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Abstract 

In this paper, an evaluation of distribution of the air pressure is determined throughout the 

laterally closed industrial buildings with curved metallic roofs due to the wind effect by the 

finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier–Stokes 

(RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear 

partial differential equations and this non-linearity makes most problems difficult to solve and is 

part of the cause of turbulence. The RANS equations are time-averaged equations of motion for 

fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly 

complex physical phenomenon that is pervasive in flow problems of scientific and engineering 

concern like this one. In order to solve the RANS equations a two-equation model is used: the 

standard k  model. The calculation has been carried out keeping in mind the following 

assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 

40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 

meters. Finally, the forces and moments are determined on the cover, as well as the distribution 

of pressures on the same one, comparing the numerical results obtained with the Spanish CTE 

DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions 

that are exposed in the study. 

 

Keywords: Finite element modelling; Reynolds-averaged Navier-Stokes (RANS) equations; 

Standard k  model; Buildings with curved metallic roofs; Numerical simulation 

 

1. Introduction 

The use of finite element method (FEM) [1-3] shows innumerable advantages of 

economical and practical order due, in the first place, to the cost that plays the 

realization of actual tests and, secondly, to the technical difficulty of the same ones, sine 

the elements object of the present study are big in size. The main aim of this paper is to 

determine, by FEM, the pressure distribution throughout the curved and laterally closed 

self-weighted metallic roofs on which the air wind falls horizontally [4]. 
 

The system of self-weighted metallic roofs constitutes an original alternative in the 

construction field (see Fig. 1). The metallic roof shells carry out a double function based 
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Highlights 

 Reliable results for pressure were obtained by using steady RANS-CFD 

simulations. 

 We have determined the forces and moments on the cover with accurateness. 

 A standard k–ε model is integrated to investigate the wind effect by FEM. 



 2 

on the principle that the element of roof has to work like resistant element too: on the 

one hand, they act like arch beam and, on the other hand, like a building envelope. 
 

In the majority of moderate speed flow structural problems some form of random 

variation of flow variables exists. The ‘laminar’ treatment is generally not applicable 

when such variations occur. Turbulent flow is defined as a flow with random variation 

of various flow quantities such as velocity, pressure and density. Turbulence is a 

property of a flow, not that of a fluid. Numerical solutions of the transient Navier-

Stokes equations are sufficient to resolve the turbulent behaviour if an adequate fine 

mesh resolution and time increment are used. However, this requires extremely large 

computer resources and with present day computers a direct numerical simulation 

(DNS) is possible only at relatively low Reynolds numbers. Despite significant progress 

in understanding turbulent behaviour during the last century, the modelling of 

turbulence is still an unresolved problem and will remain so for the foreseeable future 

[5-10]. 
 

In this work, we have proceeded to calculate the pressure coefficient on a laterally 

closed industrial building with a curved metallic roof [4, 11]. Since this problem is 

highly turbulent, we have had to integrate the Reynolds-averaged Navier-Stokes 

(RANS) equations inside the k  model of turbulence by the finite element method 

(FEM). The k  model is one of the most common turbulence models. It is a two 

equation model since it includes two extra transport equations to represent the turbulent 

properties of the flow. This allows a two equation model to account for history effects 

like convection and diffusion of turbulent energy. The first transported variable is 

turbulent kinetic energy k. The second transported variable in this case is the turbulent 

dissipation . It is the variable that determines the scale of the turbulence, whereas the 

first variable, k, determines the energy in the turbulence. 

 

Fig. 1. Actual view of a curved self-weighted metallic roof. 

 

2. Mathematical modelling of turbulence 

Turbulence is a highly complex physical phenomenon that is dominant in flow 

problems of scientific and engineering concern. A simple, precise definition of 

turbulence is difficult though the phenomenon is often associated with the ideas of 

randomness, disorder, and chaos. 
 

Turbulence is defined as an “irregular flow condition showing random variations with 

respect to both time and space coordinates with discernible statistical properties”. A 

turbulent flow is a [12, 13]: 

 Highly non-linear flow process. 

 Highly diffusive flow. 

 Three-dimensional flow. 

 Flow with multiple length and time scales. 

 Time-dependent (stochastic) phenomenon with identifiable statistical properties. 
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Turbulence is one of the unsolved problems in physics, especially in the sense that 

universally applicable mathematical models of the phenomenon are not available. Our 

interest here will therefore focus on the modelling and simulation of turbulence from an 

engineering point of view. This approach implies that the detailed resolution of a 

turbulent flow will be eliminated in favour of some type of averaged flow description. 

Turbulence effects will enter the flow description via a model that is typically based on 

a combination of theory and experiment. 
 

Next, the equations for the mean flow will be described followed by an outline of 

various types of turbulence models. 

 

2.1. Governing equations 

A majority of researchers accept the notion that, in principle, the Navier-Stokes 

equations are capable of fully describing a turbulent flow. The natural question that 

follows this premise is if the Navier-Stokes equations are valid, why not solve them 

directly via a numerical method called Direct Numerical Simulation (DNS) to obtain the 

needed turbulent solution? 
 

The use of DNS is still possible only for rather simple flow cases at low Reynolds 

numbers. The restrictions of DNS are obvious since [12-16]: 

 The number of grid points needed for sufficient spatial resolution varies as 
9/4Re (characteristic eddy length is 0.001L , where L is the characteristic flow 

dimension). 

 The CPU-time varies as 3Re . 
 

The standard alternative to the DNS approach involves the solution to some form of 

averaged Navier-Stokes equations. In most flow problems of interest it is the mean flow 

that is of most concern, with the turbulent fluctuations only being important in how they 

influence the mean flow evolution. By performing a suitable average on the 

instantaneous Navier-Stokes equations, a standard mean flow problem can be derived 

where the effects of the turbulence are relegated to a few terms that can be modelled. 

This approach forms the basis for most of our current computational work. 
 

To outline this approach, let the instantaneous fluid velocity and pressure fields be 

expressed as the sum of a mean and fluctuating component. That is [13, 15, 16]: 

             
ii iu U u        (1) 

p P P        (2) 

Substituting these definitions into the incompressible, viscous flow equation produces 

the RANS equations [13, 15, 16]: 
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Eqs. (3) and (4) describe the behaviour of the mean fluid velocity and pressure fields. 

The extra term that appears in Eq. (4) is often termed the Reynolds stress and represents 
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the effects of the turbulent velocity fluctuations on the mean flow. Note that those 

second-order moments from the nine components of a second-order tensor, though 

symmetry considerations reduce this to a total of six independent unknowns. 

 

2.2. General turbulence models 

The completion of the mean flow boundary value problem described by Eqs. (3) and (4) 

requires that six additional equations for the Reynolds stresses be provided. This 

specification constitutes a turbulence model. There are an enormous variety of 

turbulence models, ranging in complexity from simple algebraic statements to 

descriptions involving multiple, non-linear partial differential equations. Unfortunately, 

there is no universal method of classification for such models which adds greatly to the 

confusion within the field. Here we follow the classification scheme by Ferziger and 

Peric [13, 17], which groups turbulence models according to the following labels: 

 Correlation. 

 Integral methods. 

 One point closure. 

 Two point closure. 

 Large eddy simulation. 

 Direct numerical simulation. 

 

2.3. One point closure models 

The majority of computational work, especially for industrial applications, has relied on 

some form of the one point closure model. A classification scheme for these models is 

shown in Fig. 2 [13]: 

 

Fig. 2. A classification scheme for the turbulent one point closure models. 

 

2.4. Eddy viscosity models 

Of the two major branches shown before, we will concentrate on the so-called eddy 

viscosity models. The Reynolds stress models (RSM), generally more sophisticated than 

the eddy viscosity approach, lead to large systems of partial differential equations and a 

large number of empirical parameters. It is important to note that eddy viscosity models 

are based on one major assumption: the Boussinesq hypothesis. By analogy with the 

molecular diffusion of momentum, the Boussinesq hypothesis relates the turbulent 

momentum transport to the gradients of the mean velocity field. The Reynolds stresses 

in (4) are then expressed by [13-18]: 

ji
i j T

j i

UU
u u

x x
 

 
    

  
    (5) 

where T  is the eddy viscosity. Unlike the molecular viscosity, μ, which is a fluid 

property, the eddy viscosity is a local property of the flow. 
 

When the definition in Eq. (5) is substituted into the momentum equation then the 

equations for the mean flow become: 
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Once the form of the eddy viscosity is specified then the mean flow can be solved in the 

same manner as a laminar flow since the equations are the same except for an 

augmented viscosity. Though the turbulent flow problem has been reduced to a familiar 

set of partial differential equations, there remains the nontrivial task of specifying how 

the eddy viscosity varies with the flow field. Scaling arguments show that the eddy 

viscosity is proportional to a characteristic eddy velocity, eu , and an eddy length, el . 

Therefore it is verified that [13-16]: 

T e eu l       (8) 

 

2.4.1. Zero-equation model 

The type of turbulence model used is determined by the number of equations used to 

specify the variation of the previous variables eu  and el . This model calculates the eddy 

viscosity by an algebraic prescription of eu  and el  based on Prandtl’s mixing length, 

which specifies el  to be the length scale across which turbulent mixing takes place. 

Prandtl gave the characteristic velocity eu  to be [13-16]: 
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For a number of geometrically simple flows, the variation of the mixing length, el , is 

well known and can be evaluated via simple formulas. Eq. (10) then allows to be 

derived and the turbulence model completed. Flows that are amenable to such treatment 

include pipe and channel flows, jets, wakes, and boundary layers. 

 

2.4.2. One-equation model 

The algebraic specification ofue can be replaced with a more generally applicable 

transport equation. Since the characteristic velocity eu  is proportional to the square root 

of the turbulent kinetic energy, k, then: 
1

2
eu k      (11) 

so that 
1

2
T ek l      (12) 

A partial differential equation for k can be derived from the Navier-Stokes equation and 

is given by [13-16, 19, 20]: 
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where G is a generation term, ε is the turbulent dissipation, and k  is a constant. 

 

2.4.3. Two-equation model 

A natural evolution of the one equation model involved the replacement of the algebraic 

relation for mixing length with a second transport equation. Dimensional arguments 

lead to the proportionality: 
3

2k
le


      (14) 

where ε is the turbulent dissipation. Substituting (14) and (11) into Eq. (8) produces the 

proportionality: 

           

2

T

k
 


      (15) 

or the Kolmogorov-Prandtl relation [13-16, 19, 20]: 
2

T

k
C 


     (16) 

which relates the eddy viscosity directly to the turbulent variables, k and ε. 

 

2.4.3.1. k   model 

The turbulent dissipation ε is described by an equation of similar form to Eq. (13) for k 

[13-16]: 

 1 2
T

j j

U c G cjt x x x kj 

   
  



      
      

      
  (17) 

where G is again a shear generation term and 1c and 2c are empirically derived constants 

as are k and
g . The two-equation k  model described by Eqs. (13) and (17) can be 

used in conjunction with the mean flow equations and the definition of T  given by Eq. 

(16), to arrive at a continuum description of turbulent flow. The equation set is highly 

non-linear, with a strong coupling between the various transport equations. 

The k  model is far from universal and has a number of weaknesses, though it 

remains one of the most heavily used methods for turbulent flow simulations.  

 

3. Implementation of the standard model 

The turbulent averaging process is introduced in order to obtain the laws of motion for 

the mean, time-averaged, turbulent quantities [12, 13]. This time averaging is to be 

defined in such a way as to remove the influence of the turbulent fluctuations while not 

destroying the time dependence associated with other time-dependent phenomena with 

time scales distinct from those of turbulence. For incompressible flows that are 

turbulent the use of the three dimensional equivalent of Navier-Stokes equations would 

be too expensive for engineering design calculations. For most practical calculations, 

the mean motion is of primary interest. This can be obtained by first averaging the 



 7 

equations over a small time T. This process produces the time-averaged governing 

equations: the RANS equations. 
 

In summary, in the framework of eddy viscosity models, the hydrodynamic behaviour 

of a turbulent incompressible fluid is governed by the RANS equations for the velocity 

u


 and pressure p: 

   , 0T

T

u
u u p u u u

t
 


           


  (18) 

where   depends only on the physical properties of the fluid, while T  is the turbulent 

eddy viscosity which is supposed to emulate the effect of unresolved velocity 

fluctuations u . 

If the standard k  model is employed, then
2

T

k
C


 , where k is the turbulent kinetic 

energy and is the dissipation rate. Hence, the above PDE system is to be 

complemented by two additional convection-diffusion-reaction equations for 

computation of k and  :  

T
k
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
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  
   (20) 

where
2

2

TT
kP u u


   and   are responsible for production and dissipation of 

turbulent kinetic energy, respectively. The default values of the involved empirical 

constants are as follows: 0.09C  , 1 1.44C  , 2 1.92C  , 1.0k  , 1.3  . Eqs. (18)-

(20) are to be endowed with appropriate initial/boundary conditions which will be 

discussed later. 
 

3.1. Iterative solution strategy 

The Navier-Stokes equations are an example of a non-linear mixed hyperbolic-parabolic 

system with non-linear hyperbolic convection terms u u  and a linear elliptic viscous 

terms u  . The discretization is space is performed by an unstructured grid finite 

element method. The incompressible Navier-Stokes equations are discretized using the 

nonconforming 1 0Q Q element pair, whereas standard 1Q elements are employed for k 

and  . After an implicit time discretization by the Crank-Nicolson or backward Euler 

methods, the nodal values of  ,v p  and  ,k   are updated in a segregated fashion 

within an outer iteration loop. 

 

For our purposes, it is worthwhile to introduce an auxiliary parameter k  , which 

makes it possible to decouple the transport equations (19) and (20) as follows [21-23]: 
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    (21) 
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This representation provides a positivity-preserving linearization of the sink terms, 

whereby the parameters T  and   evaluated using the solution from the previous outer 

iteration [21, 22, 24]. The iterative solution process is based on the following hierarchy 

of nested loops (see Fig. 3): 

 

Fig. 3. Hierarchy of nested loops for the iterative solution process. 

 

At each time step (one n loop  iteration), the governing equations are solved repeatedly 

within the outer k loop  which contains the two subordinate l loops  responsible for 

the coupling of variables within the corresponding subproblem. The embedded 

m loops  correspond to iterative flux/defect correction for the envolved convection-

diffusion operators. Flux limiters of TVD type are activated in the vicinity of steep 

gradients, where nonlinear artificial diffusion is required to suppress non-physical 

undershoots and overshoots. In the case of an implicit time discretization, subproblem 

(21)-(22) leads to a sequence of algebraic systems of the form [24]: 

 

 ( ) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1), , ,k l k m m m m m

TA u u r u u u             (23) 

where ( )mr is the defect vector and the superscripts refer to the loop in which the 

corresponding variable is updated. The predicted values ( 1)lk   and ( 1)l   are used to 

recompute the linearization parameter ( 1)l   for the next outer iteration (if any). The 

associated eddy viscosity T  is bounded from below by a certain fraction of laminar 

viscosity min0     and from above by max maxl k  , where maxl  is the maximum 

admissible mixing length (the size of the largest eddies, e.g., the width of the domain). 

Specifically, we define the limited mixing length *l  as: 
3

2 3
2

max
*

max

k
C if C k l

l

l otherwise

  



 

 



   (24) 

and calculate the turbulent eddy viscosity T  from the formula: 

                  min *max ,T l k       (25) 

The resulting value of (25) is used to update the linearization parameter: 

T

k
C


      (26) 

The above representation of T  and   makes it possible to preclude division by zero 

and obtain bounded nonnegative coefficients without manipulating the actual values of 

k and  . 

 

4. Hypotheses of this problem 

For the fluid phase, we do the following assumptions: 
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 The flow is incompressible and subsonic [4, 11, 14, 17, 18]: 

40 /
Ma 0.118 0.3 0

340 /

refv m s
v

c m s
          (27) 

 Standard k  turbulence modelling is used since the flow is highly turbulent 

[14, 17, 18]: 

10

9 2

. 40 / 8
Re 23.89 10

1.34 10 /

ref ref

ref

v L m s m

m s 


   


    (28) 

 

 

 

4.1. Wind speed profile 

The variation of the wind speed with respect to the height can be evaluated in a first 

approximation by means of the following potential-type expression [4, 11, 14, 17, 18]: 
n

wind ref

ref

h
v v

h

 
  

 
      (29) 

where: 

 windv   is the wind speed to the height h with respect to the ground in the X 

direction. 

 refv   is the wind speed known to the reference height 
refh . In our case we have 

taken a value of 40refv  m/s for 10refh  m. 

 h   is the height to which we wish to estimate the wind speed. 

 refh   is the reference height. 

 n   value that depends on the existing roughness in the place (location). 
 

Next, Table 1 shows an estimation of the value of n for different grounds: 
 

Table 1 

Value of n for different types of ground. 
 

In this study, we have taken 0.1n   corresponding to a smooth-type ground [4, 11, 14, 

17, 18]. 

 

5. Geometrical model and boundary conditions 

5.1. Geometrical model 

On the one hand, it is understood for domain the whole of space points where the 

objective functions must verify the differential equations of the model. In a boundary 

value problem, the values of some degrees of freedom in the boundary of domain are 

known. For this problem of external flow around a body (see Fig. 4), the domain is an 

air volume that does not contain the interior of the building. This air box is divided in 

finite elements with the characteristic properties of the air. This process is called 

meshing. All the volume of the box is meshed excepting but the space occupied by the 

industrial building. The size of the air box in the models, where the flow is studied 

around the body, is submerged in a stream, so that the position of the body inside the 
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domain depends on the size and shape of the body as well as the fluid-dynamical 

characteristics of the problem. 
 

Fig. 4. Dimensions of the roof: length 45L  m; width 30W  m; height 8H  m; 

arrow and 3.6f  m. 

 

5.2. Initial conditions 

It is rather difficult to devise a reasonable initial guess for a steady-state simulation or 

proper initial conditions for a dynamic one. If the velocity field is initialized by zero, it 

takes the flow some time to become fully turbulent. Therefore, we activate 

the k  model at a certain time * 0t   after the startup. During the laminar initial phase 

( *t t ), a constant effective viscosity  0 O   is prescribed. The values to be 

assigned to k and   at *t t  are uniquely defined by the choice of 0  and of the default 

mixing length  0 min max,l l l  where the threshold parameter minl  corresponds to the size 

of the smallest admissible eddies. Thus, we have: 
2 3/2

0 0
0 0

0 0

,
k

k C
l l






 
  
 

 at *t t    (30) 

Alternatively, the initial guess of k and can be estimated by means of a zero-equation 

(mixing length) turbulence model or computed using an extension of the inflow or wall 

boundary conditions (see below) into the interior of the computational domain. 
 

5.3. Implementation of boundary conditions 

The adopted boundary conditions in this problem are the following ones [4, 11, 13-16, 

19, 20]: 

 Inlet: U wind speed profile (indicated previously in Eq. 11); 

, 0V W  (components of wind speed in Y and Z directions are zero); 
2

bck c u , 
3/2

0C k l   on the inflow boundary in , where  0.003,0.01bcc   is an 

empirical constant and u u u  is the Euclidean norm of the velocity.  

 Outlet: Relative pressure 0p  . At the outlet out , the normal gradients of all 

variables are set equal to zero, which corresponds to the Neumann boundary 

condition: / 0
outlet

v n    (Homogeneous Neumann boundary condition for the 

velocity vector); 0n k  , that is to say, / 0
outlet

k n   ; 0n   , that is to 

say, / 0
outlet

n    (homogeneous Neumann boundary condition for the 

turbulent unknowns). 

 Solid walls: The non-slip condition ( , , 0U V W  ) is the appropriate condition for 

the velocity components at solid walls w  (roof and lateral walls). Close to the 

wall the flow is influenced by viscous effects and does not depend on free 

stream parameters. The implementation of wall boundary condition in turbulent 

flows is considered to be in the log-law region of a turbulent boundary layer [15, 

16]. 
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The two-dimensional model has been solved with a reference velocity of 40refv  m/s. 

 

5.4. Wall functions 

To complete the problem statement, we still need to prescribe the tangential stress as 

well as the boundary conditions for k and   on w . Note that the equations of the k   

model are invalid in the vicinity of the wall where the Reynolds number is rather low 

and viscous effects are dominant. In order to avoid the need for resolution of strong 

velocity gradients, wall functions are typically applied at an intenal boundary 
y  

located at a distance y from the solid wall w : 

2
T

T

u u
n u u

u




       , 

2u
k

C





 , 
3u

y




  on 
y   (31) 

where 0.41   is the von Kármán constant. The above mentioned free-slip condition is 

also to be imposed on 
y  rather than on w . Therefore, u  is the tangential velocity 

which can be used to compute the friction velocity u  from the nonlinear equation:  

1
log

u
y

u




  ,      (32) 

valid in the logarithmic layer, where the local Reynolds number 
u y

y 



   is in the 

range 11.06 300y  . The empirical constant 5.2   for smooth walls.  

 

Strictly speaking, a boundary layer of width y should be removed from the 

computational domain  . However, it is supposed to be very thin, so that the equations 

can be solved in the whole domainwith wall functions prescribed on the boundary 

part w  rather than on 
y . Since the choice of y is rather arbitrary, it is worthwhile to 

define the boundary layer width by fixing y , as proposed in [25, 26]. The implicitly 

defined y y u  is assumed to be the point where the logarithmic layer meets the 

viscous layer so that y  satisfies (32) as well as the linear relation y . The 

corresponding parameter value *y is given by:  

* *1
log 11.06y y 


       on  

y       (33) 

The use of *y  in the wall laws (31)-(33) yields an explicit relation for the friction 

velocity u  which is required to evaluate the tangential stress for the momentum 

equations [15, 16, 24]:  
*

*

T

T

u u
n u u

y



 

         where  
* 0.25

*
max ,

u
u C k

y
 



 
  

 
   (34) 

This expression provides a natural boundary condition for the tangential velocity: 

   
*

*

T

T

w w

u
n u u w ds u w ds

y




         
 

    (35) 

Due to (31), the boundary value of the turbulent eddy viscosity is proportional to  : 
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2
*

T

k
C u y y    


         (36) 

Of course, the above relation is satisfied automatically if the boundary conditions for k 

and   are implemented in the strong sense as proposed in [23, 24]. However, the use of 

Dirichlet boundary conditions means that the boundary values of k and   depend solely 

on the friction velocity *u u y   which is proportional to the flow velocity at the 

wall. This results in a one-way coupling of the boundary conditions which is rather 

unrealistic. In order to let k and   ‘float’ and influence the momentum equations via 

(34)-(35), the wall boundary conditions should be implemented in a weak sense. To this 

end, let us compute the boundary values of T  from Eq. (36) and invoke (31) to retrieve 

the normal derivatives of k and   follows: 

 0
k

n k
y


   


,    

3 5

2

1

T

u u
n

y y y

 


  


    


    (37) 

These natural boundary conditions are to be plugged into the surface integrals resulting 

from integration by parts in the variational formulation for Eqs. (21) and (22): 

  0T

kw

n k wds



 


,   

5
1T

w w

u
n wds wds

y



 




  
  

 
    (38) 

Furthermore, it is commonly assumed that kP   in the wall region, so that the correct 

boundary value of the production term must be computed from: 
3 3

*k

T

u u u
P

y y

 

  

  , where 0.25u C k       (39) 

The above implementation of wall functions is largely based on the publication of 

Grotjans and Menter [25] which should be consulted for further algorithmic details. 
 

Therefore, in the near-wall regions [13-16, 25-27]: 

 The use of Eqs. (13) and (17) implies that T   (high Reynolds k  model).  

 This is invalid close to a solid wall where the turbulent fluctuations are 

suppressed due to the presence of the viscous sublayer. 

 Therefore, adjacent to walls, special wall functions are introduced that assume a 

log-dependence of the tangential velocity on the normal coordinate so that the 

production of k is equal to the dissipation in the log-law region. 

 This is equivalent to introduce a mixing-length eddy viscosity formulation 

adjacent to a wall. 

 The use of the special wall functions provides boundary conditions on k and  

away from the wall. 
 

6. Finite element analysis and results 

In order to simulate the turbulent fluid flow, FLUID 141 element was used in this study 

[5, 13, 28]. This element is defined by three nodes (triangle) or four nodes 

(quadrilateral) as well as by isotropic material properties (see Fig. 5). 
 

In this element, the velocities are obtained from the conservation of momentum 

principle, and the pressure is obtained from the conservation of mass principle. A 
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segregated sequential solver algorithm is used; that is, the matrix system derived from 

the finite element discretization of the governing equation for each degree of freedom is 

solved separately. The flow problem is nonlinear and the governing equations are 

coupled together. The sequential solution of all the governing equations, combined with 

the update of pressure-dependent properties, constitutes a global iteration. The number 

of global iterations required to achieve a converged solution may vary considerably, 

depending on the size and stability of the problem. 

 

Fig. 5. Finite element FLUID 141 [28] used in the numerical simulation of laterally 

closed industrial buildings with curved metallic roofs by FEM. 
 

The two-dimensional model has been solved with a reference velocity of 40refv  m/s. 

Note that the negative pressure drop in the upper face of the roof ranges from 2,800 Pa 

to 200 Pa, a constant positive pressure in the upstream lateral wall of about 815 Pa and 

a constant negative pressure in the downstream lateral wall of about 85 Pa. Fig. 6a 

shows the pressure contour lines for the analyzed roof. Velocities in the building ranges 

from 95 m/s to 0 m/s, with an important gradient in the transition from the upstream 

lateral wall to the roof, as it is shown in Fig. 6b. Finally, Figs. 6c and 6d show the 

contour lines for the turbulent kinetic energy and turbulent dissipation rate, respectively, 

for the same reference velocity. 
 

Once we have solved the numerical model, it is proceeded to do the calculation of the 

pressure coefficient for the closed building analyzed. This coefficient [14, 18] is defined 

as    2

0 / / 2PC P P v   , where: P  is the pressure on the roof’s surface, 0P  is the 

pressure of the non-disturbed stream, v  is the wind speed of the non-disturbed stream at 

the corresponding height and   is the air density. 

 

Fig. 6. Numerical contour lines: (a) pressure (Pa) for 40refv  m/s; (b) velocity (m/s) 

for 40refv  m/s; (c) turbulent kinetic energy, k (J) and (d) turbulent dissipation rate,  

(J). 
 

 

Comparing the pressure coefficients estimated by the Spanish and European rules [4, 

11] with this one calculated by the finite element method (FEM), Fig. 7 is obtained. As 

it is observed in this figure, the agreement between European and CTE rules is quite 

good. Similarly, there is a good agreement between the old Spanish rule and the FEM 

results. The finite element results show that in the transition from the upstream lateral 

wall to the roof there is an important suction. The other previous rules do not take into 

account this phenomenon. Finally, from the structural point of view, the most secure 

rule is the old Spanish rule, according to the FEM results. 

 

Fig. 7. Pressure coefficient PC  obtained by FEM and the estimated ones by the 

Standard rules [4, 11]. 
 

 



 14 

7. Conclusions 

A computational procedure has been developed based on the general-purpose finite 

element code ANSYS-FLOTRAN [4, 28], for modelling and simulating the air pressure 

on the laterally closed industrial buildings with curved metallic roofs due to the wind 

effect. The findings of this study suggest that it may be possible to devise a practical 

procedure for stabilizing a self-weighted metallic roof model by using a computational 

approach. 
 

Turbulence plays an important role in many engineering process (fluid flow, mass and 

heat transfer, chemical reactions, etc.) which are dominated by convective transport. 

Since the direct numerical simulation (DNS) of turbulent flows is still prohibitively 

expensive, eddy viscosity models based on the Reynolds averaged Navier-Stokes 

(RANS) equations are commonly employed in CFD codes. One of the most popular 

ones is the standard k   model which has been in use since the 1970s. However, its 

practical implementation and, especially, the near-wall treatment has always been some 

somewhat of a mystery. A positivity-preserving discretization of the troublesome 

convective terms is an important prerequisite for the robustness of the numerical 

algorithm. This paper presents a detailed numerical study of the k   model using 

algebraic flux correction to enforce the positivity constraint. 
 

The problem was solved in a workstation computer with a CPU Intel Xeon 5140 @ 2.33 

GHz, 24 GB RAM memory and 4 TB hard disk. The total CPU time employed for each 

simulation was 1,845 seconds and the total number of iterations in order to get the 

convergence was about 7,100. 
 

It is clear that the finite element solution will solve only the selected mathematical 

model and that all assumptions in this model will be reflected in the predicted response 

[1-3]. We can not expect any more information in the prediction of physical phenomena 

than the information contained in the mathematical model. Hence the choice of an 

appropriate mathematical model is crucial and completely determines the insight into 

the actual physical problem that we can obtain by the analysis. The key step in 

engineering analysis is therefore choosing appropriate mathematical models. These 

models will clearly be selected depending on what phenomena are to be predicted, and 

it is most important to select mathematical models that are reliable and effective in 

predicting the quantities sought. 
 

The most effective mathematical model for the analysis is surely that one which yields 

the required response to a sufficient accuracy and at least cost [5, 13]. The chosen 

mathematical model is reliable if the required response is known to be predicted within 

a selected level of accuracy measured on the response of the very comprehensive 

mathematical model. These objectives have been achieved in this work. 

 

Finally, from a practical point of view, the best agreement among the standards and the 

FEM results corresponds to the NBE-AE Spanish rule. However, some local effects in 

the transition region from the upstream lateral wall to the roof are observed. This 

phenomenon is not taken into account for the remaining standards and it must be 
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addressed in the design of the building envelope, due to the important local suction 

effects. 
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Table 1 

Value of n for different types of ground 

Type of ground n 

Smooth (sea, sand, etc.) 0.10-0.13 

Moderately rough (grass, cereal country, 

rural regions) 

0.13-0.20 

Rough (forest, neighbourhoods) 0.20-0.27 

Very rough (cities, high buildings) 0.27-0.40 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Actual view of a curved self-weighted metallic roof. 

 

 

 



 

 

 

 

 

 

 

 

 

 
Fig. 2. A classification scheme for the turbulent one point closure models. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Hierarchy of nested loops for the iterative solution process. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Dimensions of the roof: length 45L  m; width 30W  m; height 8H  m; 

arrow and 3.6f  m. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Finite element FLUID 141 [28] used in the numerical simulation of laterally 

closed industrial buildings with curved metallic roofs by FEM. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 6. Numerical contour lines: (a) pressure (Pa) for 40v
ref

 m/s; (b) velocity (m/s) 

for 40v
ref

 m/s; (c) turbulent kinetic energy, k (J) and (d) turbulent dissipation rate,   

(J). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Pressure coefficient C
P

 obtained by FEM and the estimated ones by the 

Standard rules [4, 11]. 

 

 

 

 

 

 


