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The aim of this work is to study the analytic continuation of the doubly-periodic Barnes zeta func-

tion. By using a suitable complex integral representation as a starting point we find the meromorphic

extension of the doubly periodic Barnes zeta function to theentire complex plane in terms of a real

integral containing the Hurwitz zeta function and the first Jacobi theta function. These allow us to

explicitly give expressions for the derivative at all non-positive integer points.

I. INTRODUCTION

The Barnes zeta function, introduced for the first time in [1,2], represents a higher dimensional gener-

alization of the Hurwitz zeta function

ζH(s, a) =
∞
∑

n=0

(n+ a)−s forℜs> 1. (1.1)

Namely, lets∈ C, µ ∈ R+, andr ∈ Rd
+. Forℜs> d the Barnes zeta function is defined through the series

ζB(s, µ|r) =
∑

n∈Nd
0

(µ + n · r)−s , (1.2)

and it can be analytically continued in a unique way to a meromorphic function in the entire complex plane

possessing only simple poles ats = 1, 2, ..., d. In this work we shall be interested in the meromorphic

extension of a function closely related to the two dimensional Barnes zeta function. Letb, c ∈ R+, Ωm,n =

ibm+ cnwith m, n ∈ Z, anda ∈ C\Ωm,n. Forℜs> 2 we consider the following zeta function

ζ(s, a, b, c) =
∑

(m, n)∈Z2

(a+ ibm+ cn)−s , (1.3)

which is the kind of zeta function resulting from Dirac operators on the two-torus as considered in gener-

alized Thirring models [8]. The zeta function defined above is doubly-periodic with respect to the variable

a. In fact fork ∈ Z one has the relationsζ(s, a+ kc, b, c) = ζ(s, a, b, c) andζ(s, a+ ikb, b, c) = ζ(s, a, b, c),

and due to this double-periodicity we assume, without loss of generality, that 0< ℜa < c and 0< ℑa < b.
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Since the zeta function (1.3) is analytic in the semi-planeℜs > 2 and the ratio of the two periodsc and ib

is not a real number, one can conclude that (1.3) belongs to the class of elliptic functions [11].

The main idea of the present work is to represent the doubly-periodic Barnes zeta function (1.3) for

ℜs > 2 in terms of a contour integral in the complex plane. The desired analytic continuation of (1.3) to

the regionℜs≤ 2 is then achieved by a suitable deformation of the integration contour. This process yields

an expression for (1.3) valid in the entire complex plane in terms of an integral over the interval [0, 1] of

the Hurwitz zeta function and the logarithmic derivative ofthe first Jacobi theta function. The analytically

continued expression forζ(s, a, b, c) will allow us to very easily compute its values at all integer points,

s ∈ Z. In addition, we will also provide an explicit expression for the derivative ofζ(s, a, b, c) with respect

to sat all non-positive integer points.

We would like to point out that one of the main advantages of our study of the analytic continuation of

(1.3) is that its double-periodicity property remainsmanifestin all the formulae. This is an aesthetically

pleasing feature that can also be desirable if one wishes to implement these expressions in a computer pro-

gram for numerical evaluations. The study of a zeta functionclosely related to the doubly-periodic Barnes

zeta function considered here has appeared in [4] where a method for obtaining its analytic continuation

was used which differs from the one we employ in this work.

The outline of the paper is as follows. In the next section we construct a contour integral representation

for ζ(s, a, b, c) valid forℜs > 2. From this representation we perform, in Section III, the analytic contin-

uation in the entire complex plane. Section IV is devoted to the explicit computation of the derivative of

ζ(s, a, b, c) with respect to the first variable at all negative integer points and ats= 0.

II. CONTOUR INTEGRAL REPRESENTATION OF ζ(s, a, b, c)

As we have already mentioned in the Introduction, the main idea of our approach is to represent the

doubly-periodic Barnes zeta function (1.3) in terms of a contour integral. Since by assumptionc , 0 we

introduce, for convenience, the function

fm(n, s) =
1

(αm+ n)s , (2.1)

with n ∈ Z andαm =
a
c + i b

cm ∈ C\{0}, wherem ∈ Z. Obviously, in terms of the newly introduced function

fm(n, s), the zeta function (1.3) reads

ζ(s, a, b, c) = c−s
∑

m∈Z

∑

n∈Z

fm(n, s) . (2.2)
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By utilizing Cauchy’s residue theorem we rewrite the sum over the indexn in (2.2) as a contour integral.

More precisely one has

∑

n∈Z

1
(αm + n)s =

∑

n∈Z

fm(n, s) =
1

2πi

∫

Γ

dz fm(z, s) π cot(πz) , (2.3)

whereΓ is a contour that encloses counterclockwise all the (simple) poles of the functionπ cot(πz). Let us

point out that the representation (2.3) is well defined in theregionℜs> 2.

Before specifying the integration contourΓ in detail, we would like to observe that the functionfm(z, s),

obtained from (2.1) by replacingn with z, possesses branch cuts extending from the pointsz = −αm.

The exact position of the cut will depend explicitly on the summation indexm. First, note that from the

assumptions stated below (1.3) one obtains the inequalities b/c > 0,ℜ(a/c) > 0, andℑ(a/c) > 0. This

allows us to conclude thatℜαm > 0 for all m, ℑαm > 0 for m≥ 0 andℑαm < 0 for m< 0. The last remark

shows that the cut lies in the lower half complex plane whenm ≥ 0 and in the upper half complex plane

whenm ≤ −1. The contourΓ has to be chosen in such a way to enclose only the poles of cot(πz) but not

the branch points of the functionfm(z, s). More precisely, the contour is the unionΓ = Γ+ ∪ Γ− whereΓ+

satisfies the property 0< ℑΓ+ < −ℑαm for m ≤ −1 while Γ− satisfiesℑαm < ℑΓ− < 0 for m ≥ 0 (which

simply means that the contour is closer to the real axis than the cut). The contourΓ is depicted in Figure 1

with −α≥0 and−α≤−1 denoting representatives of the set of branch points with index m ≥ 0 andm ≤ −1,

respectively.

With the contour of integration completely determined we can express the left hand side of (2.3) as a

sum of two contributions

∑

n∈Z

1
(αm+ n)s =

1
2πi

∫

Γ+

dz fm(z, s) π cot(πz) +
1

2πi

∫

Γ−

dz fm(z, s) π cot(πz) . (2.4)

The next step of our approach is to rewrite the integrand in (2.4) in a way that will allow a separate

treatment of the integral overΓ+ and overΓ−. By utilizing the complex exponential representation of the

function cot(πz) and after some straightforward algebraic manipulations we obtain

cot(πz) = −i

(

1+
2

e−2πiz − 1

)

, for ℑz> 0 , (2.5)

and

cot(πz) = i

(

1+
2

e2πiz − 1

)

, for ℑz< 0 . (2.6)

SinceℑΓ+ > 0 andℑΓ− < 0, we use the representation (2.5) for the integral overΓ+ and the representation

(2.6) for the integral overΓ−. Proceeding in this fashion leads to the results

1
2πi

∫

Γ+

dz fm(z, s) π cot(πz) = −
1
2

∫

Γ+

dz fm(z, s) −
∫

Γ+

dz
fm(z, s)

e−2πiz − 1
, (2.7)
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ℜz

ℑz
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Figure 1: Integration contour used for the representation (2.3)

and

1
2πi

∫

Γ−

dz fm(z, s) π cot(πz) =
1
2

∫

Γ−

dz fm(z, s) +
∫

Γ−

dz
fm(z, s)

e2πiz − 1
. (2.8)

The next step is the deformation of the integration contourswhich is the subject of the following Lemma.

Lemma 1. LetΓ = Γ+ ∪ Γ− be the integration contour described above, and z= u+ αm with m∈ Z. Then,

in the semi-planeℜs> 2, one obtains

1
2πi

∫

Γ

dz fm(z, s) π cot(πz) = −
∫

γ

du
u−s

e−2πi(u−α≤−1) − 1
+

∫

γ

du
u−s

e2πi(u−α≥0) − 1
, (2.9)

whereγ is a contour enclosing in the clockwise direction the negative real axis including the point u= 0.

Proof. The proof of this result is based on a suitable deformation ofthe integration contourΓ. Before

deforming the contour, we focus on the first term on the left hand side of (2.7) and (2.8). From the definition

of the function fm(z, s) in (2.1) we can write
∫

Γ+

dz fm(z, s) =
∫ −∞

∞

dx (x+ αm + iℑΓ+)
−s . (2.10)

Since, by assumption, the analysis is restricted to the regionℜs> 2 and sinceℜαm > 0 one can conclude

that for allm
∫

Γ+

dz fm(z, s) = 0 . (2.11)
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By using a similar argument one can prove that for allm the following relation holds

∫

Γ−

dz fm(z, s) =
∫

+∞

−∞

dx (x+ αm− iℑΓ−)
−s
= 0 . (2.12)

Let us consider next the second integral on the right hand side of (2.7), which can be rewritten as

∫

Γ+

dz
fm(z, s)

e−2πiz − 1
=

∫ −∞

∞

dx (x+ αm + iℑΓ+)
−s 1

e−2πi(x+αm)e2πℑΓ+ − 1
, (2.13)

and is convergent forℜs > 2. If the branch cut extends from the points−α≥0, which simply means that it

lies in the lower half plane, the contourΓ+ can be shifted away to infinity in the upper half plane and does

not contribute. In fact

∣

∣

∣

∣

∣

(x+ α≥0 + iℑΓ+)
−s 1

e−2πi(x+α≥0)e2πℑΓ+ − 1

∣

∣

∣

∣

∣

≤
1

e2πℑΓ+ − 1

[

(x+ α≥0)2
+ (ℑΓ+)

2
]− s

2 −→ 0 , (2.14)

asℑΓ+ → ∞. If, on the other hand, the branch cut extends from the points−α≤−1 in the upper half plane,

we shift the contourΓ+ around the branch cut as shown in Figure 2.

The second integral overΓ− in (2.8) is convergent forℜs> 2 and can be expressed as
∫

Γ−

dz
fm(z, s)

e2πiz − 1
=

∫ ∞

−∞

dx (x+ αm− iℑΓ−)
−s 1

e2πi(x+αm)e−2πℑΓ− − 1
. (2.15)

By using arguments similar to the ones outlined above one canprove that if the cut extends from the branch

points−α≤−1 in the upper half plane, then we can shift the contourΓ− away to infinity, namelyℑΓ− → −∞,

and the integral (2.15) vanishes. If, instead, the branch cut extends from the points−α≥0, in the lower half

plane, we shift the contourΓ− as shown in Figure 2.

We can therefore conclude that form≤ −1 only the integral over the deformedΓ+ gives a non-vanishing

contribution and by making the substitutionu = z+ α≤−1 we obtain

1
2πi

∫

Γ+

dz fm(z, s) π cot(πz) = −
∫

γ

du
u−s

e−2πi(u−α≤−1) − 1
, (2.16)

whereγ is a contour enclosing in the clockwise direction the negative real axis including the pointu = 0 as

shown in Figure 3. By using a similar argument, whenm≥ 0, we obtain

1
2πi

∫

Γ−

dz fm(z, s) π cot(πz) =
∫

γ

du
u−s

e2πi(u−α≥0) − 1
. (2.17)

By substituting the results (2.16) and (2.17) in the relation (2.4) we find the claim (2.9). �

Lemma 1 immediately allows to rewrite the doubly-periodic Barnes zeta function. First note, that from

the expressions (2.1) and (2.2) we can write

ζ(s, a, b, c) =
c−s

2π

∑

m∈Z

∫

Γ

dz fm(s, z) cot(πz) , (2.18)
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which by using Lemma 1 gives

ζ(s, a, b, c) = −c−s
−∞
∑

m=−1

∫

γ

du
u−s

e−2πi(u− a
c−i b

c m) − 1
+ c−s

∞
∑

m=0

∫

γ

du
u−s

e2πi(u− a
c−i b

c m) − 1

= c−s
∫

γ

du
u−s

e2πi(u− a
c ) − 1

+ c−s
∞
∑

m=1

∫

γ

du u−s
{

1

e2πi(u− a
c)+2π b

c m− 1
−

1

e−2πi(u− a
c)+2π b

c m− 1

}

, (2.19)

where the integral in the second line represents the contribution due tom= 0. By introducing a new variable

q ∈ R defined asq = e−πb/c and by combining the two exponentials in the last line of (2.19) we find the

expression

ζ(s, a, b, c) = c−s
∫

γ

du
u−s

e2πi(u−a/c) − 1

+c−s
∞
∑

m=1

∫

γ

du u−s

















−2i sin
(

2π
[

u−
a
c

]) q2m

1− 2 cos
(

2π
[

u− a
c

])

q2m + q4m

















, (2.20)

which, once again, is valid forℜs > 2. The second integral appearing in (2.20), although rathercumber-

some, can be expressed in terms of a simple special function.In fact, letτ ∈ C with |τ| < 1 andz ∈ C; the

first Jacobi theta functionϑ1(z; τ) has the following representation as an infinite product [6]

ϑ1(z; τ) = 2τ1/4 sinz
∞
∏

n=1

(

1− 2τ2n cos(2z) + τ4n
) (

1− τ2n
)

. (2.21)

By taking the derivative of the logarithm of (2.21) and by using q introduced below (2.19) forτ, we obtain

the formula [5]

d
dz

lnϑ1(z; q) =
ϑ′1(z; q)

ϑ1(z; q)
= cotz+ 4 sin(2z)

∞
∑

n=1

q2n

1− 2q2n cos(2z) + q4n
. (2.22)

Since|q| < 1, for any finitez the sum in (2.22) is absolutely convergent [9]. This implies, in particular, that

the convergence of the series in (2.22) is uniform inz in the region|ℑz| < πb/c. The last remark justifies

the interchange of the sum and the integral in (2.20) to obtain, by using the expression (2.22) with the

substitutionz→ π(u− a/c), the representation

ζ(s, a, b, c) = c−s
∫

γ

du
u−s

e2πi(u−a/c) − 1
+

i
2

c−s
∫

γ

du u−s cot
(

π

[

u−
a
c

])

−
i

2π
c−s

∫

γ

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

; q
)

, (2.23)

where the contourγ is chosen so that|ℑγ| < πb/c in order to allow the use of (2.22). By combining the first

two integrals in (2.23) and by using the relation

1

e2πix − 1
+

i
2

cotπx = −
1
2
, (2.24)
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we find

ζ(s, a, b, c) = −
i

2π
c−s

∫

γ

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

; q
)

−
c−s

2

∫

γ

du u−s . (2.25)

Sinceℜs> 2, the second integral in (2.25) gives a vanishing contribution and we are left with the following

compact representation

ζ(s, a, b, c) = −
i

2π
c−s

∫

γ

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

; q
)

. (2.26)

We would like to point out that the last integral representation preserves the double-periodicity property of

the original sum in (1.3). In fact, letm, n ∈ Z. By using (2.26) we write

ζ(s, a+ nc+ imb, b, c) = −
i

2π
c−s

∫

γ

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

− nπ − imπ
b
c

; q

)

. (2.27)

Now, let zm, n = (m+ nτ)π denote the vertices of the fundamental parallelogram in thez-plane. Then the

first Jacobi theta function is quasi-periodic on the lattice[5]

ϑ1(z+ (m+ nτ)π; τ) = (−1)m+ne−i(2nz+πn2τ)ϑ1(z; τ) . (2.28)

By utilizing (2.28) in (2.27) we obtain

ζ(s, a+ nc+ imb, b, c) = −nc−s
∫

γ

du u−s
+ ζ(s, a, b, c) = ζ(s, a, b, c) , (2.29)

where, as before, the last equality follows from the fact that sinceℜs> 2 the integral overγ vanishes.

The representation (2.26) allows to easily computeζ(s, a, b, c) for s= n, n ∈ N, n ≥ 2. For these values

of s, the contour encloses a singularity atu = 0 of ordern and the residue theorem immediately shows

ζ(n, a, b, c) = −
i

2π
c−n

∫

Cε
du u−n d

du
lnϑ1

(

π

[

u−
a
c

]

; q
)

= −

(

π

c

)n 1
(n− 1)!

dn

dun lnϑ1(u; q)
∣

∣

∣

∣

u=−π a
c

=

(

π

c

)n 1
(n− 1)!

dn

dun lnϑ1(u; q)
∣

∣

∣

∣

u=π a
c

. (2.30)

We next use (2.26) to construct the representation ofζ(s, a, b, c) valid in the whole complex plane.

III. ANALYTIC CONTINUATION

The integration contourγ in (2.26) consists of a union of three distinct paths, namelyγ = γ+ ∪Cε ∪ γ−,

whereCε is the circular portion of radiusε centered at the origin,γ+ is the straight path positioned at a

distanceδ above the negative real axis, andγ− represents the straight path positioned at a distanceδ below
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the negative real axis. Furthermore, for later use, we denote by−ε̃ the projection on the negative real axis

of the intersection ofγ+ (or γ−) with the circular portionCε of the integration path. This remark allows us

to rewrite (2.26) as

ζ(s, a, b, c) = −
i

2π
c−s

∫

Cε
du u−s d

du
lnϑ1

(

π

[

u−
a
c

]

; q
)

−
i

2π
c−s

∫

γ+∪γ−

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

; q
)

.

(3.1)

The last representation is a suitable starting point from which we can proceed with the analytic continuation

to the regionℜs≤ 2.

The first term in (3.1), namely the integral alongCε, is left unchanged; it will be dealt with later. The

second term in (3.1) can be expressed as a sumIγ+ + Iγ− , whereIγ+ represents the integral over the path

γ+ andIγ− the one over the pathγ−. We will present details for the integralIγ+ , Iγ− follows accordingly.

We parameterize the pathγ+ asu = iδ + x, with x ∈ (−∞,−ε̃], and rewrite the integral overγ+ as follows

Iγ+ = −
i

2π
c−s

∫

γ+

du u−s d
du

lnϑ1

(

π

[

u−
a
c

]

; q
)

= −
i

2π
c−s

∫ −ε̃

−∞

dx (x+ iδ)−s d
dx

lnϑ1

(

π

[

x+ iδ −
a
c

]

; q
)

=
i

2π
c−s

∫ ∞

ε̃

dx (iδ − x)−s d
dx

lnϑ1

(

π

[

iδ − x−
a
c

]

; q
)

. (3.2)

The integral in the last line of (3.2) is well defined at the lower limit of integration. To establish the

convergence at the upper limit of integration it seems we would need to analyze the asymptotic behavior of

the integrand asx → ∞. However, this analysis can be avoided by using the following quasi-periodicity

property

ϑ1(u+ π; q) = −ϑ1(u; q) , (3.3)

which is obtained by settingn = 0 andm= 1 in the more general formula (2.28).

In order to exploit the above property we representIγ+ as

Iγ+ =
i

2π
c−s

∞
∑

n=0

∫ n+1+ε̃

n+ε̃
dx (iδ − x)−s d

dx
lnϑ1

(

π

[

iδ − x−
a
c

]

; q
)

, (3.4)

and perform the change of variablesx = y+ n to obtain

Iγ+ =
i

2π
c−s

∞
∑

n=0

∫ 1+ε̃

ε̃

dy (iδ − y− n)−s d
dy

lnϑ1

(

π

[

iδ − y− n−
a
c

]

; q
)

. (3.5)

Next we sendδ → 0, in which case ˜ε → ε. By using the quasi-periodicity (3.3) in the expression (3.5), we

then have

Iγ+ =
i

2π
c−se−iπs

∞
∑

n=0

∫ 1+ε

ε

dy (y+ n)−s d
dy

lnϑ1

(

π

[

−y−
a
c

]

; q
)

. (3.6)
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We note, at this point, that the series
∑∞

n=0(y + n)−s converges uniformly iny in the interval [ε, 1 + ε] for

ℜs> 1. This allows us to rewrite (3.6) as

Iγ+ =
i

2π
c−se−iπs

∫ 1+ε

ε

dy ζH(s, y)
d
dy

lnϑ1

(

π

[

−y−
a
c

]

; q
)

, (3.7)

where the Hurwitz zeta functionζH(s, x) in equation (1.1) has been used. As is well known, the Hurwitz

zeta function can be analytically continued in a unique way to a meromorphic function in the entire complex

plane possessing only a simple pole with residue 1 at the point s= 1.

For the integralIγ− over the lower part of the contour we proceed similarly to obtain

Iγ− = −
i

2π
c−seiπs

∫ 1+ε

ε

dy ζH(s; y)
d
dy

lnϑ1

(

π

[

−y−
a
c

]

; q
)

. (3.8)

By adding the contribution fromIγ+ andIγ− we obtain the result

Iγ+∪γ− = Iγ+ + Iγ− =
sin(πs)
π

c−s
∫ 1+ε

ε

dy ζH(s; y)
d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

. (3.9)

Noticing that the integral alongCε in (3.1) is defined fors ∈ C, the above expression performs the analytic

continuation ofζ(s, a, b, c) in terms of the Hurwitz zeta functionζH(s, y) to the full complex plane and it is

valid for ε > 0 small enough. By choosingℜs< 1, the limitε→ 0 can be performed and the integral along

Cε in (3.1) can be seen to vanish.

We can now summarize the results obtained in this Section as follows:

Theorem 1. Let ζ(s, a, b, c) denote the doubly-periodic Barnes zeta function defined in (1.3).

If ℜs< 1, then

ζ(s, a, b, c) =
sin(πs)
π

c−s
∫ 1

0
dy ζH(s; y)

d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

. (3.10)

If s = n with n∈ N+ − {1}, then

ζ(n, a, b, c) =
(

π

c

)n 1
(n− 1)!

dn

dun lnϑ1(u; q)
∣

∣

∣

∣

u=π a
c

. (3.11)

Due to the prefactor sin(πs)/π in the integral representation (3.10), the substitutions= −n with n ∈ N0

leads to a vanishing contribution ofζ(s, a, b, c) when the first argument is a negative integer including zero.

This remark proves the following

Corollary 1. Let n∈ N0, thenζ(−n, a, b, c) = 0.

In order to find the representation ofζ(s, a, b, c) valid for ℜs > 1, note that fory → 0 we have the

behavior

ζH(s, y) =
1
ys + ζR(s) + O(y) , (3.12)
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where the first term results from then = 0 contribution in (1.1). This is the term responsible for the

restrictionℜs < 1 found in the previous results. The analytic continuation of (3.10) to the full plane is

found by observing that

ζH(s, y) =
1
ys
+ ζH(s, y+ 1) . (3.13)

By substituting (3.13) in the representation (3.10) we find that the second term in (3.13) gives a function

holomorphic fors ∈ C. The resulting contribution to (3.10) coming from the first term in (3.13) gives,

instead, the integral

Io =

1
∫

0

dy y−s d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

, (3.14)

which is valid forℜs< 1. At this point, partial integration can be applied repeatedly to obtain a representa-

tion that extends expression (3.14) further to the right ofℜs= 1. For example, after one partial integration

(3.14) reads

I0 =
1

1− s























d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

∣

∣

∣

∣

∣

y=1
−

1
∫

0

dy y−s+1 d2

dy2
lnϑ1

(

π

[

y+
a
c

]

; q
)























, (3.15)

which is now valid forℜs < 2. After n partial integrations a representation valid forℜs < n+ 1 is found

and (3.11) can be verified from there. The above representation also shows

ζ(1, a, b, c) =
π

c
d
du

lnϑ1(u; q)
∣

∣

∣

∣

u=π a
c

−
1
c

ln
ϑ1

(

π
(

1+ a
c

)

; q
)

ϑ1

(

πa
c ; q

) , (3.16)

where the first term comes fromI0, and the second term from the pole ofζ(s; y + 1) at s = 1. The second

term can be simplified noting

ln
ϑ1

(

π
[

1+ a
c

]

; q
)

ϑ1

(

πa
c; q

) = −iπ , (3.17)

which can be proved starting from the property (3.3).

IV. THE DERIVATIVE OF THE DOUBLY-PERIODIC BARNES ZETA FUNCTION AT NEGATIVE

INTEGERS

In addition to the results already presented, from the integral representation (3.10) one can compute

the derivative of the doubly-periodic Barnes zeta functionwith respect to the first variable. Differentiating
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(3.10) leads to the result

ζ′(s, a, b, c) = cos(πs)c−s
∫ 1

0
dy ζH(s; y)

d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

−
sin(πs)
π

c−s ln c
∫ 1

0
dy ζH(s; y)

d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

+
sin(πs)
π

c−s
∫ 1

0
dy ζ′H(s; y)

d
dy

lnϑ1

(

π

[

y+
a
c

]

; q
)

, (4.1)

where, here and in the rest of this work, the prime indicates differentiation with respect to the variables. By

settings= 0 in (4.1) and by noting that forn ∈ N0 the following relation holds [6]

ζH(−n, x) = −
Bn+1(x)
n+ 1

, (4.2)

with Bn(x) denoting the Bernoulli polynomials defined in terms of the Bernoulli numbersBk as

Bn(x) =
n

∑

k=0

(

n
k

)

Bkxn−k , (4.3)

we find

ζ′(−n, a, b, c) = (−1)n+1cn
n+1
∑

k=0

(

n+ 1
k

)

Bk

n+ 1

∫ 1

0
dy yn−k+1 d

dy
lnϑ1

(

π

[

y+
a
c

]

; q
)

. (4.4)

Integrating by parts (4.4) yields the result

ζ′(−n, a, b, c) =
(−1)n+1cn

n+ 1
lnϑ1

(

π

[a
c
+ 1

]

; q
) n
∑

k=0

(

n+ 1
k

)

Bk +
(−1)n+1cn

n+ 1
Bn+1 ln

ϑ1

(

π
[

1+ a
c

]

; q
)

ϑ1

(

πa
c; q

)

−
(−1)n+1cn

n+ 1

n
∑

k=0

(

n+ 1
k

)

(n− k+ 1)Bk

∫ 1

0
dy yn−k lnϑ1

(

π

[

y+
a
c

]

; q
)

. (4.5)

At this point it is convenient to distinguish between two cases: n = 0 andn ≥ 1. The reason for this

distinction lies in the relation [6]

n
∑

k=0

(

n+ 1
k

)

Bk =



















0 for n ≥ 1

B0 for n = 0 .
(4.6)

By exploiting the above relation and (3.17), one obtains

ζ′(0, a, b, c) = − lnϑ1

(

π
a
c

; q
)

+
iπ
2
+

∫ 1

0
dy lnϑ1

(

π

[

y+
a
c

]

; q
)

, (4.7)

and, whenn ≥ 1,

ζ′(−n, a, b, c) = iπ
(−1)ncn

n+ 1
Bn+1 +

(−1)ncn

n+ 1

n
∑

k=0

(

n+ 1
k

)

(n− k+ 1)Bk

∫ 1

0
dy yn−k lnϑ1

(

π

[

y+
a
c

]

; q
)

.(4.8)

The integrals that appear in (4.7) and (4.8) can be computed from the results of the following lemma.
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Lemma 2. For 0 < ℑz< πℑτ with q= eiπτ, one has a Fourier-type representation

lnϑ1(z; q) =
1
6

ln q+ ln η(τ) + ln(2 sinz) − 2
∞
∑

n=1

q2n

1− q2n

cos(2nz)
n

. (4.9)

Proof. The logarithmic derivative of the first Jacobi theta function can be represented in terms of an infinite

series for 0< ℑz< πℑτ as [5, 6]

d
dz

lnϑ1(z; q) = cotz+ 4
∞
∑

n=1

q2n

1− q2n
sin(2nz) = cotz+ 4

∞
∑

n=1

q2n sin(2z)
1− 2q2n cos(2z) + q4n

. (4.10)

Anti-differentiation of (4.10) yields

lnϑ1(z; q) = f (q)+ln sinz−2
∞
∑

n=1

q2n

1− q2n

cos(2nz)
n

= f (q)+ln sinz+
∞
∑

n=1

ln
(

1− 2q2n cos(2z) + q4n
)

, (4.11)

where f (q) is an arbitrary function. In order to determine the unknownf (q) we use the infinite product

representation [5, 6]

ϑ1(z; q) = 2G(q)q
1
4 sinz

∞
∏

n=1

(

1− 2q2n cos(2z) + q4n
)

, (4.12)

where

G(q) =
∞
∏

n=1

(

1− q2n
)

. (4.13)

From equation (4.12) and by recalling that the Dedekind eta function is defined forℑτ > 0 andq = eiπτ as

η(τ) = e
iπτ
12

∞
∏

n=1

(

1− q2n
)

, (4.14)

one can easily find

lnϑ1(z; q) = ln 2+ ln η(τ) +
1
6

ln q+ ln sinz+
∞
∑

n=1

ln
(

1− 2q2n cos(2z) + q4n
)

. (4.15)

By comparing (4.11) with (4.15) we finally find that

f (q) = ln 2+ ln η(τ) +
1
6

ln q . (4.16)

Substitution of the explicit expression (4.16) for the function f (q) in (4.11) yields the claim (4.9). �

The use of (4.9) in the expression (4.7) allows us to obtain the following result for the derivative of the

doubly-periodic Barnes zeta function ats= 0,

ζ′(0, a, b, c) = − lnϑ1

(

π
a
c

; q
)

+
iπ
2
+

1
6

ln q+ ln η

(

i
b
c

)

+

∫ 1

0
ln

(

2 sin
[

π

(

y+
a
c

)])

. (4.17)
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Whenn ≥ 1, we use once again the result (4.9) in (4.8). By performing this substitution and by recalling

(4.6) one obtains

ζ′(−n, a, b, c) =
(−1)ncn

n+ 1

n
∑

k=0

(

n+ 1
k

)

(n− k + 1)Bk

















In−k

(a
c

)

− 2
∞
∑

l=1

q2l

1− q2l

1
l
Jn−k,l

(a
c

)

















+ iπ
(−1)ncn

n+ 1
Bn+1, (4.18)

where we have introduced for typographical convenience thefunctions

In−k

(a
c

)

=

∫ 1

0
dy yn−k ln

(

2 sin
[

π

(

y+
a
c

)])

, (4.19)

Jn−k,l

(a
c

)

=

∫ 1

0
dy yn−k cos

(

2πl
[

y+
a
c

])

. (4.20)

Note that the integral appearing in (4.17) reduces, according to the definition (4.19), toI0 (a/c).

The integrals (4.19) and (4.20) can actually be explicitly computed in terms of polylogarithmic functions

and trigonometric functions, respectively. The followinglemma provides an expression for the function

In−k (a/c).

Lemma 3. For n ∈ N0 and for A∈ C\Z,

In (A) = −
iπn

2(n+ 1)(n+ 2)
−

iπA
n+ 1

+
(−A)n+1

n+ 1

n+1
∑

k=1

(

n+ 1
k

)

(−1)k
k

∑

l=1

k!
(k− l)!

(

i
2πA

)l


















k−l
∑

j=1

(

k− l
j

)

A− j



















Li l+1

(

e2πiA
)

. (4.21)

Proof. Performing an integration by parts leads to the expression

In (A) =
ln 2

n+ 1
+

iπ
n+ 1

+
1

n+ 1
ln sin(πA) −

π

n+ 1

∫ 1

0
dy yn+1 cot

(

π
[

y+ A
])

. (4.22)

The integral in (4.22) containing the cotangent can be explicitly computed in terms of polylogarithmic

functions. First, by exploiting the change of variablesy+ A→ y, we obtain

∫ 1

0
dy yn+1 cot

(

π
[

y+ A
])

=

n+1
∑

k=0

(

n+ 1
k

)

(−A)n+1−k
∫ A+1

A
dy yk cot(πy) , (4.23)

and by rewriting the cotangent in terms of complex exponentials the integral on the right-hand side of (4.23)

takes the form
∫ A+1

A
dy yk cot(πy) = −i

∫ A+1

A
dy yk

+ 2i
∫ A+1

A
dy yk e2πiy

e2πiy − 1
. (4.24)

This can be rewritten using the polylogarithmic function defined for |z| < 1 ands∈ C by the sum

Li s(z) =
∞
∑

n=1

zn

ns , (4.25)
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and by analytic continuation in the entire complexz-plane [7]. Of particular importance to our analysis is

the following property satisfied by the polylogarithmic function [7]

1
2πi

d
dy

Lin

(

e2πiy
)

= Lin+1

(

e2πiy
)

, (4.26)

and since

Li0

(

e2πiy
)

= −
e2πiy

e2πiy − 1
, (4.27)

we have that

−
1

2πi
d
dy

Li1

(

e2πiy
)

=
e2πiy

e2πiy − 1
. (4.28)

The result (4.28) employed in (4.24) yields

2i
∫ A+1

A
dy yk e2πiy

e2πiy − 1
= −

1
π

∫ A+1

A
dy yk d

dy
Li1

(

e2πiy
)

. (4.29)

Integrating by partsk times and using, at each step, the relation (4.26) leads to

−
1
π

∫ A+1

A
dy yk d

dy
Li1

(

e2πiy
)

= −
1
π

k
∑

n=0

k!
(k− n)!

(−1)nyk−n

(2πi)n Lin+1

(

e2πiy
)

∣

∣

∣

∣

∣

∣

A+1

A

= −
1
π

k
∑

n=0

k!
(k− n)!

(−1)n

(2πi)n

k−n
∑

l=1

(

k− n
l

)

Ak−n−lLin+1

(

e2πiA
)

. (4.30)

In light of the previous result and after computing the elementary integral on the right-hand side of (4.24)

we can conclude that
∫ A+1

A
dy yk cot(πy) = −

i
k+ 1

k+1
∑

l=1

(

k+ 1
l

)

Ak+1−l −
1
π

k
∑

n=0

k!
(k− n)!

(−1)n

(2πi)n

k−n
∑

l=1

(

k − n
l

)

Ak−n−lLin+1

(

e2πiA
)

.

(4.31)

By substituting expression (4.31) in (4.23) we obtain, for (4.22),

In (A) =
ln 2

n+ 1
+

iπ
n+ 1

+
1

n+ 1
ln sin(πA) +

iπ(−A)n+2

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k+1

k + 1

k+1
∑

l=1

(

k + 1
l

)

A−l

+
(−A)n+1

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k
k

∑

l=0

k!
(k − l)!

(

i
2πA

)l


















k−l
∑

j=1

(

k− l
j

)

A− j



















Li l+1

(

e2πiA
)

. (4.32)

The above result can be simplified further, in fact

iπ(−A)n+2

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k+1

k+ 1

k+1
∑

l=1

(

k+ 1
l

)

A−l
=

iπ(−A)n+2

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k+1

k+ 1















(

1+
1
A

)k+1

− 1















, (4.33)

and by using the relation, valid forα ∈ C [6],

m
∑

k=0

(

m
k

)

αk+1

k+ 1
=

(α + 1)m+1 − 1
m+ 1

, (4.34)
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one obtains

iπ(−A)n+2

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k+1

k + 1

k+1
∑

l=1

(

k+ 1
l

)

A−l
=

iπ
(n+ 1)(n+ 2)

. (4.35)

The l = 0 contribution from the last term in (4.32) can be simplified by following an argument similar to

the one leading from (4.33) to (4.35). By noticing that [7]

Li1 (z) = − ln(1− z) , (4.36)

one obtains

(−A)n+1

n+ 1

n+1
∑

k=0

(

n+ 1
k

)

(−1)k
k

∑

j=1

(

k
j

)

A− jLi1

(

e2πiA
)

= −
iπA

n+ 1
−

ln 2
n+ 1

−
1

n+ 1
ln sin(πA) −

3πi
2(n+ 1)

. (4.37)

By substituting (4.35) and (4.37) in the expression (4.32) the claim (4.21) immediately follows. �

Let us now focus on the analysis of the functionJn−k,l(a/c) in (4.20), which can be rewritten, after a

suitable change of variables, as

Jn−k,l

(a
c

)

=
1

(2πl)k+1
cos

(

2πl
a
c

)

∫ 2πl

0
dx xk cosx+

1

(2πl)k+1
sin

(

2πl
a
c

)

∫ 2πl

0
dx xk sinx . (4.38)

The use of known reduction formulae for the trigonometric integrals on the right-hand side of (4.38) yields

∫

dx xk
{cosx

sinx

}

=

{

sinx
− cosx

}

[

k
2

]

∑

l=0

k!
(k − 2l)!

(−1)l xk−2l
+

{cosx
sinx

}

[

k−1
2

]

∑

l=0

k!
(k − 2l − 1)!

(−1)l xk−2l−1 , (4.39)

where [x] denotes the integer part ofx. The application of the expression (4.39) to (4.38) provides the result

Jn−k,l

(a
c

)

=
1

(2πl)k+1
cos

(

2πl
a
c

)

























[

k−1
2

]

∑

j=0

k!
(k− 2 j − 1)!

(−1) j(2πl)k−2 j−1 −

(

1+ (−1)k+1

2

)

(−1)
[

k−1
2

]

k!

























−
1

(2πl)k+1
sin

(

2πl
a
c

)

























[

k
2

]

∑

j=0

k!
(k− 2 j)!

(−1) j (2πl)k−2 j
+

(

1+ (−1)k

2

)

(−1)
[

k
2

]

k!

























. (4.40)

We can conclude that the equation (4.18), together with the explicit expressions (4.21) and (4.40), gives

a formula for computing the derivative of the doubly-periodic Barnes zeta function at all negative integer

points. Moreover, an expression forζ′(0, a, b, c) is obtained from (4.17) by using (4.21) withn = 0. The

results obtained in this section allow for a very efficient way of computingζ′(−n, a, b, c) as the explicit

formulae can be easily implemented in an algebraic computerprogram. For completeness, we display the

expression forζ′(−n, a, b, c) whenn = 0, n = −1, andn = −2.

Forn = 0, one has

ζ′(0, a, b, c) = − lnϑ1

(

π
a
c

; q
)

+
1
6

ln q+ ln η

(

i
b
c

)

+ πi

(

1
2
−

a
c

)

, (4.41)
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for n = −1, we obtain

ζ′(−1, a, b, c) =
c

2πi
Li2

(

e2πi a
c

)

−
c
π

∞
∑

l=1

q2l

1− q2l

1

l2
sin

(

2πl
a
c

)

, (4.42)

and forn = −2, one gets

ζ′(−2, a, b, c) = −
c2

2π2
Li3

(

e2πi a
c

)

−
c2

π2

∞
∑

l=1

q2l

1− q2l

1

l3
cos

(

2πl
a
c

)

. (4.43)

The above expressions are valid in the range of parameters stated below equation (1.3) and have to be

periodically continued, as is clear from the fact that the integral representation (4.4) is periodic.

V. CONCLUDING REMARKS

In this work we have performed a detailed analysis of the meromorphic extension of the doubly-periodic

Barnes zeta function in the entire complex plane. The contour integral representation (2.3) allowed us,

after a suitable deformation of the integration contour, toobtain the meromorphic extension of the doubly-

periodic Barnes zeta functionζ(s, a, b, c). This analytically continued expression revealed to be particularly

appropriate for the explicit computation of the valuesζ(n, a, b, c) and of the derivativeζ′(−n, a, b, c) for

n ∈ N0.

The process of analytic continuation delineated in this work is quite general and its applicability is not

limited exclusively to the study of the doubly-periodic Barnes zeta function. In fact, the method developed

here can be applied to more general elliptic functions. Although the representation of elliptic functions in

terms of integrals overR+ has been constructed, for instance in [3], our method would provide a contour

integral representation for the class of elliptic functions. Since we have seen that such representation has

some advantages, such as the double-periodicity of the results and the almost straightforward computation

of the values and derivative at specific points, it could, perhaps, provide either new results or simplify

already known ones regarding elliptic functions. This seems to be an interesting idea which deserves further

investigation.

Aside from their intrinsic mathematical interest, our results can find applications in problems related

to physical systems. The Thirring model is used to describe simple interacting field theories [10]. The

one-loop partition function for generalized Thirring models is proportional to the derivative ats = 0 of the

doubly-periodic Barnes zeta function [8]. The result (4.41) obtained here can then be directly applied to the

analysis of these interacting field models.
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