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Abstract

In this paper, we deal with a new type of differential equations called
anticipated backward doubly stochastic differential equations (anticipated
BDSDEs). The coefficients of these BDSDEs depend on the future value of
the solution (Y,Z). We obtain the existence and uniqueness theorem and
a comparison theorem for the solutions of these equations. Besides, as an
application, we also establish a duality between the anticipated BDSDEs
and the delayed doubly stochastic differential equations (delayed DSDEs).
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1 Introduction

Backward stochastic differential equation (BSDE) was considered the general
form the first time by Pardoux-Peng [10] in 1990. In the last twenty years, the
theory of BSDEs has been studied with great interest due to its applications in
the pricing/hedging problem (see e.g. [4, 5]), in the stochastic control and game
theory (see e.g. [5, 6]), and in the theory of partial differential equations (see e.g.
[2, 3, 11]).

In order to give a probabilistic representation for a class of quasilinear stochas-
tic partial differential equations (SPDEs), Pardoux-Peng [12] first studied the
backward doubly stochastic differential equations (BDSDEs) of the general form

Yt = ξ+

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d
←−
B s−

∫ T

t

ZsdWs, t ∈ [0, T ], (1.1)
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where the integral with respect to {Bt} is a ”backward Itô integral”, and the
integral with respect to {Wt} is a standard forward integral. Note that these two
types of integrals are particular cases of the Itô-Skorohod integral, see Nualart-
Pardoux [9]. Pardoux-Peng [12] proved that under Lipschitz condition on the
coefficients, BDSDE (1.1) has a unique solution. Since then, the theory of BDS-
DEs has been developed rapidly by many researchers. Bally-Matoussi [1] gave
the probabilistic representation of the solutions in Sobolev space of semilinear
SPDEs in terms of BDSDEs. Matoussi-Scheutzow [8] studied BDSDEs and their
applications in SPDEs. Shi et al. [14] proved a comparison theorem for BDS-
DEs with Lipschitz condition on the coefficients. Lin [7] obtained a generalized
comparison theorem and a generalized existence theorem of BDSDEs.

On the other hand, recently, Peng-Yang [13] (see also [16]) introduced the
socalled anticipated BSDEs (ABSDEs) of the following form:







−dYt = f(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))dt− ZtdWt, t ∈ [0, T ];
Yt = ξt, t ∈ [T, T +K];
Zt = ηt, t ∈ [T, T +K],

where δ(·) : [0, T ]→ R
+\{0} and ζ(·) : [0, T ]→ R

+\{0} are continuous functions
satisfying

(a1) there exists a constant K ≥ 0 such that for each t ∈ [0, T ],

t+ δ(t) ≤ T +K, t + ζ(t) ≤ T +K;

(a2) there exists a constant M ≥ 0 such that for each t ∈ [0, T ] and each
nonnegative integrable function g(·),
∫ T

t

g(s+ δ(s))ds ≤M

∫ T+K

t

g(s)ds,

∫ T

t

g(s+ ζ(s))ds ≤M

∫ T+K

t

g(s)ds.

Peng-Yang [13] proved the existence and uniqueness of the solution to the above
equation, and studied the duality between anticipated BSDEs and delayed SDEs.

In this paper, we are interested in the following BDSDEs with coefficients
depending on the future value of the solution (Y, Z):



























−dYt = f(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))dt

+g(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))d
←−
B t − ZtdWt, t ∈ [0, T ];

Yt = ξt, t ∈ [T, T +K];

Zt = ηt, t ∈ [T, T +K],

(1.2)
where δ > 0 and ζ > 0 satisfy (a1)-(a2).
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We prove that under proper assumptions, the solution of the above anticipated
BDSDE (ABDSDE) exists uniquely, and a comparison theorem is given for the
1-dimensional anticipated BDSDEs. It may be mentioned here that, to deal with
(1.2), the most important thing for us is to establish the similar conclusions as
in [12] and [14] for BDSDE (1.1) with ξ belonging to a larger space. Besides, as
an application, we study a duality between the anticipated BDSDE and delayed
DSDE.

The paper is organized as follows: in Section 2, we make some preliminaries.
In Section 3, we mainly study the existence and uniqueness of the solutions of
anticipated BDSDEs, and in Section 4, a comparison result is given. As an
application, in Section 5, we establish a duality between an anticipated BDSDE
and a delayed DSDE. Finally in Section 6, the conclusion and future work are
presented.

2 Preliminaries

Let T > 0 be fixed throughout this paper. Let {Wt}t∈[0,T ] and {Bt}t∈[0,T ] be two
mutually independent standard Brownian motion processes, with values respec-
tively in R

d and R
l, defined on a probability space (Ω,F , P ). Let N denote the

class of P−null sets of F . We define

Ft := FW
0,t ∨ FB

t,T , t ∈ [0, T ]; Gs := FW
0,s ∨ FB

s,T+K, s ∈ [0, T +K],

where for any processes {ϕt}, Fϕ
s,t = σ{ϕr − ϕs, s ≤ r ≤ t} ∨ N . We will use the

following notations:

• L2(GT ;Rm) := {ξ ∈ R
m | ξ is a GT -measurable random variable such that

E|ξ|2 < +∞};

• L2
G(0, T ;R

m) := {ϕ : Ω × [0, T ] → R
m | ϕ is a Gt-progressively measurable

process such that E
∫ T

0
|ϕt|2dt < +∞};

• S2
G(0, T ;R

m) := {ϕ : Ω×[0, T ]→ R
m | ϕ is a continuous and Gt-progressively

measurable process such that E[sup0≤t≤T |ϕt|2] < +∞}.

Remark 2.1 It should be mentioned here that, the existing result about BDS-
DEs are established almost under the condition that the terminal value ξ is FT -
measurable (see [12], [14], etc.). In this paper, we will first treat the case when ξ

is GT -measurable.

3



For each t ∈ [0, T ], let

f(t, ·, ·, ·, ·) : Ω×[0, T ]×Rm×Rm×d×L2
G(t, T+K;Rm)×L2

G(t, T+K;Rm×d)→ L2(Gt;Rm),

g(t, ·, ·, ·, ·) : Ω×[0, T ]×Rm×Rm×d×L2
G(t, T+K;Rm)×L2

G(t, T+K;Rm×d)→ L2(Gt;Rm×l).

We make the following hypotheses:

(H1) There exists a constant c > 0 such that for any r, r̄ ∈ [t, T + K],
(t, y, z, θ, φ), (t, y′, z′, θ′, φ′) ∈ [0, T ]×R

m×R
m×d×L2

G(t, T +K;Rm)×L2
G(t, T +

K;Rm×d),

|f(t, y, z, θr, φr̄)−f(t, y′, z′, θ′r, φ′
r̄)|2 ≤ c(|y−y′|2+|z−z′|2+EFt [|θr−θ′r|2+|φr̄−φ′

r̄|2]).

(H2) E[
∫ T

0
|f(s, 0, 0, 0, 0)|2ds] < +∞.

(H3) There exist constants c > 0, 0 < α1 < 1, 0 ≤ α2 < 1
M
, satisfying

0 < α1+α2M < 1, such that for any r, r̄ ∈ [t, T+K], (t, y, z, θ, φ), (t, y′, z′, θ′, φ′) ∈
[0, T ]× R

m × R
m×d × L2

G(t, T +K;Rm)× L2
G(t, T +K;Rm×d),

|g(t, y, z, θr, φr̄)−g(t, y′, z′, θ′r, φ′
r̄)|2 ≤ c(|y−y′|2+EFt |θr−θ′r|2)+α1|z−z′|2+α2E

Ft |φr̄−φ′
r̄|2.

(H4) E[
∫ T

0
|g(s, y, z, θ, φ)|2ds] < +∞, for any (y, z, θ, φ).

3 Existence and uniqueness theorem

In this section, we will mainly study the existence and uniqueness of the solution
to anticipated BDSDE (1.2). For this purpose, we first consider a simple case
when the coefficients f and g do not depend on the value or the future value of
(Y, Z):

Yt = ξT +

∫ T

t

f(s)ds+

∫ T

t

g(s)d
←−
B s −

∫ T

t

ZsdWs, t ∈ [0, T ], (3.1)

where f ∈ L2
G(0, T ;R

m), g ∈ L2
G(0, T ;R

m×l) and ξT ∈ L2(GT ;Rm).

Theorem 3.1 Given ξT ∈ L2(GT ;Rm), BDSDE (3.1) has a unique solution
(Y, Z) ∈ L2

G(0, T ;R
m)× L2

G(0, T ;R
m×d).

Proof. To prove the existence, we define a filtration by

Ht := FW
0,t ∨ FB

0,T+K , t ∈ [0, T +K]
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and a Ht-square integrable martingale

Mt := EHt [ξT +

∫ T

0

f(s)ds+

∫ T

0

g(s)d
←−
B s], t ∈ [0, T ].

Thanks to Itô’s martingale representation theorem, there exists a process Z ∈
L2
H(0, T ;R

m×d) such that

Mt = M0 +

∫ t

0

ZsdWs, t ∈ [0, T ],

which implies

Mt = MT −
∫ T

t

ZsdWs, t ∈ [0, T ].

Hence

EHt [ξT+

∫ T

0

f(s)ds+

∫ T

0

g(s)d
←−
B s] = ξT+

∫ T

0

f(s)ds+

∫ T

0

g(s)d
←−
B s−

∫ T

t

ZsdWs.

Subtract
∫ t

0
f(s)ds+

∫ t

0
g(s)d

←−
B s from both sides, then we have

Yt = ξT +

∫ T

t

f(s)ds+

∫ T

t

g(s)d
←−
B s −

∫ T

t

ZsdWs,

where

Yt := EHt [ξT +

∫ T

t

f(s)ds+

∫ T

t

g(s)d
←−
B s].

Next we show that (Y, Z) are in fact Gt-adapted. In fact, it is obvious that

Yt = E[Θ|Gt ∨ FB
0,t],

where Θ := ξT +
∫ T

t
f(s)ds+

∫ T

t
g(s)d

←−
B s is FW

0,T ∨FB
t,T+K measurable. Note that

FB
0,t is independent of Gt ∨ σ(Θ), then we know

Yt = EGt [Θ].

Now
∫ T

t

ZsdWs = ξT +

∫ T

t

f(s)ds+

∫ T

t

g(s)d
←−
B s − Yt,

and the right side is FW
0,T ∨ FB

t,T+K measurable. Then from Itô’s martingale
representation theorem, (Zs)s∈[t,T ] is FW

0,s ∨ FB
t,T+K adapted, which implies Zs is

FW
0,s ∨ FB

t,T+K measurable for any t ≤ s. Thus Zs is FW
0,s ∨ FB

s,T+K measurable.
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To show the uniqueness. We suppose that (Ȳ , Z̄) is the difference of two
solutions. Then

Ȳt +

∫ T

t

Z̄sdWs = 0, t ∈ [0, T ].

Hence

E|Ȳt|2 + E

∫ T

t

|Z̄s|2ds = 0,

which implies Ȳt ≡ 0, a.s. and Z̄t ≡ 0 a.s., a.e.. ✷

Now we establish the main result of this part.

Theorem 3.2 Assume that (a1)-(a2) and (H1)-(H4) hold. Then for given (ξ, η) ∈
S2
G(T, T+K;Rm)×L2

G(T, T+K;Rm×d), the anticipated BDSDE (1.2) has a unique
solution (Y, Z) ∈ S2

G(0, T +K;Rm)× L2
G(0, T +K;Rm×d).

Proof. Denote by S the space of (Y, Z) ∈ L2
G(0, T+K;Rm)×L2

G(0, T+K;Rm×d)
such that (Yt, Zt)t∈[T,T+K] = (ξt, ηt)t∈[T,T+K]. Given (y, z) ∈ S, we consider the
following equation:


























−dYt = f(t, yt, zt, yt+δ(t), zt+ζ(t))dt

+g(t, yt, zt, yt+δ(t), zt+ζ(t))d
←−
B t − ZtdWt, t ∈ [0, T ];

Yt = ξt, t ∈ [T, T +K];

Zt = ηt, t ∈ [T, T +K].

(3.2)

It is obvious that the above equation is equivalent to the BDSDE














−dỸt = f(t, yt, zt, yt+δ(t), zt+ζ(t))dt

+g(t, yt, zt, yt+δ(t), zt+ζ(t))d
←−
B t − Z̃tdWt, t ∈ [0, T ];

ỸT = ξT ∈ GT ,

which admits a unique solution in the space S2
G(0, T ;R

m) × L2
G(0, T ;R

m×d) ac-
cording to Theorem 3.1. Thus BDSDE (3.2) has a unique solution in S. Define
a mapping I from S into itself by (Y, Z) = I(y, z), then (Y, Z) is the unique
solution of BDSDE (3.2).

Let (y′, z′) be another element of S, and (Y ′, Z ′) = I(y′, z′). We make the
following notations:

ȳ = y − y′, z̄ = z − z′, Ȳ = Y − Y ′, Z̄ = Z − Z ′,

f̄t = f(t, yt, zt, yt+δ(t), zt+ζ(t))− f(t, y′t, z
′
t, y

′
t+δ(t), z

′
t+ζ(t)),

ḡt = g(t, yt, zt, yt+δ(t), zt+ζ(t))− g(t, y′t, z
′
t, y

′
t+δ(t), z

′
t+ζ(t)).
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For any β > 0, apply Itô’s formula to eβt|Ȳt|2,

eβt|Ȳt|2 +
∫ T

t
eβs[β|Ȳs|2 + |Z̄s|2]ds

= 2
∫ T

t
eβsȲsf̄sds+

∫ T

t
eβs|ḡs|2ds+ 2

∫ T

t
eβsȲsḡsd

←−
B s − 2

∫ T

t
eβsȲsZ̄sdWs.

Take mathematical expectation on both sides, then we have

eβtE|Ȳt|2 + E

∫ T

t

eβs[β|Ȳs|2 + |Z̄s|2]ds = 2E

∫ T

t

eβsȲsf̄sds+ E

∫ T

t

eβs|ḡs|2ds.

Hence from (A1), (A2) and the inequality 2ab ≤ λa2 + 1
λ
b2,

eβtE|Ȳt|2 + E
∫ T

t
eβs[β|Ȳs|2 + |Z̄s|2]ds

≤ E
∫ T

t
eβs[λ|Ȳs|2 + 1

λ
|f̄s|2]ds+ E

∫ T

t
eβs|ḡs|2ds

≤ E
∫ T

t
eβs[λ|Ȳs|2 + ( c

λ
+ c)(|ȳs|2 + |ȳs+δ(s)|2) + ( c

λ
+ α1)|z̄s|2 + ( c

λ
+ α2)|z̄s+ζ(s)|2]ds

≤ E
∫ T+K

t
eβs[λ|Ȳs|2 + ( c

λ
+ c)(1 +M)|ȳs|2 + ( c

λ
(1 +M) + α1 + α2M)|z̄s|2]ds,

which implies

E
∫ T+K

t
eβs[(β − λ)|Ȳs|2 + |Z̄s|2]ds

≤ E
∫ T+K

t
eβs[( c

λ
+ c)(1 +M)|ȳs|2 + ( c

λ
(1 +M) + α1 + α2M)|z̄s|2]ds

= ( c
λ
(1 +M) + α1 + α2M)E

∫ T+K

t
eβs[ c(1+λ)(1+M)

c(1+M)+λ(α1+α2M)
|ȳs|2 + |z̄s|2]ds.

Hence if we choose λ = λ0 satisfying c̄ := c
λ0

(1 +M) + α1 + α2M < 1, choose

β = λ0 +
c(1+λ0)(1+M)

c(1+M)+λ0(α1+α2M)
, and denote γ := c(1+λ0)(1+M)

c(1+M)+λ0(α1+α2M)
, then we deduce

E

∫ T+K

t

eβs[γ|Ȳs|2 + |Z̄s|2]ds ≤ c̄E

∫ T+K

t

eβs[γ|ȳs|2 + |z̄s|2]ds.

Thus I is a strict contraction on S and it has a unique fixed point (Y, Z) ∈ S.
Now due to Burkholder-Davis-Gundy inequality, it is easy to check that Y ∈
S2
G(0, T +K;Rm). The proof is complete. ✷

Remark 3.3 In the proof of Theorem 3.2, we use the norm

|(Y, Z)|(β,γ) ≡ {E
∫ T+K

0

eβs(γ|Ys|2 + |Zs|2)ds}
1

2 ,

which is very convenient for us to establish a strict contraction mapping. In
fact, it is obvious that this new norm is equivalent to both norms |(Y, Z)|(β,1) and
|(Y, Z)|(0,1), and the latter is just the general norm defined on the space L2

G(0, T +
K;Rm)× L2

G(0, T +K;Rm×d).
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4 Comparison theorem

In this part, we are concerned with the following 1-dimensional anticipated BDS-
DEs:














−dY j
t = f j(t, Y j

t , Z
j
t , Y

j

t+δ(t), Z
j

t+ζ(t))dt+ g(t, Y j
t , Z

j
t )d
←−
B t − Z

j
t dWt, t ∈ [0, T ];

Y
j
t = ξ

j
t , t ∈ [T, T +K],

Z
j
t = η

j
t , t ∈ [T, T +K],

(4.1)
where j = 1, 2, and (a1)-(a2), (H1)-(H4) hold. Then by Theorem 3.2, (4.1) has
a unique solution.

Our objective is to obtain a comparison result for these two equations. For
this purpose, we first consider a simple case when the coefficients f j and g do not
depend on the future value of (Y j , Zj):

Y
j
t = ξ

j
T +

∫ T

t

f j(s, Y j
s , Z

j
s)ds+

∫ T

t

g(s, Y j
s , Z

j
s)d
←−
B s −

∫ T

t

Zj
sdWs, t ∈ [0, T ].

(4.2)

Theorem 4.1 Let (Y j , Zj) ∈ S2
G(0, T ;R)× L2

G(0, T ;R
d) (j = 1, 2) be the unique

solutions to BDSDEs (4.2) respectively. If ξ1T ≥ ξ2T , a.s., and for any (t, y, z) ∈
[0, T ]×R×R

d, f 1(t, y, z) ≥ f 2(t, y, z), a.s., then Y 1
t ≥ Y 2

t , a.s., for all t ∈ [0, T ].

Proof. Denote

Ȳt := Y 2
t − Y 1

t , Z̄t := Z2
t − Z1

t , ξ̄T := ξ2T − ξ1T ,

then (Ȳ , Z̄) satisfies

Ȳt = ξ̄T+

∫ T

t

[f 2(s, Y 2
s , Z

2
s )−f 1(s, Y 1

s , Z
1
s )]ds+

∫ T

t

[g(s, Y 2
s , Z

2
s )−g(s, Y 1

s , Z
1
s )]d
←−
B s−

∫ T

t

Z̄sdWs.

Applying Itô’s formula to |Ȳ +
t |2, we have

|Ȳ +
t |2 = |ξ̄+T |2 + 2

∫ T

t
Ȳ +
s [f 2(s, Y 2

s , Z
2
s )− f 1(s, Y 1

s , Z
1
s )]ds

+2
∫ T

t
Ȳ +
s [g(s, Y 2

s , Z
2
s )− g(s, Y 1

s , Z
1
s )]d
←−
B s − 2

∫ T

t
Ȳ +
s Z̄sdWs

−
∫ T

t
1{Y 2

s >Y 1
s }|Z̄s|2ds+

∫ T

t
1{Y 2

s >Y 1
s }|g(s, Y 2

s , Z
2
s )− g(s, Y 1

s , Z
1
s )|2ds.

Taking expectation on both sides and noting that ξ1T ≥ ξ2T , we get

E|Ȳ +
t |2 + E −

∫ T

t
1{Y 2

s >Y 1
s }|Z̄s|2ds = 2E

∫ T

t
Ȳ +
s [f 2(s, Y 2

s , Z
2
s )− f 1(s, Y 1

s , Z
1
s )]ds

+E
∫ T

t
1{Y 2

s >Y 1
s }|g(s, Y 2

s , Z
2
s )− g(s, Y 1

s , Z
1
s )|2ds.
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While,

2E
∫ T

t
Ȳ +
s [f 2(s, Y 2

s , Z
2
s )− f 1(s, Y 1

s , Z
1
s )]ds

=2E
∫ T

t
Ȳ +
s [f 2(s, Y 2

s , Z
2
s )− f 1(s, Y 2

s , Z
2
s ) + f 1(s, Y 2

s , Z
2
s )− f 1(s, Y 1

s , Z
1
s )]ds

≤ 2E
∫ T

t
Ȳ +
s |f 1(s, Y 2

s , Z
2
s )− f 1(s, Y 1

s , Z
1
s )|ds ≤ 2

√
cE

∫ T

t
Ȳ +
s [|Ȳs|+ |Z̄s|]ds

≤ (2
√
c+ c

1−α1

)E
∫ T

t
|Ȳ +

s |2ds+ (1− α1)
∫ T

t
1{Y 2

s >Y 1
s }|Z̄s|2ds,

and
E
∫ T

t
1{Y 2

s >Y 1
s }|g(s, Y 2

s , Z
2
s )− g(s, Y 1

s , Z
1
s )|2ds

≤ E
∫ T

t
1{Y 2

s >Y 1
s }[c|Ȳs|2 + α1|Z̄s|2]ds

≤ cE
∫ T

t
|Ȳ +

s |2ds+ α1

∫ T

t
1{Y 2

s >Y 1
s }|Z̄s|2ds.

Then, thanks to the above inequalities, we obtain

E|Ȳ +
t |2 ≤ (c+ 2

√
c+

c

1− α1

)E

∫ T

t

|Ȳ +
s |2ds,

which implies
E|Ȳ +

t |2 = 0, for all t ∈ [0, T ].

Therefore Y 1
t ≥ Y 2

t , a.s., for all t ∈ [0, T ]. ✷

From now on, we consider the anticipated BDSDEs (4.1). We give the follow-
ing result. For the proof, the reader is referred to [15].

Proposition 4.2 Putting t0 = T , we define by iteration

ti := min{t ∈ [0, T ] : min{s+ δ(s), s+ ζ(s)} ≥ ti−1, for all s ∈ [t, T ]}, i ≥ 1.

Set N := max{i : ti−1 > 0}. Then N is finite, tN = 0 and

[0, T ] = [0, tN−1] ∪ [tN−1, tN−2] ∪ · · · ∪ [t2, t1] ∪ [t1, T ].

Proposition 4.3 For j = 1, 2, suppose that (Y j , Zj) is the unique solution to
the anticipated BDSDE (4.1). Then for fixed i ∈ {1, 2, . . . , N}, over time interval
[ti, ti−1], (4.1) is equivalent to














−dȲ j
t = f j(t, Ȳ j

t , Z̄
j
t , Ȳ

j

t+δ(t), Z̄
j

t+ζ(t))dt+ g(t, Ȳ j
t , Z̄

j
t )d
←−
B t − Z̄

j
t dWt, t ∈ [ti, ti−1];

Ȳ
j
t = Y

j
t , t ∈ [ti−1, T +K],

Z̄
j
t = Z

j
t , t ∈ [ti−1, T +K],

(4.3)
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which is also equivalent to the following BDSDE with terminal condition Y
j
ti−1

:

Ỹ
j
t = Y

j
ti−1

+

∫ ti−1

t

f j(s, Ỹ j
s , Z̃

j
s , Y

j

s+δ(s), Z
j

s+ζ(s))ds+

∫ ti−1

t

g(s, Ỹ j
s , Z̃

j
s)d
←−
B s−

∫ ti−1

t

Z̃j
sdWs.

(4.4)
That is to say,

Y
j
t = Ȳ

j
t = Ỹ

j
t , Z

j
t = Z̄

j
t = Z̃

j
t =

d〈Ỹ j ,W 〉t
dt

, t ∈ [ti, ti−1], j = 1, 2.,

where 〈Ỹ j,W 〉 is the variation process generated by Ỹ j and the Brownian motion
W .

The main result of this part is

Theorem 4.4 Let (Y j , Zj) ∈ S2
G(0, T + K;R) × L2

G(0, T +K;Rd) (j = 1, 2) be
the unique solutions to anticipated BDSDEs (4.1) respectively. If

(i) ξ1s ≥ ξ2s , s ∈ [T, T +K], a.e., a.s.;

(ii) for all t ∈ [0, T ], (y, z) ∈ R×Rd, θj ∈ S2
G(t, T+K;R) (j = 1, 2) such that θ1 ≥

θ2, {θjr}r∈[t,T ] is a continuous semimartingale and (θjr)r∈[T,T+K] = (ξjr)r∈[T,T+K],

f 1(t, y, z, θ1t+δ(t), η
1
t+ζ(t)) ≥ f 2(t, y, z, θ2t+δ(t), η

2
t+ζ(t)), a.e., a.s., (4.5)

f 1(t, y, z, θ1t+δ(t),
d〈θ1,W 〉r

dr
|r=t+ζ(t)) ≥ f 2(t, y, z, θ2t+δ(t),

d〈θ2,W 〉r
dr

|r=t+ζ(t)), a.e., a.s.,

(4.6)

f 1(t, y, z, ξ1t+δ(t),
d〈θ1,W 〉r

dr
|r=t+ζ(t)) ≥ f 2(t, y, z, ξ2t+δ(t),

d〈θ2,W 〉r
dr

|r=t+ζ(t)), a.e., a.s.,

(4.7)
then Y 1

t ≥ Y 2
t , a.e., a.s..

Proof. Consider the anticipated BDSDE (4.1) one time interval by one time
interval. For the first step, we consider the case when t ∈ [t1, T ]. According to
Proposition 4.3, we can equivalently consider

Ỹ
j
t = ξ

j
T +

∫ T

t

f j(s, Ỹ j
s , Z̃

j
s , ξ

j

s+δ(s), η
j

s+ζ(s))ds+

∫ T

t

g(s, Ỹ j
s , Z̃

j
s)d
←−
B s −

∫ T

t

Z̃j
sdWs,

from which we have

Z
j
t = Z̃

j
t =

d〈Ỹ j,W 〉t
dt

, t ∈ [t1, T ]. (4.8)

Noticing that ξj ∈ S2
G(T, T +K;R) (j = 1, 2) and ξ1 ≥ ξ2, from (4.5) in (ii), we

can get, for s ∈ [t1, T ], y ∈ R, z ∈ R
d,

10



f 1(s, y, z, ξ1s+δ(s), η
1
s+ζ(s)) ≥ f 2(s, y, z, ξ2s+δ(s), η

2
s+ζ(s)).

According to Theorem 4.1, we can get

Ỹ 1
t ≥ Ỹ 2

t , t ∈ [t1, T ], a.e., a.s.,

which implies
Y

(1)
t ≥ Y

(2)
t , t ∈ [t1, T +K], a.e., a.s.. (4.9)

For the second step, we consider the case when t ∈ [t2, t1]. Similarly, according
to Proposition 4.3, we can consider the following BSDE equivalently:

˜̃
Y

j
t = Y

j
t1
+

∫ t1

t

f j(s, ˜̃Y j
s ,

˜̃
Zj

s , Y
j

s+δ(s), Z
j

s+ζ(s))ds+

∫ t1

t

g(s, ˜̃Y j
s ,

˜̃
Zj

s )d
←−
B s−

∫ t1

t

˜̃
Zj

sdWs,

from which we have Z
j
t = ˜̃

Z
j
t = d〈 ˜̃Y j ,W 〉t

dt
for t ∈ [t2, t1]. Noticing (4.8) and (4.9),

according to (ii), we have, for s ∈ [t2, t1], y ∈ R, z ∈ R
d,

f 1(s, y, z, Y 1
s+δ(s), Z

1
s+ζ(s)) ≥ f 2(s, y, z, Y 2

s+δ(s), Z
2
s+ζ(s)).

Applying Theorem 4.1 again, we can finally get

Y 1
t ≥ Y 2

t , t ∈ [t2, t1], a.e., a.s..

Similarly to the above steps, we can give the proofs for the other cases when
t ∈ [t3, t2], [t4, t3], · · · , [tN , tN−1]. ✷

Example 4.5 Now suppose that we are facing with the following two ABDSDEs:


























−dY 1
t = EFt [Y 1

t+δ(t) + sin(2Y 1
t+δ(t)) + |Z1

t+ζ(t)|+ 2]dt

+[Y 1
t + 1√

3
|Z1

t |]d
←−
B t − Z1

t dWt, t ∈ [0, T ];

Y 1
t = ξ1t , t ∈ [T, T +K],

Z1
t = η1t , t ∈ [T, T +K],



























−dY 2
t = EFt [Y 2

t+δ(t) + 2| cosY 2
t+δ(t)|+ sinZ2

t+ζ(t) − 2]dt

+[Y 2
t + 1√

3
|Z2

t |]d
←−
B t − Z2

t dWt, t ∈ [0, T ];

Y 2
t = ξ2t , t ∈ [T, T +K],

Z2
t = η2t , t ∈ [T, T +K],

where ξ
(1)
t ≥ ξ

(2)
t , t ∈ [T, T +K].

It is obvious that
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x+ sin(2x) + |u|+2 ≥ y+ 2| cos y|+ sin v− 2, for all x ≥ y, x, y ∈ R, u, v ∈ R
d,

which implies (4.5)-(4.7), then according to Theorem 4.4, we get Y 1
t ≥ Y 2

t , a.e., a.s..

Remark 4.6 By the same way, for the case when δ = ζ, (4.5)-(4.7) can be
replaced by (4.6) together with

f 1(t, y, z, ξ1t+δ(t), η
1
t+ζ(t)) ≥ f 2(t, y, z, ξ2t+δ(t), η

2
t+ζ(t)), a.e., a.s..

For a special case when f 1 and f 2 are independent of the anticipated term Z,
we easily get the following comparison result.

Theorem 4.7 Let (Y j , Zj) ∈ S2
G(0, T + K;R) × L2

G(0, T +K;Rd) (j = 1, 2) be
the unique solutions to the following ABDSDEs respectively:
{

−dY j
t = f j(t, Y j

t , Z
j
t , Y

j

t+δ(t))dt+ g(t, Y j
t , Z

j
t )d
←−
B t − Z

j
t dWt, t ∈ [0, T ];

Y
j
t = ξ

j
t , t ∈ [T, T +K].

If

(i) ξ1s ≥ ξ2s , s ∈ [T, T +K], a.e., a.s.;

(ii) for all t ∈ [0, T ], (y, z) ∈ R × R
d, θj ∈ S2

G(t, T +K;R) (j = 1, 2) such that
θ1 ≥ θ2 and (θjr)r∈[T,T+K] = (ξjr)r∈[T,T+K],

f 1(t, y, z, θ1t+δ(t)) ≥ f 2(t, y, z, θ2t+δ(t)), a.e., a.s., (4.10)

then Y 1
t ≥ Y 2

t , a.e., a.s..

Remark 4.8 The coefficients f 1 and f 2 will satisfy (4.10), if for any (t, y, z) ∈
[0, T ]×R×R

d, θ ∈ L2
G(t, T +K;R), r ∈ [t, T +K], f 1(t, y, z, θr) ≥ f 2(t, y, z, θr),

together with one of the following:

(i) for any (t, y, z) ∈ [0, T ]×R×Rd, f 1(t, y, z, ·) is increasing, i.e., f 1(t, y, z, θr) ≥
f 1(t, y, z, θ′r), if θ ≥ θ′, θ, θ′ ∈ L2

G(t, T +K;R), r ∈ [t, T +K];

(ii) for any (t, y, z) ∈ [0, T ]×R×Rd, f 2(t, y, z, ·) is increasing, i.e., f 2(t, y, z, θr) ≥
f 2(t, y, z, θ′r), if θ ≥ θ′, θ, θ′ ∈ L2

G(t, T +K;R), r ∈ [t, T +K].

Remark 4.9 The coefficients f 1 and f 2 will satisfy (4.10), if

f 1(t, y, z, θr) ≥ f̃(t, y, z, θr) ≥ f 2(t, y, z, θr),

for any (t, y, z) ∈ [0, T ] × R × R
d, θ ∈ L2

G(t, T + K;R), r ∈ [t, T + K]. Here

the function f̃(t, y, z, ·) is increasing, for any (t, y, z) ∈ [0, T ] × R × R
d, i.e.,

f̃(t, y, z, θr) ≥ f̃(t, y, z, θ′r), if θr ≥ θ′r, θ, θ
′ ∈ L2

G(t, T +K;R), r ∈ [t, T +K].

Example 4.10 The following three functions satisfy the conditions in Remark
4.9: f 1(t, y, z, θr) = EFt [θr−sin(2θr)+2], f̃(t, y, z, θr) = EFt [θr+cos θr], f

2(t, y, z, θr) =
EFt [θr + 2 cos θr − 1].
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5 A duality result between delayed DSDEs and

anticipated BDSDEs

In this part we will establish a duality between the following anticipated BDSDE



























−dYt = ([µt + κ2
t ]Yt + µ̄tE

FB
t,T [Yt+δ] + σtZt + σ̄tE

FB
t,T [Zt+δ] + ρt)dt

+κtYtd
←−
B t − ZtdWt, t ∈ [t0, T ];

Yt = ξt, t ∈ [T, T + δ];

Zt = ηt, t ∈ [T, T + δ]
(5.1)

and the delayed DSDE















dXs = (µsXs + µ̄s−δXs−δ)ds+ κsXsd
←−
B s + (σsXs + σ̄s−δXs−δ)dWs, s ∈ [t, T ];

Xt = 1,

Xs = 0, s ∈ [t− δ, t),
(5.2)

where we suppose that t0 ≥ δ > 0 are fixed constants, (ξ, η) ∈ S2
G(T, T + δ;R)×

L2
G(T, T + δ;Rd) with ξT ∈ L2(FB

T,T ;R), µt, µ̄t ∈ L2
FB

t,T

(t0 − δ, T + δ;R), σt, σ̄t ∈
L2
FB

t,T

(t0− δ, T + δ;Rd), κt ∈ L2
FB

t,T

(t0, T ;R
l), ρt ∈ L2

FB
t,T

(t0, T ;R), and µ, µ̄, σ,σ̄, κ

are uniformly bounded. Then by Theorem 3.2, (5.1) has a unique solution.

Proposition 5.1 Let (Y, Z) ∈ S2
G(t0, T+δ;R)×L2

G(t0, T+δ;Rd) be the unique so-
lution of ABDSDE (5.1). Then for t ∈ [t0, T ], Zt ≡ 0, and Yt is FB

t,T -progressively
measurable.

Proof. First we show that Yt is FB
t,T -progressively measurable. For this we

introduce the following auxiliary equation:



























−dY ′
t = EFB

t,T [(µt + κ2
t )Y

′
t + µ̄tY

′
t+δ + σtZ

′
t + σ̄tZ

′
t+δ + ρt]dt

+κtE
FB

t,T [Y ′
t ]d
←−
B t − Z ′

tdWt, t ∈ [t0, T ];

Y ′
t = ξt, t ∈ [T, T + δ];

Z ′
t = ηt, t ∈ [T, T + δ]

(5.3)
which has a unique solution according to Theorem 3.2.

In fact, it is obvious that
Y ′
t = EGt [Θ′],

13



where

Θ′ := ξT+

∫ T

t

EFB
s,T [(µs+κ2

s)Y
′
s+µ̄sY

′
s+δ+σsZ

′
s+σ̄sZ

′
s+δ+ρs]ds+

∫ T

t

κsE
FB

s,T [Y ′
s ]d
←−
B s

is FB
t,T measurable thanks to the fact that ξT ∈ L2(FB

T,T ;R) and µt, µ̄t, σt, σ̄t, κt,
ρt are all FB

t,T -progressively measurable. Note that FW
0,t ∨ FB

T,T+K is independent
of FB

t,T ∨ σ(Θ′), hence we know

Y ′
t = EFB

t,T [Θ′].

Thus obviously Z ′
t ≡ 0, and moreover, EFB

t,T [Y ′
t ] = Y ′

t , E
FB

t,T [Z ′
t] = Z ′

t. Then by
Comparing the anticipated BDSDE (5.1) with (5.3), together with the uniqueness
of their solutions, we immediately get the desired conclusion. ✷

The next is our main result.

Theorem 5.2 For any (ξ, η) ∈ S2
G(T, T + δ;R) × L2

G(T, T + δ;Rd) with ξT ∈
L2(FB

T,T ;R), the solution Y· of the anticipated BDSDE (5.1) can be given by

Yt = EFB
t,T [XT ξT+

∫ T

t

ρsXsds]+EFB
t,T [

∫ T+δ

T

(µ̄s−δXs−δE
FB

s−δ,T [ξs]+σ̄s−δXs−δE
FB

s−δ,T [ηs])ds],

where X· is the unique solution of delayed DSDE (5.2).

Proof. We first show that DSDE (5.2) has a unique solution. In fact, when
s ∈ [t, t+ δ],

{

dXs = µsXsds+ κsXsd
←−
B s + σsXsdWs, s ∈ [t, t+ δ];

Xt = 1.
(5.4)

Then we can easily obtain a unique solution ς1· for (5.4). When s ∈ [t+ δ, t+2δ],

{

dXs = (µsXs + µ̄s−δς
1
s−δ)ds+ κsXsd

←−
B s + (σsXs + σ̄s−δς

1
s−δ)dWs, s ∈ [t+ δ, t + 2δ];

Xt+δ = ς1t+δ.

(5.5)
Then we can easily obtain a unique solution ς2· for (5.5). Similarly ,we can consider
all the other cases when t ∈ [t+2δ, t+3δ], [t+3δ, t+4δ], · · · , [t+[T−t

δ
]δ, T ]. Thus

DSDE (5.2) has a unique solution X ∈ S2
G̃(t− δ, T ;R) where G̃t := FW

t ∨ FB
t .

14



Applying Itô’s formula to XsYs, according to Proposition 5.1, we have

XTYT −XtYt −
∫ T

t
(XsZs + σsXsYs + σ̄s−δXs−δYs)dWs

=
∫ T

t
(µ̄s−δXs−δYs − µ̄sXsE

FB
s,T [Ys+δ] + σ̄s−δXs−δZs − σ̄sXsE

FB
s,T [Zs+δ]− ρsXs)ds

=
∫ T−δ

t
(µ̄s−δXs−δYs − µ̄sXsYs+δ)ds

+
∫ T

T−δ
(µ̄s−δXs−δYs − µ̄sXsE

FB
s,T [ξs+δ]− σ̄sXsE

FB
s,T [ηs+δ])ds−

∫ T

t
ρsXsds.

(5.6)

Write ∆ =
∫ T−δ

t
(µ̄s−δXs−δYs − µ̄sXsYs+δ)ds, then

∆ =
∫ T−δ

t
(µ̄s−δXs−δYs − µ̄sXsYs+δ)ds =

∫ T−δ

t
µ̄s−δXs−δYsds−

∫ T

t+δ
µ̄s−δXs−δYsds

=
∫ t+δ

t
µ̄s−δXs−δYsds−

∫ T

T−δ
µ̄s−δXs−δYsds = −

∫ T

T−δ
µ̄s−δXs−δYsds,

(5.7)
and the last equality is due to the fact that Xs = 0, s ∈ [t− δ, t).
Combining (5.6) and (5.7), we have

XTYT −XtYt −
∫ T

t

(XsZs + σsXsYs + σ̄s−δXs−δYs)dWs

=−
∫ T

T−δ

(µ̄sXsE
FB

s,T [ξs+δ] + σ̄sXsE
FB

s,T [ηs+δ])ds−
∫ T

t

ρsXsds.

Take conditional expectation with respect to ˜̃Gt := FW
t ∨FB

T on both sides, then

XtYt =E
˜̃Gt [XTYT +

∫ T

t

ρsXsds] + E
˜̃Gt [

∫ T

T−δ

(µ̄sXsE
FB

s,T [ξs+δ] + σ̄sXsE
FB

s,T [ηs+δ])ds],

which implies the desired result when noting that Xt = 1 and Yt ∈ FB
t,T . ✷

6 Conclusion and future work

In this paper, we have established the existence/uniqueness theorem and the
comparison theorem for the anticipated BDSDEs. Moreover, as an application,
we studied a duality between the anticipated BDSDE and delayed DSDE, where
the BDSDE is of a special form, thus the duality is somewhat limited. In fact
for the general case, it should be admitted that Gt, which is not a filtration, not
increasing non decreasing, brings the main technical difficulty in working with
the duality problem. For the future work, I will go on studying this topic and
pay more attention to the applications of such equations.
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