different fixed points: z = 0, z = ∞ and z = 1

with multiplicity 1 and z = −1 with multiplicity 2.
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• If α = 5
2
, there are 3 different fixed points: z = 0 and z = ∞ with multi-

plicity 1 and z = 1 with multiplicity 3.

As we will see in the next section, the multiplicity of the fixed points implies
different dynamical behaviors.
In order to study the stability of the fixed points, we calculate the first deriva-

tive of Op(z),

O′
p (z) = 2z2 3 (1 − α) + 2z (3 − 4α + 2α2) + 3z2 (1 − α)

(1 − 2 (α − 1) z)2 . (9)

From (9) we obtain that the origin and ∞ are always superattractive fixed
points, but the stability of the other fixed points changes depending on the values
of the parameter α. These points are called strange fixed points.
The operator O′

p (z) in z = 1 gives

∣∣O′
p (1)

∣∣ =

∣∣∣∣4(−2 + α)(2α − 3)

(2α − 3)2

∣∣∣∣ =

∣∣∣∣4α − 8

2α − 3

∣∣∣∣ . (10)

If we analyze this function, we obtain an horizontal asymptote in
∣∣O′

p (1)
∣∣ = 2,

when α → ±∞, and a vertical asymptote in α = 3
2
. In the following result we

present the stability of the fixed point z = 1.

Proposition 1 The fixed point z = 1 satisfies the following statements :

i) If
∣∣α − 13

6

∣∣ < 1
3
, then z = 1 is an attractor and, in particular, it is a super-

attractor for α = 2.

ii) If
∣∣α − 13

6

∣∣ = 1
3
, then z = 1 is a parabolic point.

iii) If
∣∣α − 13

6

∣∣ > 1
3
, then z = 1 is a repulsive fixed point.

Proof. From equation (10),
∣∣∣∣4−2 + α

2α − 3

∣∣∣∣ ≤ 1 ⇒ 4 |−2 + α| ≤ |2α − 3| .

Let α = a + ib be an arbitrary complex number. Then,

|−2 + α|2 = (−2 + a)2 + b2

and
|2α − 3|2 = (2a − 3)2 + 4b2.

So,
16

(
4 − 4a + a2 + b2

) ≤ 4a2 − 12a + 9 + 4b2.

By simplifying

55 − 52a + 12a2 + 12b2 = 12

(
a − 13

6

)2

+ 12b2 − 4

3
≤ 0,
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that is, (
a − 13

6

)2

+ b2 ≤ 1

9
.

Therefore, ∣∣O′
p (1)

∣∣ ≤ 1 if and only if
∣∣∣∣α − 13

6

∣∣∣∣ ≤ 1

3
.

Finally, if α satisfies
∣∣α − 13

6

∣∣ > 1
3
, then

∣∣O′
p (1)

∣∣ > 1 and z = 1 is a repulsive
point.
The stability of the other strange fixed points z = si, i = 1, 2 also depends on

parameter α. ∣∣O′
p(si)

∣∣ = |6 − 2α| .
We can establish the following result:

Proposition 2 The fixed points z = si, i = 1, 2 satisfy the following statements:

i) If |α − 3| < 1
2
, then s1 and s2 are two different attractive fixed points. In

particular, for α = 3, s1 and s2 are superattractors.

ii) If |α − 3| = 1
2
, then s1 and s2 are parabolic points. In particular, for α = 5

2
,

s1 = s2 = 1.

iii) If |α − 3| > 1
2
, then s1 and s2 are repulsive fixed points.

In the following bifurcation diagram (Figure 1) we represent the behavior of
the fixed point for real values of parameter α. The point z = ∞ is not represented.
Let us observe that the stability of the fixed points is represented by the thickness
of the lines: if it is attractive, the line corresponding to the value of this strange
point is thicker. So, it can be noticed that z = 0 is always an attractor, meanwhile
z = 1 is attractive when 11

6
< α < 5

2
and si, i = 1, 2 are attractors only when

5
2

< α < 7
2
.

z�1

z�0

s2

s1
�4 �2 2 4

Α

�4

�2

2

4

z

Figure 1: Bifurcation diagram of fixed points
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3 Study of the critical points
Let us remember that the critical points of Op(z) are the roots of O′

p(z) = 0, that
is, z = 0, z = ∞, and

z =
3 − 4α + 2α2 ±√−6α + 19α2 − 16α3 + 4α4

3 (α − 1)
, (11)

which are denoted by c1 and c2.
It is easy to prove that c1 =

1

c2

. Therefore, both critical points coincide only
when c1 = c2 = ±1, that is, when

−6α + 19α2 − 16α3 + 4α4 = 0.

The roots of this equation are 0,
1

2
,
3

2
and 2.

It is known that there is at least one critical point associated with each in-
variant Fatou component. As z = 0 and z = ∞ are both superattractive fixed
points of Op(z), they also are critical points and give rise to their respective Fatou
components. For the other critical points, we can establish the following remarks:

a) If α = 0, then c1 = c2 = −1, and it is a pre-image of the fixed point z = 1:
Op (−1) = 1. As z = 1 is repulsive, z = −1 ∈ J (Op). So, Op(z) has
precisely two invariant Fatou components, A (0) and A (∞).

b) If α = 1
2
, then c1 = c2 = −1 = s1 = s2 are repulsive fixed points and

belong to Julia set.

c) If α = 3
2
, then c1 = c2 = 1 is a repulsive fixed point and belong to Julia set.

d) If α = 2, c1 = c2 = 1. In this case z = 1 is a superattractor, which gives
rise to a Fatou component.

e) For any other value of α ∈ C, there are four different critical points, and we
will study their behavior in Section 4.

In Figure 2, we represent the behavior of the strange fixed points and critical
points for real values of α between 1 and 4. We observe that the critical points ci,
i = 1, 2 are inside the basin of attraction of z = 1 when it is attractive (11

6
< α <

5
2
) and coincide with z = 1 for α = 2. Then, they move to the basins of attraction
of s1 and s2 when these fixed points become attractive (52 < α < 7

2
), critical and

fixed points coincide for α = 3 and s1 and s2 become superattractors.
Moreover, we can see that when α → 1, c1 tends to 0 and c2 tends to∞. This

fact explains that Op (z) = z4 when α = 1 (super-Halley’s method), and the only
superattractive fixed points were 0 and∞.
Finally, if α → ±∞, c1 tends to 0 and c2 tends to ±∞ and Op (z) = z2.
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z�1z�1

c2

s2

c1
s1

2.0 2.5 3.0 3.5 4.0
Α

1

2

3

4

z

Figure 2: Dynamical behavior of strange fixed points and critical points for 1 <
α < 4

4 The parameter space
It is easy to see that the dynamical behavior of operator Op(z) depends on the
values of the parameter α. In Figure 3, we can see the parameter space associated
to family (1): each point of the parameter plane is associated to a complex value
of α, i.e., to an element of family (1). Every value of α belonging to the same
connected component of the parameter space give rise to subsets of schemes of
family (1) with similar dynamical behavior.
In this parameter space we observe a black figure (let us to call it the cat set),

with a certain similarity with the known Mandelbrot set (see [29]): for values of α
outside this cat set we will see, numerically, that the Julia set is disconnected. The
two disks in the main body of the cat set correspond to the α values for those the
fixed points z = 1 (the head) and z = s1 and z = s2 (the body) become attractive.
Let us observe that the head and the body are surrounded by bulbs, of different
sizes, that yield to the appearance of attractive cycles of different periods.
We also observe a closed curve that passes through the cat’s neck, we call it

the necklace. As we will prove in the following, the dynamical planes for values
of α inside this curve are topologically equivalent to disks.

4.1 The head of the cat set
The head of the cat corresponds to the values of parameter α for which the fixed
point z = 1 become attractive, that is, the values of α such that

∣∣α − 13
6

∣∣ < 1
3
.

In this case, the fixed point z = 1 is an attractor (Proposition 1) and the other
two fixed points s1 and s2 are repulsors (Proposition 2). Depending on the values
of the parameter the critical points c1 and c2 have different behaviors around z =
1. In Figure 2 we observe the behavior of the critical points c1 and c2 for real
values of parameter α in the interval (11

6
, 2). For 11

6
< α < 2 both critical points

are complex. When α = 2, both critical points coincide with the fixed point z = 1,
so that, it is an superattractor. The dynamical plane for this value can be seen in
Figure 4, where we see the basins of attraction of z = 0 (orange), z = ∞ (blue)
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Figure 3: Parameter plane

and z = 1 (violet).
The dynamical plane for any other value in this interval is similar. For exam-

ple, in Figures 5 and 6, we see the dynamical planes for α = 1.9 and α = 2.2,
respectively:

4.1.1 The boundary of the head

As it has been established in Proposition 1, the boundary of the previous set
(
∣∣α − 13

6

∣∣ = 1
3
) is the loci of bifurcation of the fixed point z = 1. This fixed point

is parabolic on this boundary and yields to the appearance of attractive cycles, as
it happens in Mandelbrot set when we move into the bulbs (see [29]).
In this region, α = 13

6
+ 1

3
eiθ and the operator (7) can be expressed as:

Op (z) = z3 z − (
7
3

+ 2
3
eiθ

)
1 − (

7
3

+ 2
3
eiθ

)
z
. (12)

The first derivative is:

O′
p (z) = z2−63 + 134z − 18eiθ − 63z2 + 56zeiθ − 18z2eiθ + 8ze2iθ

(−3 + 7z + 2zeiθ)2

and it is easy to check that z = 1 is an parabolic point for all these values of α,
since

O′
p (1) =

2eiθ + 1

2 + eiθ
and

∣∣O′
p (1)

∣∣ = 1.
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Figure 4: Dynamical plane for α = 2
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Figure 5: α = 1.9
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−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 6: α = 2.2

Therefore, for different values of θ, we find the different bulbs with attractive
cycles surrounding ”the head of the cat” (for example, in Figure 7 we observe a
cycle of period 6).
In this boundary there exist two points that are specially interesting: they cor-

respond to the intersection with the real axe: θ = π and θ = 0. In the first case,
α = 11

6
, the operator has the expression

Op (z) = z3 3z − 5

3 − 5z
.

For this value of α, the two strange fixed points si i = 1, 2 are repulsive. The
point z = 1 is parabolic (since O′

p (1) = −1), and it is in the common boundary
of two parabolic regions (the dynamical plane including these parabolic regions
can be seen in Figure 8): the elements of the orbit corresponding to an initial
estimation in one of these parabolic regions, go alternatively from one region to
the other while approaching to the parabolic point z = 1. In Figure 8 an orbit
with 50 iterations has been represented. If α is close to but lower than 11

6
, z = 1

is a repulsive fixed point (see Proposition 1). As it happens in Mandelbrot set,
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z=1.2128+i0.4186

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 7: Dynamical plane for α = 13
6

+ (1
3

+ 0.01)e
2iπ
3

when we take a value of α in this bulb, an attractive cycle of period 2 appears (see
Figure 9 including in yellow the mentioned cycle).
For the case θ = 0, α = 5

2
and

Op (z) = z3 z − 3

1 − 3z
.

Now, the three strange fixed points are the same, z = s1 = s2 = 1, and it is
parabolic,

∣∣O′
p (1)

∣∣ = 1. We know, by the Flower Theorem of Latou (see [30], for
example), that this parabolic point is in the common boundary of two attractive
regions. The orbits of initial estimations inside each region approach to z =
1 without leaving its region (see Figure 10). These attractive areas contain the
respective critical points c1 = 2

9

(
11
2
−√

10
)
and c2 = 2

9

(
11
2

+
√

10
)
.

4.2 The body of the cat set
As we have said before, the body of the cat set corresponds to values of the pa-
rameter such that |α − 3| < 1

2
. In this case,

Op (z) = z3 z − 2 (α − 1)

1 − 2 (α − 1) z
,

the fixed point z = 1 is a repulsor (Proposition 1) and si, i = 1, 2 are attractors
(Proposition 2). So, they have their own basins of attraction with a critical point
in each one (see Figure 2).
We know that, for α = 3,

Op (z) = z3 z − 4

1 − 4z
,

z = 1 is a repulsor and si = ci, i = 1, 2 are superattractors. The dynamical
plane can be seen in Figures 11 and 12, where can be observed the two basins of
attraction of s1 (blue) and s2 (green) for α = 3 and α = 3.2 + 0.2i, respectively.
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z=0.99898+i0.043531
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Figure 8: Dynamical plane for α = 11
6

z=0.95514+i0.29616

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 9: Dynamical plane for α = 11
6
− 0.05

4.2.1 The boundary of the body

Similarly to what happen in the Mandelbrot set, the boundary of the cat set is
exactly the bifurcation locus of the family of Chebyshev-Halley operators acting
on quadratic polynomials; that is, the set of parameters for which the dynamics
changes abruptly under small changes of α.
This boundary correspond to values |α − 3| = 1

2
, that is, α = 3 + 1

2
eiθ.

The strange fixed points si, i = 1, 2 are parabolic. So, the different values
of the argument θ give the bifurcation points for the different bulbs surrounding
the body of the cat set; for example, in Figures 13 and 14 we see two dynamical
planes for α values into the two bulbs where appear two cycles of period 3 (α =
3 + 0.51e

πi
3 , α = 3 + 0.51e

5πi
3 ). We have pointed out one of them, the other one

is in the black zone inside the orange zone and it is difficult to see it.
Two interesting values of α are the intersection between this boundary and the
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z=0.87689+i0.0049956
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Figure 10: Dynamical plane for α = 2.5
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Figure 11: α = 3

−2 −1 0 1 2 3 4 5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 12: α = 3.2 + 0.2i

real axe: they correspond to θ = 0 and θ = π. If θ = 0, α = 7
2
and

Op (z) = z3 z − 5

1 − 5z
.

In this case, z = 1 is a repulsor and the two strange fixed points s1 and s2 are
parabolic. Each of these points is in the common boundary of two parabolic re-
gions, the iterations of the orbit of an initial estimation inside one of these regions
go alternatively from one area to the other, while approaching to the parabolic
point. The dynamical plane can be seen in Figure 15.
In the parameter space, the bulb corresponding to values of α bigger and close

to 7
2
is the loci of the cycles of period 2. In Figure 16 the dynamical plane of the

iterative method for α = 3.55 is showed.
When θ = π, α = 5

2
and this value of the parameter (see Figure 3) corresponds

to the intersection between the boundaries of the body and the head of the cat.
So, the point α = 5

2
is a bifurcation point and the dynamics changes when the

parameter α varies in a small interval around 5
2
(see Figure 10) and it has been

studied in the previous section.
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z=3.4244+i0.98254

−1 0 1 2 3 4 5

Figure 13: α = 3 + 0.51e
πi
3

z=3.4241+i−0.98312

−1 0 1 2 3 4 5

Figure 14: α = 3 + 0.51e
5πi
3

z=3.8062+i−0.00031397

−1 0 1 2 3 4 5

Figure 15: Dynamical plane for α = 3.5

4.3 Inside the necklace
For values of the parameter inside the necklace, by applying Propositions 1 and
2, the only superattractive fixed points are 0 and∞; the Julia set is connected but
we see that for different values of α the fixed points 0 and∞ have one connected
component in each basin of attraction. As we will see in Proposition 3, if 1

2
<

α < 3
2
, these connected components are disks in Riemann sphere. In other cases,

they are topologically equivalent to disks. In the following section, we prove this
statement for |α − 1| < 1

2
, although it can be checked numerically that it is also

true in the rest of the area inside the necklace.

4.3.1 The region |α − 1| ≤ 1
2

In this area,

Op (z) = z3 z − 2 (α − 1)

1 − 2 (α − 1) z
,

where α = 1 + reiθ, r ≤ 1
2
.

Proposition 3 If |α − 1| ≤ 1
2
, then the dynamical plane is the same as the one of

zn.
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z=4.0623+i−4.0231e−008

−1 0 1 2 3 4 5

Figure 16: Dynamical plane for α = 3.55. Two cycles of period 2 appear

Proof. If α ∈ R, the map m(z) = z−2(α−1)
1−2(α−1)z

is a Möebius map that sends the
unit disk in the unit disk. There are only two basins of attraction, of 0 and∞. We
are going to prove that the critical point c1 is inside the basin of attraction of 0 and
c2 is inside the basin of attraction of∞, that is, we need to prove that

|c1| =

∣∣∣∣3 − 4α + 2α2 −√−6α + 19α2 − 16α3 + 4α4

3 (α − 1)

∣∣∣∣ < 1,

or equivalently,
∣∣∣3 − 4α + 2α2 −

√
−6α + 19α2 − 16α3 + 4α4

∣∣∣ < 3 |(α − 1)| .

For 1
2

< α < 3
2
, it is easy to prove that 3−4α+2α2−√−6α + 19α2 − 16α3 + 4α4 >

0. So, we need to consider only two cases:

i) if α > 1, we want to demonstrate that 3−4α+2α2−√−6α + 19α2 − 16α3 + 4α4 <
3 (α − 1) is verified. By simplifying, it is equivalent to (2α − 3) (α − 2) <
α (2α − 1) and this is equivalent to 6 < 6α.

ii) if α < 1, then we need to prove that 3−4α+2α2−√−6α + 19α2 − 16α3 + 4α4 <
3 (−α + 1) and, in an analogous way as before, it is easy to prove that
6α < 6.

Moreover, as |c2| =
1

|c1| then |c2| > 1. So, c1 is in the basin of 0 and c2 in the

basin of∞. The Julia set is the unit circle that divides these two basins.
If α is a complex number, the map m (z) = z−2(α−1)

1−2(α−1)z
is not a Möebius map,

but it is holomorphic. Let us analyze the mapping of unit circle by m. The pole
of this map is z∗ =

1

2 (α − 1)
and, in this case, |z∗| > 1.
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Let z = x + iy be a complex number such that |z| = 1 and α = a + ib, then,

(a − 1)2 + b2 ≤ 1

2
. Let us see the value of |m (z)| =

∣∣∣ z−2(α−1)
1−2(α−1)z

∣∣∣.

|z − 2 (α − 1)|2 = (x − 2a + 2)2 + (y − 2b)2

= 1 + 4
(
(a − 1)2 + b2

) − 4ax + 4x − 4yb

|1 − 2 (α − 1) z|2 = (1 − 2ax + 2x + 2yb)2 + (−2ay + 2y − 2bx)2

= 1 + 4
(
(a − 1)2 + b2

) − 4ax + 4x + 4yb

We observe that both are equal if and only if b = 0, that is, in the real case.
If yb > 0 then |m (z)| < 1 and yb < 0 implies |m (z)| > 1. As m (z) is a
holomorphic function, the image of the unit circle is a closed curve that separates
the images of the points inside the unit circle from those that are outside it. So, the
dynamical plane for the values of the parameter inside this range consists on two
regions of attraction, A (0) and A (∞) separated by this closed curve. As before,
by continuity each critical point is in one of these regions.
Therefore, it follows that the dynamical plane of this operator is, for the given

values of α, equivalent to the one of zn. In particular, we observe that, for
quadratic polynomials:

• for α = 1, Op (z) = z4,

• if α = 1
2
then Op (z) = z3

• and, for α = 3
2
, Op (z) = −z3.

Let us remark that dynamical plane associated to every iterative algorithm
whose value of α is inside the necklace, is topologically equivalent to the previous
one. For example, in the Figures 17 and 18, we see the dynamical planes for
α = 0.2 + 0.1i and α = 0.4 − 0.7i:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 17: α = 0.2 + 0.1i

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 18: α = 0.4 − 0.7i
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4.4 On the necklace
We focus our attention on the real values of α included in the necklace. In par-
ticular, in those which belong to the antennas of the cat set. If 0 ≤ α <

1

2
and

α ∈ R, we move in the left antenna of the necklace in the parameter space, that
is in the boundary of the cat set. We prove in the following result that, in the
dynamical plane associated to the iterative methods defined by these values of α,
there are infinite connected components of the basins of attraction, corresponding
to the immediate bassins of attraction and their pre-images.

Proposition 4 The dynamical plane for values of α ∈ R and 0 ≤ α < 1
2
consists

in two basins of attraction, A(0) and A(∞) with infinity pre-images.

Proof. If 0 ≤ α <
1

2
and α ∈ R, we move in the left antenna on the necklace,

that is in the boundary of the cat set. For these values, the strange fixed points are
repulsive, so they belong to the Julia set. Moreover, the critical points verify:

|c1|2 =
(3 − 4α + 2α2)

2
+

(√−α (α − 2) (2α − 1) (2α − 3)
)2

9 (α − 1)2 = 1 (13)

and, as c2 =
1

c1

, |c2| = 1. So both critical points are on unit circle.

Moreover, the operator (7) has a pole in z∗ =
1

2 (α − 1)
such that |z∗| < 1; so,

there is an image of ∞ inside the unit disk and, by symmetry, there is an image
of zero outside the unit disk. So, by the Theorem of Fatou (see [30]), they have
infinity basins of pre-images.
We observe the same dynamical behavior for values of the parameter in the

right antenna of the cat. The reason is that for
3

2
< α < 2 (whose values include

the ones of the right antenna) and α ∈ R we can use the relationship (13). For
example, in Figures 19 and 20 we see the dynamical planes for α = 0.2 and
α = 1.6

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 19: α = 0.2

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 20: α = 1.6

The case of α = 0 has the same operator on quadratic polynomial that the ones
studied by the authors in [31] for other different iterative methods. The dynamical
plane is similar to the previously described.
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4.5 Outside the cat set
The cat set, as the Mandelbrot set, could also be defined as the connectedness
locus of the family of rational functions of Chebyshev-Halley methods. That is,
it is the subset of the complex plane consisting of those parameters for which the
Julia set of the corresponding dynamical plane is connected. All the dynamical
behaviors we have studied for values of the parameter outside the cat set show
disconnected Julia sets. In Figures 21 and 22 we can see the dynamical planes for
α = −0.3 and α = 4.5.

−4 −3 −2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 21: α = −0.3

0 1 2 3 4 5 6 7 8

Figure 22: α = 4.5

5 Conclusions
We have studied the dynamics of the Chebyshev-Halley family when it is applied
on quadratic polynomials. We have obtained the fixed and critical points and their
dynamical behavior, and we have showed that strange fixed points appear which
are attractive for some values of α (Propositions 1 and 2). This means that, for
these values, these iterative methods have basins of attraction different of the roots
of the polynomial. So, the initial point must be chosen carefully.
From the parameter plane obtained, we have observed the cat set, with some

similarities with Mandelbrot set: the head and the body of the cat are surrounded
by bulbs. For values of the parameters inside the bulbs, different attractive cycles
appear. We have also studied the dynamical behavior of the family for values of
α inside the necklace and we have shown that it is analogous to the dynamical be-
havior of Newton’s method (Proposition 3). For values of α on the antennas of the
cat the dynamical plane has only two basins of attraction, but these basins have in-
finitely many components (Proposition 4). Finally, we have obtained numerically
that the Julia set is disconnected for values of α outside the cat set.
The cat set is a fascinating creature of complex dynamics. Similarly to the

Mandelbrot set, there is a lot of different dynamics for this cat. We study some
of its properties in this paper, but we are aware that there are plenty of unresolved
issues, for example, it is connected the cat set? We conjecture that the cat set is
connected.
We have also observed little cats in the necklace. What’s about the dynamics

for these values of the parameter? Even more, where are these cats exactly?. What
happens in the antennas for non real values of α?
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