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Abstract. This paper is concerned with the numerical approximation of a
class of stationary states for reaction-diffusion system with m densities hav-

ing disjoint support, which are governed by a minimization problem. We use

quantitative properties of both, solutions and free boundaries, to derive our
scheme. Furthermore, the proof of convergence of the numerical method is

given in some particular cases. The proposed numerical scheme is applied

for the spatial segregation limit of diffusive Lotka-Volterra models in pres-
ence of high competition and inhomogeneous Dirichlet boundary conditions.

The numerical implementations of the resulting approach are discussed and

computational tests are presented.

1. Introduction

In recent years there have been intense studies of spatial segregation for
reaction-diffusion systems. The existence of spatially inhomogeneous solu-
tions for competition models of Lotka-Volterra type in the case of two and
more competing densities have been considered [2, 3, 4, 5, 11, 10, 14]. The
objective of this paper is to study numerical solutions of two classes of pos-
sible segregation states. The first class is related with an arbitrary number
of competing densities, which are governed by a minimization problem.

Let Ω ⊂ Rn, (n ≥ 2) be a connected and bounded domain with smooth
boundary, and m be a fixed integer. We consider the steady-states of m
competing species coexisting in the same area Ω. Let ui(x) denotes the pop-
ulation density of the ith component with the internal dynamic prescribed
by fi(x). Here we assume that fi is uniformly continuous and fi(x) ≥ 0.

The m-tuple U = (u1, · · · , um) ∈ (H1(Ω))m, is called segregated state if

ui(x) · uj(x) = 0, a.e. for i 6= j, x ∈ Ω.

Problem (A): Consider the following minimization problem

(1.1) Minimize E(u1, · · · , um) =

∫
Ω

m∑
i=1

(
1

2
|∇ui|2 + fiui

)
dx,
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over the set

S = {(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω},

where φi ∈ H
1
2 (∂Ω), φi · φj = 0, for i 6= j and φi ≥ 0 on the boundary ∂Ω.

We assume that fi is uniformly continuous and fi(x) ≥ 0.
Problem (B): Our second problem, which appears in the study of

population ecology, is the case when high competitive interactions between
different species occurs. As the rate of interaction of two different species
goes to infinity, the competition-diffusion system shows a limiting configura-
tion with segregated state. We refer the reader to [3, 6, 7, 8, 11, 9, 10] and in
particular to [9] for models involving Dirichlet boundary data. A complete
analysis of the stationary case has been studied in [3]. Also numerical simula-
tion for the spatial segregation limit of two diffusive Lotka-Volterra models
in presence of strong competition and inhomogeneous Dirichlet boundary
conditions is provided in [15]. In [15] the authors solve the problem for
small ε and then let ε −→ 0, while in our work we use the qualitative prop-
erties of the limiting problem. Unlike the results in [15], where the authors
provide only simulations of their proposed algorithm, we give a numerical
consistent variational system with strong interaction, and provide disjoint-
ness condition of populations during the iteration of the scheme. Moreover,
by discussing these two problems we show that the proposed idea can be
generalized for two or more species that competing each other.

Let di, λ be positive numbers. Consider the following system of m differ-
ential equations

(1.2)

{
−di∆ui = λui(1− ui)− 1

εui
∑

j 6=i u
2
j in Ω,

ui(x, y) = φi(x, y) on ∂Ω,

for i = 1, · · · ,m, where φi ∈ H
1
2 (∂Ω) and φi ·φj = 0, φi ≥ 0 on the boundary

∂Ω. Our aim is to present a numerical approximation for this system as
ε→ 0. This system can be viewed as a steady state of the following auxiliary
system in the case that the boundary values are time independent:

(1.3)


d
dtui − di∆ui = λui(1− ui)− 1

εui
∑

j 6=i u
2
j in Ω× (0,∞),

ui(x, y, t) = φi(x, y) on ∂Ω× (0,∞),
ui(x, y, 0) = ui,0(x, y) in Ω,

for i = 1, · · · ,m.
One of the interesting results which relates these two problems is given in [2].
Consider the following reaction-diffusion system of three competing species:

(1.4) ∆ui =
1

ε
ui
∑
j 6=i

uj , ui ≥ 0, in Ω, ui = φi, on ∂Ω i = 1, 2, 3,

where we have the same assumptions on the boundary values φi. In [2] it
was shown the uniqueness of the limiting configuration as ε→ 0 on a planar
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domain, with appropriate boundary conditions. Moreover, it was shown
that the corresponding minimization problem admits a unique solution, and
the limiting configuration minimizes the following energy∫

Ω

3∑
i=1

1

2
|∇ui|2dx,

over the set S = {ui ∈ H1(Ω) : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω, i = 1, 2, 3}.
For the numerical approximation of the system (1.4) the interested reader
is referred to [1].

2. Basic facts for Problem (A)

In this section we will see that the solution of problem (1.1) satisfies a free
boundary problem. In order to prove the existence of the minimizer we
apply the following classical theorem due to [16].

Theorem 2.1. Let V be a reflexive Banach space with norm ‖ · ‖, and
M ⊂ V be a weakly closed subset of V . Suppose E : M → R is coercive on
M with respect to V, that is

i) E(u) → ∞ as ‖u‖ → ∞, u ∈ M and E is weakly lower semi-
continuous on M with respect to V, that is

ii) for any u ∈ M, any sequence (um) in M such that um ⇀ u weakly
in V there holds E(u) ≤ lim inf

m→∞
E(um).

Then E is bounded from below on M and attains its minimum in M.

Then we have the following existence and uniqueness result.

Proposition 2.2. Under the assumptions in Problem (A), there exist a
minimizer to (1.1), and it is unique.

Proof. It is easy to see that the functional E(u1, · · · , um) is coercive over
the closed set S, and lower semi-continuous on S with respect to the space
(H1(Ω))m. Thus the existence follows directly from above mentioned The-
orem 2.1. For the proof of uniqueness we are using the same arguments
as in [3, Theorem 4.1]. Suppose that there exist two different minimizers
U = (u1, · · · , um) and V = (v1, · · · , vm) of (1.1) such that

(2.1) E(u1, · · · , um) = E(v1, · · · , vm) = c.

Define new functions ui, vi by

ui(x) = ui(x)−
∑
k 6=i

uk(x),

vi(x) = vi(x)−
∑
k 6=i

vk(x),

and let

wi(x) =
1

2
max (ui(x) + vi(x), 0) .
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Define

Ωi = {x ∈ Ω : wi(x) > 0}.
It is easy to show that wi ≥ 0, wi · wj = 0 for i 6= j and wi = φi on ∂Ω.
Moreover we have:

E(w1, · · · , wm) =

∫
Ω

m∑
i=1

(
1

2
|∇wi|2 + fiwi) dx.

Using that ui · uj = 0 and vi · vj = 0 for i 6= j, we obtain the following
estimate:

∫
Ω

m∑
i=1

1

2
|∇wi|2 dx =

m∑
i=1

∫
Ωi

1

8
|∇ui +∇vi|2 dx <

∫
Ωi

m∑
i=1

1

4
(|∇ui|2 + |∇vi|2) dx

≤
m∑
i=1

∫
Ω

1

4
(|∇ui|2 + |∇vi|2) dx =

1

2

(
m∑
i=1

∫
Ω

1

2
|∇ui|2 +

∫
Ω

m∑
i=1

1

2
|∇vi|2

)
.

(2.2)

The potential part can also be estimated as follows:
(2.3)∫

Ω

m∑
i=1

fiwi dx =

∫
Ω

m∑
i=1

1

2
fi max(ui(x)+vi(x), 0) dx ≤

∫
Ω

m∑
i=1

1

2
fi(ui+vi) dx,

where in the last inequality we have used the fact that fi is positive, (i =
1, · · · ,m). Finally, by adding (2.2) and (2.3) we obtain

E(w1, · · · , wm) <
1

2
[E(u1, · · · , um) + E(v1, · · · , vm)] = c,

which is a contradiction. This completes the proof of Proposition. �

In this part we state some results that will be used in the construction
of our numerical scheme. The next Lemma shows that the minimizer of the
variational problem satisfies certain differential inequalities.

Lemma 2.3. Let U = (u1, · · · , um) be a minimizer of Problem (A), then
the following holds in the sense of distributions.

∆ui ≥ fi(x)χ{ui>0}.

Proof. One needs to show that for each i = 1, · · ·m, and test function φ ∈
C∞c (Ω) the following inequality holds:∫

Ω
∇ui · ∇φ+ fiχ{ui>0}φdx ≤ 0.

For 0 < ε << 1, and fixed i we define new functions (v1, · · · vm) as follows:

v1 = u1, v2 = u2, . . . , vi = (ui − εφ)+, . . . , vm = um.

It is easy to show that,

vi · vj = 0, whenever i 6= j, and vi = φi on the boundary of Ω.
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Denote V = (v1, · · · vm). We have E(U) ≤ E(V ), therefore

0 ≤ E(V )− E(U) =

∫
Ω
|∇(ui − εφ)+|2 − |∇ui|2 + fi((ui − εφ)+ − ui)φdx

=

∫
Ω
|∇(ui − εφ)+|2 − |∇ui|2 dx+

∫
Ω
fiχ{ui>0}((ui − εφ)+ − ui)φdx

≤ −ε
∫

Ω

(
∇ui · ∇φ+ fiχ{ui>0}φ

)
dx+ o(ε).

Thus ∫
Ω
∇ui · ∇φ+ fiχ{ui>0}φdx ≤ 0.

�

Definition 2.4. The multiplicity of a point x ∈ Ω is defined by:

m(x) = card {i : meas(Ωi ∩B(x, r)) > 0 for some r > 0} ,

and the interface between two densities is defined as:

Γi,j = ∂Ωi ∩ ∂Ωj ∩ {x ∈ Ω : m(x) = 2}.

Our numerical scheme is based on the following properties, which are
straightforward to verify.

Corollary 2.5. Assume that x0 ∈ Ω then the following holds:
1) If m(x0) = 0, then there exists r > 0 such that for every i = 1, · · ·m;
ui ≡ 0 on B(x0, r).
2) If m(x0) = 1, then there are i and r > 0 such that in B(x0, r)

∆ui = fi, uj ≡ 0 for j 6= i.

3) If m(x0) = 2, then there are i, j and r > 0 such that for every k and
k 6= i, j we have uk ≡ 0 and

∆(ui − uj) = fiχΩi − fjχΩj in B(x0, r).

2.1. Special cases of Problem (A)

We note that the One Phase Obstacle problem and the Two-Phase Mem-
brane problem are special cases of Problem (A) for m = 1 and m = 2, respec-
tively. Here we briefly explain these two problems and refer the reader about
variational inequalities to [13] and for the Two-Phase Membrane problem
to [17].

• One Phase Obstacle problem (m = 1). Consider the following energy
functional

(2.4) minE(u) =

∫
Ω

(
1

2
|∇u|2 + fu

)
dx,
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over the convex set = {u ∈ H1(Ω) : u ≥ 0, u = φ ≥ 0 on ∂Ω}. The
minimizer of (2.4) satisfies the following Euler-Lagrange equation

(2.5)

 ∆u = fχ{u>0} in Ω,
u = φ on ∂Ω,
u = |∇u| = 0 in Ω\{u > 0}.

• Two-Phase Membrane problem (m = 2).
Let fi : Ω → R, i = 1, 2, be non-negative Lipschitz continuous

functions, where Ω is a bounded open subset of Rn with smooth
boundary. Let

K = {v ∈W 1,2(Ω) : v − g ∈W 1,2
0 (Ω)},

where g changes the sign on the boundary. Consider the functional

(2.6) I(v) =

∫
Ω

(
1

2
|∇v|2 + f1max(v, 0)− f2min(v, 0)

)
dx,

which is convex, weakly lower semi-continuous, and hence attains its
infimum at some point u ∈ K. In functional (2.6) set

u1 = v+, u2 = v−,

g1 = g+, g2 = g−,

where v± = max(±v, 0). Then the functional I(v) in (2.6) can be
rewritten as

(2.7) I(u1, u2) =

∫
Ω

(
|∇u1|2

2
+
|∇u2|2

2
+ f1u1 + f2u2

)
dx,

where minimization is over the set

S = {(u1, u2) ∈ (H1(Ω))2 : u1 · u2 = 0, ui ≥ 0, ui = gi on ∂Ω, i = 1, 2}.
The Euler-Lagrange equation corresponding to the minimizer u is
given in ([17]), which is called the Two-Phase Membrane problem:

(2.8)

{
∆u = f1χ{u>0} − f2χ{u<0} in Ω,
u = g on ∂Ω,

where Γ(u) = ∂{x ∈ Ω : u(x) > 0} ∪ ∂{x ∈ Ω : u(x) < 0} ∩ Ω is
called the free boundary.

2.2. Numerical approximation of Problem (A)

In this section we present our numerical scheme, which is based on the
properties in Corollary 2.5. It means that if m(x) = 1, x ∈ Br, then our
scheme solves ∆ui = fi locally. For all x such that m(x) = 2, the scheme
solves

∆(ui − uj) = fiχ{ui>0} − fjχ{uj>0}.

To explain our method, first let m = 2. We have

(2.9) ∆(u1 − u2) = f1χ{u1>0} − f2χ{u2>0}.



7 A. Arakelyan& F. Bozorgnia

Equation (2.9) shows that ∆(u1 − u2) is bounded and therefore by classical
results for elliptic PDE we have u1− u2 ∈ C1,α for α < 1. Thus, on the free
boundary we have

∇u1 = −∇u2.

For a given uniform mesh on Ω ⊂ R2, we define uk(xi, yj) to be the average
of uk for all neighbor points of (xi, yj), where k = 1, 2. Thus

uk(xi, yj) =
1

4
[uk(xi−1, yj) + uk(xi+1, yj) + uk(xi, yj−1) + uk(xi, yj+1)].

We use the standard finite difference discretization for equation (2.9). By
setting 4x = 4y = h, we arrive at

1

h2
[4u1(xi, yj)− 4u1(xi, yj)]−

1

h2
[4u2(xi, yj)− 4u2(xi, yj)]

= f1χ{u1(xi,yj)>0} − f2χ{u2(xi,yj)>0}.
(2.10)

Therefore we obtain u1(xi, yj) and u2(xi, yj) from (2.10) and impose the
following conditions

u1(xi, yj) · u2(xi, yj) = 0 and u1(xi, yj) ≥ 0, u2(xi, yj) ≥ 0.

Then the iterative method for u1 and u2 will be as follows:
• Initialization:

u
(0)
1 (xi, yj) =

{
0 (xi, yj) ∈ Ω◦,
φ1(xi, yj) (xi, yj) ∈ ∂Ω.

u
(0)
2 (xi, yj) =

{
0 (xi, yj) ∈ Ω◦,
φ2(xi, yj) (xi, yj) ∈ ∂Ω,

where Ω◦ stands for the interior points of the domain Ω.
• Step k + 1, k ≥ 0 :

We iterate over all interior points by settingu
(k+1)
1 (xi, yj) = max

(
−f1(xi,yj)h2

4 + u
(k)
1 (xi, yj)− u(k)

2 (xi, yj), 0
)
,

u
(k+1)
2 (xi, yj) = max

(
−f2(xi,yj)h2

4 + u
(k)
2 (xi, yj)− u(k)

1 (xi, yj), 0
)
.

Note that if m = 1, then the above method can be modified. The con-
vergence of the method in this case is given in [13]. Suppose there is a grid
on the domain Ω, then our method for the case of an arbitrary m densities
can be formulated as follows:

• Initialization: For l = 1, · · · ,m, set

u0
l (xi, yj) =

{
0 (xi, yj) ∈ Ω◦,
φl(xi, yj) (xi, yj) ∈ ∂Ω.

• Step k+1, k ≥ 0: For l = 1, · · · ,m, we iterate for all interior points

(2.11) u
(k+1)
l (xi, yj) = max

−flh2

4
+ u

(k)
l (xi, yj)−

∑
p 6=l

u(k)
p (xi, yj), 0

 .
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Remark 1. Note that this iterative method is slow, since the information
propagates from the boundary into the domain. One interesting question is,
how can the idea of multi- grid method be applied?

Lemma 2.6. The iterative method (2.11) satisfies

u
(k)
l (xi, yj) · u(k)

q (xi, yj) = 0,

for all k ∈ N and q, l ∈ {1, 2, . . . ,m}, where q 6= l.

Proof. Observe that from (2.11) it follows that

u
(k)
l (xi, yj) ≥ 0,

for all k ∈ N and l ∈ {1, 2, . . . ,m}. Assume u
(k)
l (xi, yj) > 0 then by (2.11)

we have

u
(k)
l (xi, yj) =

−flh2

4
+ u

(k−1)
l (xi, yj)−

∑
p 6=l

u(k−1)
p (xi, yj).

This shows that

u
(k−1)
l (xi, yj) >

∑
p 6=l

u(k−1)
p (xi, yj) +

flh
2

4
≥ u(k−1)

q (xi, yj).

Thus

u(k−1)
q (xi, yj) < u

(k−1)
l (xi, yj) ≤

fqh
2

4
+
∑
p 6=q

u(k−1)
p (xi, yj),

and after rearranging above inequalities we arrive at

(2.12)
−fqh2

4
+ u(k−1)

q (xi, yj)−
∑
p 6=q

u(k−1)
p (xi, yj) < 0.

In light of (2.11) and (2.12) we derive

u(k)
q (xi, yj) = max

−fqh2

4
+ u(k−1)

q (xi, yj)−
∑
p 6=q

u(k−1)
q (xi, yj), 0

 = 0.

Thus

u
(k)
l (xi, yj) · u(k)

q (xi, yj) = 0.

�

In order to see the consistency of the method to the problem (1.1), we
will consider the finite difference scheme of our method (2.11). The scheme
apparently will be the following discrete nonlinear system :

(2.13)

{
ul(xi, yj) = max

(
−flh

2

4
+ ul(xi, yj)−

∑
p6=l up(xi, yj), 0

)
(xi, yj) ∈ Ω◦,

ul(xi, yj) = φl(xi, yj) (xi, yj) ∈ ∂Ω,

where l ∈ {1, 2, . . . ,m}.
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We want to show the consistency of the scheme (2.13) to the discussed
properties in Corollary 2.5. First of all the disjoint property of the compo-
nents follows directly from Lemma 2.6. Suppose ul(xi, yj) > 0, and together
with this up(xi, yj) = 0, for all p 6= l. This will imply that

ul(xi, yj) =
−flh2

4
+ ul(xi, yj)−

∑
p 6=l

up(xi, yj) =
−flh2

4
+ ul(xi, yj),

and hence

(2.14)
1

h2
(4ul(xi, yj)− 4ul(xi, yj)) = fl(xi, yj).

But equation (2.14) is just a discrete scheme of the Poisson equation

∆ul = fl.

Hence, if in the discrete sense ul(x, y) > 0, then we have ∆ul = fl. If we are
locally on the free boundary of two components, say ul and uq, then in the
scheme (2.13) we have the following situation:

ul(xi, yj) = uq(xi, yj) = up(xi, yj) = 0, where p 6= l and p 6= q.

According to the scheme (2.13) we have

0 = max

(
ul(xi, yj)− uq(xi, yj)−

flh
2

4
, 0

)
,

and

0 = max

(
uq(xi, yj)− ul(xi, yj)−

fqh
2

4
, 0

)
.

Therefore

−fq(xi, yj) ≤
4

h2
(ul(xi, yj)− uq(xi, yj)) ≤ fl(xi, yj),

and taking into account ul(xi, yj) = uq(xi, yj) = 0, we obtain

−fq ≤ ∆h(ul − uq) ≤ fl,
at (xi, yj). Combining all results we see the consistency with Corollary 2.5.

Here we give a proof of the convergence of our method to the discretized
problem, in the case m = 2 and fi = 0. We consider the following non-linear
finite difference method

(2.15)

{
uk+1

1 (xi, yj) = max(uk1 − uk2, 0),

uk+1
2 (xi, yj) = max(uk2 − uk1, 0).

Note that (2.15) can be written as:

(2.16)

{
uk+1

1 (xi, yj) = max(uk1 − uk2, 0) = 1
2

(
uk1 − uk2 + |uk1 − uk2|

)
,

uk+1
2 (xi, yj) = max(uk2 − uk1, 0) = 1

2

(
uk2 − uk1 + |uk2 − uk1|

)
.

By subtracting the first equation from the second, we obtain

(2.17) uk+1
1 (xi, yj)− uk+1

2 (xi, yj) = uk1 − uk2,
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which is a classical finite difference scheme of ∆(u1(x) − u2(x)) = 0. It is
noteworthy that (2.17) follows from the last part in Corollary 2.5. This gives
that we have convergence of

(2.18) uk1(xi, yj)− uk2(xi, yj)

at every point (xi, yj), when k →∞. Recalling that by Lemma 2.6

uk1(xi, yj) · uk2(xi, yj) = 0,

for every k > 0, we can write the following identity for all k,

(2.19) (uk1(xi, yj)− uk2(xi, yj))
2 = (uk1(xi, yj) + uk2(xi, yj))

2.

Therefore convergence of uk1(xi, yj) − uk2(xi, yj) at every point (xi, yj) will
imply the convergence of

(uk1(xi, yj)− uk2(xi, yj))
2,

at every point as well. Hence, by (2.19) the sequence

(uk1(xi, yj) + uk2(xi, yj))
2

converges at every point (xi, yj). Note that uk1(xi, yj) and uk2(xi, yj) are
positive, which implies the convergence of

uk1(xi, yj) + uk2(xi, yj).

Finally, convergence of uk1(xi, yj)− uk2(xi, yj) and uk1(xi, yj) + uk2(xi, yj) will

imply the convergence of uk1(xi, yj) and uk2(xi, yj) at every nodal point
(xi, yj). This completes the proof.

3. Theoretical results of Problem (B)

In this section we present results that have been proved for Problem (B),
for the case of two-species in dimension two.

Consider the following system:

(3.1)



ut − d1∆u = λu(1− u)− 1
εuv

2 in Ω× (0,∞),
vt − d2∆v = λv(1− v)− 1

εu
2v in Ω× (0,∞),

u(x, y, t) = φ(x, y, t) on ∂Ω× (0,∞),
v(x, y, t) = ψ(x, y, t) on ∂Ω× (0,∞),
u(x, y, 0) = u0(x, y) in Ω,
v(x, y, 0) = v0(x, y) in Ω.

This problem has been studied in [6, 12, 15, 14], where the references of
some physical background involving cubic coupling is given. The system
(3.1), for steady boundary data admits a Lyapunov energy. Assume that
the initial conditions u0(x, y) and v0(x, y) have disjoint supports and

0 ≤ u0(x, y), v0(x, y) ≤ 1.

We also assume that the boundary conditions are positive with disjoint
support. The following Theorem has been proved in [14].
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Theorem 3.1. There exist two functions u(x, y), v(x, y) ∈ H1(Ω) ∩ L∞(Ω)
such that

(uεm(tm), vεm(tm))→ (u, v) in Lp(Ω)× Lp(Ω) for any p ≥ 2,

as ε→ 0 and t→∞, where 0 ≤ u, v ≤ 1 and u · v = 0 in Ω. Moreover,

−d1∆u ≤ λu(1− u), −d2∆v ≤ λv(1− v),

and ub∂Ω= φ, vb∂Ω= ψ.

Next, consider the following system:

(3.2)



ut − d1∆u = λu(1− u)− 1
εuv in Ω× (0,∞),

vt − d2∆v = λv(1− v)− 1
εuv in Ω× (0,∞),

u(x, y, t) = φ(x, y, t) on ∂Ω× (0,∞),
v(x, y, t) = ψ(x, y, t) on ∂Ω× (0,∞),
u(x, y, 0) = u0(x, y) in Ω,
v(x, y, 0) = v0(x, y) in Ω.

It has been shown in [7] that for any T > 0 as ε tends to zero there exists a
sequence of solutions (uε, vε) to the system (3.2) converging in L2(Ω×(0, T ))
to a bounded segregated state (u, v), such that w = u−v solves the limiting
free boundary problem (3.3), which shows the spatial segregation phenomena
on finite time intervals.

Theorem 3.2. [7] Let T > 0. Then there exists a sequence εm and u, v ∈
L∞ with

(uεm , vεm)→ (u, v) in L2(Ω× (0, T ))× L2(Ω× (0, T )),

as ε→ 0, where 0 ≤ u, v ≤ 1 and u · v = 0 in Ω. Moreover, w = u− v is the
unique weak solution to the following free boundary problem:

(3.3)

 wt −∆D(w) = λw(1− |w|) in Ω× (0,∞),
D(w(x, y, t)) = d1φ(x, y, t)− d2ψ(x, y, t) on ∂Ω× (0,∞),
w(x, y, 0) = u0(x, y)− v0(x, y) in Ω,

where

(3.4) D(σ) =

{
d1σ σ ≥ 0,
d2σ σ < 0.

The cases of time-dependent boundary conditions and possibly different
diffusion coefficients has been discussed in [7]. In the case of equal diffusion
coefficients d1 = d2 and stationary boundary conditions, Crooks, Dancer
and Hilhorst studied the long-term segregation for large interactions (see
[5]). They reduced the system to a single parabolic equation, whose solution
have ε-independent uniform bounds. This system does not admit a natural
Lyapunov functional and therefore a direct analysis is not possible for long
term behavior.
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3.1. Numerical approximation of Problem (B)

We present a numerical scheme for elliptic system in Problem (B) as ε→ 0.
To explain the method, we assume that there exist two components. The
Theorem 3.1 states that

d2∆v − d1∆u = λu(1− u)χ{u>0} − λv(1− v)χ{v>0}.

This equation is solved numerically by employing second order, centered,
finite difference scheme on the given grid i.e,

(3.5) − d1

h2
[4u(xi, yj)− 4u(xi, yj)] +

d2

h2
[4v(xi, yj)− 4v(xi, yj)] =

λu(xi, yj)(1− u(xi, yj))χ{u(xi,yj)>0} − λv(xi, yj)(1− v(xi, yj))χ{v(xi,yj)>0}.

It is easy to see that the equation (3.5) is a quadratic equation with respect
to u(xi, yj) and v(xi, yj). Using the same approach as in Section 2.2, if
u(xi, yj) > 0, then we set v(xi, yj) = 0 and vice versa. Set 4α = λh2, then
from equation (3.5) we have the following iterative formulas:

u(k+1)(xi, yj) = max

 2(d1u
(k)(xi, yj)− d2v(k)(xi, yj))

d1 − α+
√

(d1 − α)2 + 4α(d1u
(k)(xi, yj)− d2v(k)(xi, yj))

, 0

 ,

and

v(k+1)(xi, yj) = max

 2(d2v
(k)(xi, yj)− d1u(k)(xi, yj))

d2 − α+
√

(d2 − α)2 + 4α(d2v
(k)(xi, yj)− d1u(k)(xi, yj))

, 0

 .

This approach can be extended for m components as well. The idea is just
we take the difference between the i-th equation of the system and the sum
of all other equations. After that we use the same disjointness approach,
by setting ui(xs, yr) > 0 and uj(xs, yr) = 0 for all i 6= j, on the grid point
(xs, yr). This will lead us to the quadratic equation w.r.t ui(xs, yr) as above.
Thus according to the same arguments as above for m components we obtain
the following iterative method: For all l = 1, . . . ,m,

(3.6) u
(k+1)
l (xi, yj) = max

 2wl
(k)(xi, yj)

dl − α+
√

(dl − α)2 + 4αwl
(k)(xi, yj)

, 0

 ,

where
wl

(k)(xi, yj) = dlul
(k)(xi, yj)−

∑
p 6=l

dpup
(k)(xi, yj).

Again using the same approach as in Lemma 2.6, one can prove the same
result for this method as well.

Lemma 3.3. If min
l
dl > α, then the iterative method (3.6) satisfies

u
(k)
l (xi, yj) · u(k)

q (xi, yj) = 0,

for all k ∈ N and q, l ∈ {1, 2, . . . ,m}, where q 6= l.
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3.2. Parabolic case

In the case, when coupling term is uv
ε , the Theorem 2.8 states that w = u−v

solves the limiting free boundary problem in Theorem 3.3, which shows the
spatial segregation phenomena on finite time intervals. In order to solve the
problem (3.5) the second-order, implicit, Crank-Nicolson method is applied.

wn+1(xi, yj)− wn(xi, yj)

dt
− 1

2
(∆Dw|n+1

(xi,yj) + ∆Dw|n(xi,yj))

=
λ

2
[wn+1(1− wn+1) + wn(1− wn)].

(3.7)

In this case we can obtain an iterative formula for wn+1(xi, yj) as a func-
tion of wn(xi, yj), w

n(xi, yj) and wn+1(xi, yj).

4. Numerical Examples

In this section we present different examples of Problem (A) and Problem
(B). We consider the following minimization problem

(4.1) I =

∫
Ω

m∑
i=1

(
1

2
|∇ui|2 + fiui

)
dx,

over the set S = {(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω}.
Examples 1, 2 and 3 show the numerical approximations of Problem (A) for
different values m and different Ω.

Example 4.1. Figure 4 shows the solution of Problem (4.1) in the case of
n = 1,m = 2. We choose f1 = 2 + sin(x), f2 = 1 + x2. The equation for
u1 − u2 is as follows:

(4.2)

{
(u1 − u2)′′ = (2 + sinx)χ{u1>0} − (1 + x2)χ{u2>0}, x ∈ [−2, 2]
u1(−2) = 1, u2(2) = 1.

u1 u2

Figure 1. The plot of u1 + u2.
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Example 4.2. Consider Problem (A) with m = 3 and f1 = f2 = 1, f3 = 1
4 .

The free boundary is shown in Figure 2. The boundary value g is given by

g(x, y) =


4− x2 −2 ≤ x ≤ +2 & y = −2,
4− y2 −2 ≤ y ≤ +2 & x = −2,
4−x2

2 −2 ≤ x ≤ +2 & y = −x.

(a) The free boundaries (b) u1 + u2 + u3

Figure 2. The left picture shows the free boundaries of solutions. The
right picture shows the surface of u1 + u2 + u3.

Example 4.3. Let Ω = [−1, 1] × [−1, 1] and m = 4, f1 = 8; f2 = 6; f3 =
2; f4 = 1. The boundary values φi, (i=1,2,3,4) are given as follows:

φ1 =

{
1− x2 x ∈ [−1, 1] & y = 1,
0 elsewhere.

φ2 =

{
1− y2 y ∈ [−1, 1] & x = 1,
0 elsewhere.

φ3 =

{
1− x2 x ∈ [−1, 1] & y = −1,
0 elsewhere.

φ4 =

{
1− y2 y ∈ [−1, 1] & x = −1,
0 elsewhere.

Example 4.4. Let Ω be as in previous example and m = 4, f1 = 0, f2 =
|x2 − y2|, f3 = 8, f4 = |x + y|. The boundary conditions φi, (i=1,2,3,4) are
the same as in Example 4.3. The interfaces are shown in Figure 4.

Now consider the following system of m differential equations for i =
1, · · · ,m, as ε→ 0,

(4.3)


−di∆ui = λui(1− ui)− 1

εui(x)
∑m

j 6=i u
2
j (x) in Ω,

ui ≥ 0 in Ω,
ui(x) = φi(x) on ∂Ω.
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(a) contour (b) u1 + u2 + u3 + u4

Figure 3. The left picture shows the contours of solutions and zero
set. The right picture shows the surface of u1 + u2 + u3 + u4.
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Figure 4. The picture shows the free boundaries of solutions of
u1, u2, u3 and u4.

Example 4.5. Let Ω = [0, 1] × [0, 1],m = 2, λ = 1, d1 = 1.5, d2 = 1. The
steady boundary values for u(x, y, t), v(x, y, t) are defined by

φ(x, 0, t) =

{
0.5− 2.5x 0 ≤ x ≤ 0.2,
0 0.2 ≤ x ≤ 1,

φ(x, 1, t) =

{
0.5− 5

8x 0 ≤ x ≤ 0.2,
0 0.8 ≤ x ≤ 1,

φ(0, y, t) = 0.5, φ(1, y, t) = 0,

and

ψ(x, 0, t) =

{
0 0 ≤ x ≤ 0.2,
−1
8 + 5

8x 0.2 ≤ x ≤ 1,
ψ(x, 1, t) =

{
0 0 ≤ x ≤ 0.8,
−2 + 2.5x 0.8 ≤ x ≤ 1,

ψ(0, y, t) = 0, ψ(1, y, t) = 0.5,

Figure 5 shows boundary values of u and v. In Figure 6 the contours plot
of solutions u(x, y) and v(x, y) are presented.
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Figure 5. Boundary values for u(x, y); left v(x, y); in the right.
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Figure 6. Contours of u and v.
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