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The aim of this work is to study the analytic continuationtwd tloubly-periodic Barnes zeta func-
tion. By using a suitable complex integral representat®a starting point we find the meromorphic
extension of the doubly periodic Barnes zeta function toethtire complex plane in terms of a real
integral containing the Hurwitz zeta function and the fiestabi theta function. These allow us to

explicitly give expressions for the derivative at all noosfiive integer points.

. INTRODUCTION

The Barnes zeta function, introduced for the first time iriZf[l represents a higher dimensional gener-

alization of the Hurwitz zeta function
Zu(s a) = Z(n +a)  forRs> 1. (1.1)
n=0
Namely, letse C, u € R,, andr € R‘i. ForR s> d the Barnes zeta function is defined through the series

Za(Splr) = ) (u+n-rs, (1.2)

neNg
and it can be analytically continued in a unique way to a memimic function in the entire complex plane
possessing only simple poles sit= 1,2, ...,d. In this work we shall be interested in the meromorphic
extension of a function closely related to the two dimemsidarnes zeta function. Léc e R, Qnp =

ibm+ cnwith m,n € Z, anda € C\Qm,. ForRs> 2 we consider the following zeta function

l(s,a,b,c) = Z (@a+ibm+cn)~®, (1.3)
(m, n)ez?

which is the kind of zeta function resulting from Dirac ogera on the two-torus as considered in gener-
alized Thirring models [8]. The zeta function defined ab®/daubly-periodic with respect to the variable
a. In fact fork € Z one has the relationqs, a + kc, b, c) = (s, a,b,c) and/(s,a + ikb,b,c) = Z(s a,b, ),

and due to this double-periodicity we assume, without Idggeaerality, that 0< Ra < cand 0< Ja < b.
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Since the zeta function_(1.3) is analytic in the semi-pl&®> 2 and the ratio of the two periodsand b
is not a real number, one can conclude thafl (1.3) belongtoléiss of elliptic functions [11].

The main idea of the present work is to represent the doudipgic Barnes zeta function _(1.3) for
Rs> 2 in terms of a contour integral in the complex plane. Therddsanalytic continuation of (11.3) to
the regionR s < 2 is then achieved by a suitable deformation of the integmatontour. This process yields
an expression fof_(11.3) valid in the entire complex planesimis of an integral over the interval, [ of
the Hurwitz zeta function and the logarithmic derivativettod first Jacobi theta function. The analytically
continued expression faf(s, a, b, c) will allow us to very easily compute its values at all integmints,

s € Z. In addition, we will also provide an explicit expressiom fbe derivative ot (s, a, b, ¢) with respect
to sat all non-positive integer points.

We would like to point out that one of the main advantages ofstudy of the analytic continuation of
(@.3) is that its double-periodicity property remaimsnifestin all the formulae. This is an aesthetically
pleasing feature that can also be desirable if one wishesplement these expressions in a computer pro-
gram for numerical evaluations. The study of a zeta funatiosely related to the doubly-periodic Barnes
zeta function considered here has appeared in [4] where laochébr obtaining its analytic continuation
was used which dliers from the one we employ in this work.

The outline of the paper is as follows. In the next section arestruct a contour integral representation
for 7(s,a, b, ¢) valid for R s > 2. From this representation we perform, in Secfioh lll, thalgtic contin-
uation in the entire complex plane. Sectiod IV is devotech éxplicit computation of the derivative of

(s, a,b, ) with respect to the first variable at all negative integanfzand ats = 0.

II. CONTOUR INTEGRAL REPRESENTATION OF {(s a,b, )

As we have already mentioned in the Introduction, the ma@a idf our approach is to represent the
doubly-periodic Barnes zeta functidn_(1.3) in terms of atoanintegral. Since by assumptian+ 0 we

introduce, for convenience, the function

fm(n, 5) = (2.1)

(am+n)s’
with n € Z andam = 2 + i%m € C\{0}, wherem € Z. Obviously, in terms of the newly introduced function

fm(n, 5), the zeta function (113) reads

(sabo=c®) > fm(n9. (22)

meZ neZ



By utilizing Cauchy'’s residue theorem we rewrite the sumrdfe indexn in (2.2) as a contour integral.
More precisely one has

Z (@m + n)S Z fm(n, s) = f dz fn(z s) ncot(nz), (2.3)

nez nez

wherel is a contour that encloses counterclockwise all the (sijpdées of the functiomr cot(rz). Let us
point out that the representatidn (2.3) is well defined inrdggonR s > 2.

Before specifying the integration contadiiin detail, we would like to observe that the functifin(z s),
obtained from[(2]1) by replacing with z, possesses branch cuts extending from the pants —am.
The exact position of the cut will depend explicitly on thersnation indexm. First, note that from the
assumptions stated beloly {IL.3) one obtains the inequsdifie > 0, R(a/c) > 0, andJ(a/c) > 0. This
allows us to conclude th& o, > 0 for allm, 3o, > 0 form> 0 andJa, < 0 for m < 0. The last remark
shows that the cut lies in the lower half complex plane wher 0 and in the upper half complex plane
whenm < —1. The contoull” has to be chosen in such a way to enclose only the poles afzZpdujt not
the branch points of the functiofy,(z s). More precisely, the contour is the unibn= I'y U I'_ wherel',
satisfies the property @ 3I'; < —Jan, for m < -1 whileT'_ satisfiesJay, < 3T~ < 0 form > 0 (which
simply means that the contour is closer to the real axis tharctit). The contour is depicted in Figurgll
with —a>0 and—a<_1 denoting representatives of the set of branch points widkm > 0 andm < -1,
respectively.

With the contour of integration completely determined wa eapress the left hand side 6f (2.3) as a

sum of two contributions

dz fn(z s) mcot(nz) + — dz fn(z s) mcot(nz) . 2.4
3 o o = 21 @ @9 R0t + 5 [ 02 e oot (2.9

The next step of our approach is to rewrite the integrand i) (& a way that will allow a separate
treatment of the integral ovér, and overl"_. By utilizing the complex exponential representation a th

function cotfrz) and after some straightforward algebraic manipulatioasbtain
: 2
COt(?TZ) = -l (l + m) , for 9z>0 , (25)

and

cot(rz) = i(1+ ) , for 9z<0. (2.6)

eriz — 1
SincedI', > 0 andJTI'_ < 0, we use the representatidn (2.5) for the integral dvesnd the representation

(2.9) for the integral over_. Proceeding in this fashion leads to the results

> f dz fn(z ) ncot(rz) = —= f dz fn(z s) - f N dz efnzl(é 3)1 2.7)
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Figure 1: Integration contour used for the representalaf) (

and

% fr 0z fi(z.9) mcotfrd) = % fr 0z 29+ fr @z ;fzz’_s)l (2.8)

The next step is the deformation of the integration contathieh is the subject of the following Lemma.

Lemmal. LetI’ =T, UT_ be the integration contour described above, andz+ an, with me Z. Then,

in the semi-plan@® s > 2, one obtains

1 us u-s
%‘fr‘dz fm(Z, S) ﬂCOt(ﬂZ):—‘L‘dU m-i"f;du m s (29)

wherey is a contour enclosing in the clockwise direction the negateal axis including the point & 0.

Proof. The proof of this result is based on a suitable deformatiothefintegration contour. Before
deforming the contour, we focus on the first term on the lefichside of [2.)7) and{21.8). From the definition
of the functionfy(z s) in (Z.1) we can write
dz fn(z 9 = f dx (X+ am+i9T,)75. (2.10)
ry )
Since, by assumption, the analysis is restricted to th@neéBis > 2 and sincéRa, > 0 one can conclude
that for allm

dz f(z9 =0. (2.12)
Iy



By using a similar argument one can prove that fonathe following relation holds

+00
dz fn(z 9) = dx (X+am—-i9r_)"°=0. (2.12)
I_ —00

Let us consider next the second integral on the right harelafid2. 1), which can be rewritten as

fm(z ) - . _ 1
Jnl29 . L i (x+ am + 18T ) o 2.13)

and is convergent foRs > 2. If the branch cut extends from the poirts.q, which simply means that it

dz
Ty

lies in the lower half plane, the contolir can be shifted away to infinity in the upper half plane and does

not contribute. In fact

1 < 1
e—2ni(x+azo)e2n31“+ ~-1 - e27rf$l"+ -1 [

(X+ aso +19T,) (x+as0?+ (O, 2 — 0, (214)

asJI', — oo. If, on the other hand, the branch cut extends from the peints 1 in the upper half plane,
we shift the contouF ', around the branch cut as shown in Figure 2.

The second integral ovér in (2.8) is convergent fokR s> 2 and can be expressed as

fm(zs) [ : _ 1
fr dz 2z 1 f_w dx (X + am—1i9T.) sezni(xmm)e—znsr, —- (2.15)

By using arguments similar to the ones outlined above ong@are that if the cut extends from the branch
points—a<_1 in the upper half plane, then we can shift the confauaway to infinity, namely\dI'_ — —co,
and the integral (2.15) vanishes. If, instead, the brantlextends from the pointsaso, in the lower half
plane, we shift the contodr_ as shown in Figurgl 2.

We can therefore conclude that for< —1 only the integral over the deform&d gives a non-vanishing

contribution and by making the substitution= z+ @<_; we obtain

—S

1 u
% jl; dz fm(Z, S) ﬂCOt(ﬂ'Z) = - ﬁdu m , (216)

wherey is a contour enclosing in the clockwise direction the negateal axis including the point= 0 as

shown in Figuré13. By using a similar argument, wimer 0, we obtain

1 u-s
ﬁ fr_ dz fm(Z, S) ﬂCOt(T['Z) = fydu m . (217)
By substituting the results (2.16) arid (2.17) in the reta{®.4) we find the clainl(219). i

Lemma 1 immediately allows to rewrite the doubly-periodiarBes zeta function. First note, that from

the expression$ (2.1) arld (R.2) we can write

C—S
b = d fm 5 .
£(sa.b,Q) Zﬂmgz fr 2 (s ) COtER2) (2.18)
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which by using LemmaBl1 gives

{sabq = - _Zoi fdu —2m(u—lf_—| Bm) +C Sif ez’Tl(u———_|S Bm)
- m=0v7Y -
° fyd” 001
_s s 1 B 1
+C n;j):du u {ezni(U—%)+2”%m—1 e_z,,i(u_%)Jrzﬂgm_l} ) (2.19)

where the integral in the second line represents the catitsibdue tan = 0. By introducing a new variable
q € R defined ag) = e™/¢ and by combining the two exponentials in the last line[of 9P \e find the

expression

u—S

{(sab,c) = c-SfduW

+C” Zfduu

which, once again, is valid fdRs > 2. The second integral appearing [in (2.20), although ratherber-

q2m

])1 2 cos(2r|u - 2])g2m + gém| (2:20)

2|S|n er[

some, can be expressed in terms of a simple special fundtidact, letr € C with || < 1 andz € C; the
first Jacobi theta functiofii(z ) has the following representation as an infinite product [6]
(z 1) = 2714 sinzl_[ (1-2r"cos(2) + ™) (1-*") . (2.21)
n=1
By taking the derivative of the logarithm df(2]21) and bynggsq introduced below{{2.19) for, we obtain

the formulal[5]

01(z q)
1(21 q)

Sincelq| < 1, for any finitez the sum in[(2.2R) is absolutely convergent [9]. This impliagarticular, that

q2n
= cotz+ 4sin(Z) Z 1 2P cos@) + g (2.22)

d
pr In¥1(z q) =

the convergence of the seriesin (2.22) is unifornz in the region|3Z < zxb/c. The last remark justifies
the interchange of the sum and the integrallin_(2.20) to obfay using the expressioh (2122) with the

substitutionz — (U — a/c), the representation

_ u-s i _ a
((&aab,C) = C sLdUm'l‘zC sfyduuscot(ﬂ'[u—e])

e fww g2
27TC fyduu dulnﬁl mu c ;ql (2.23)
where the contouy is chosen so thafly| < #b/cin order to allow the use of (2.22). By combining the first

two integrals in[(2.23) and by using the relation

1 i 1
ﬁ + = > COt?TX —E . (224)



we find

b b@——i{*fﬁuuﬁimﬁ( @—EY)—Efjﬁuws (2.25)
sabo=-zc* | wntlrlu-glia)-% | . -

SinceR s > 2, the second integral ih (2.25) gives a vanishing contidbuand we are left with the following

compact representation

ﬁsahdz—%?*jhuJ%%Mﬁdnp—gyﬂ. (2.26)
Y

We would like to point out that the last integral represaatapreserves the double-periodicity property of

the original sum in[{1]3). In fact, leh, n € Z. By using [2.26) we write
J(s,a+nc+imhb c)——i—c‘sfdu u‘SE Ing n[u—g]—nﬂ—imﬂé' (2.27)
S A ) du ' c ¢ '

Now, letzy, , = (m+ nr)x denote the vertices of the fundamental parallelogram iredplane. Then the

first Jacobi theta function is quasi-periodic on the latffje
91(z+ (M+ o) 1) = (-1)™ e @, (7.7) (2.28)
By utilizing (2.28) in [2.27) we obtain
(s,a+nc+imhb,c) = -nc® fdu us+(sab,c)=¢(sab,c), (2.29)
Y

where, as before, the last equality follows from the fact #iiace’R s > 2 the integral ovey vanishes.
The representation (2.26) allows to easily complf&a, b, c) for s=n,n € N, n > 2. For these values

of s, the contour encloses a singularityuat 0 of ordern and the residue theorem immediately shows

Sor [@ognafels-2

Inda(ua)

Z(n,a,b,c)

'%ﬂ)m 1yin

(ﬂ)n (n ll)lddn nd1(y; Q)| (2.30)

We next use[(2.26) to construct the representatiaf(®#, b, ¢) valid in the whole complex plane.

[11. ANALYTIC CONTINUATION

The integration contouy in (2.28) consists of a union of three distinct paths, namyelyy, UC, U y_,
whereC, is the circular portion of radius centered at the originy, is the straight path positioned at a

distances above the negative real axis, apdrepresents the straight path positioned at a distarmdow



the negative real axis. Furthermore, for later use, we @ebpt¢ the projection on the negative real axis
of the intersection of, (or y_) with the circular portiorC, of the integration path. This remark allows us

to rewrite [2.26) as

g [l g swusgmalels-
Z(s,a,b,c) = erc fceduu dulnﬁlnu C,q) erc %U%duu dulnﬁlnu C,q.
(3.2)

The last representation is a suitable starting point frontkwvtve can proceed with the analytic continuation
to the regionR s < 2.

The first term in[(3.11), namely the integral alo@g, is left unchanged; it will be dealt with later. The
second term in (3]1) can be expressed as aBum 7,,_, whererl,, represents the integral over the path
v+ and.Z,_the one over the patjr.. We will present details for the integrél,, , 7, follows accordingly.

We parameterize the path asu = i6 + x, with X € (-0, —£], and rewrite the integral over, as follows

[ d a
I, = -=—Cc®| duu®— Inﬁl(n[u——];q)
7 20"y du c
g [t g fcoo- 2]
= 2ﬂc IOO dx (X +19) dxlnﬂl mT(X+1i6 c ;g
- i—(:-Sfmolx(ia—x)-silnﬁ ( [i&—x—é]' ) (3.2)
T o ; ax T cl'9) - '

The integral in the last line of (3.2) is well defined at the éwwimit of integration. To establish the
convergence at the upper limit of integration it seems welévoaed to analyze the asymptotic behavior of

the integrand ag — co. However, this analysis can be avoided by using the follgwgoasi-periodicity

property
P1(u+m; Q) = —-1(u; Q) , (3.3)

which is obtained by setting = 0 andm = 1 in the more general formula (Z2]28).

In order to exploit the above property we represgntas

i e o n+1+& _ s d ] a
_Z-),+ = EC nZ:; £+§ dx (I6 - X) & In 191 (71' [|5 - X- E] , Q) , (34)
and perform the change of variables y + n to obtain
I _‘_C—sifhgdy(m- 5L (n[ié— —n—i‘]- ) (3.5)
Y+ = 27_[_ £ : y dy 1 y c !q . "

Next we sendd — 0, in which case ™ &. By using the quasi-periodicity (3.3) in the expressiorfi(3we

then have
1+e

-
7. = ¢ Sgins
Y+ o nZ:(:) j;

dy (y+ n)‘S% In 94 (7r [—y - %‘] : q) . (3.6)
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We note, at this point, that the serig$’ ,(y + n)~° converges uniformly iry in the interval E, 1 + ¢] for
Rs> 1. This allows us to rewrité (3.6) as
I, = cei fH dy Zn(s )~ In o, (n [—y— 9] :q) , (3.7)
. : dy c
where the Hurwitz zeta functioty(s, X) in equation[(1.IL) has been used. As is well known, the Harwit
zeta function can be analytically continued in a unique e meromorphic function in the entire complex
plane possessing only a simple pole with residue 1 at the peiril.

For the integrall, over the lower part of the contour we proceed similarly tcagbt

Iy = —L%C‘sé”s B dy Zu(s, y)dgy In 94 (ﬂ [—y— %];q) : (3.8)

£

By adding the contribution fronf,, and7,_ we obtain the result

sin(rs) . (1** - .d al.
Ty =1y +1, = —Q S dy Zn(s, y)d—yln 91 (n [y+ E] .q). (3.9

Noticing that the integral alon@. in (3.1) is defined fors € C, the above expression performs the analytic
continuation ofZ(s, a, b, ¢) in terms of the Hurwitz zeta functiaf (s, y) to the full complex plane and it is
valid for £ > 0 small enough. By choosirf s < 1, the limite — 0 can be performed and the integral along
C. in (3.1) can be seen to vanish.

We can now summarize the results obtained in this Sectioollasvk:

Theorem 1. Let/(s, a, b, c) denote the doubly-periodic Barnes zeta function defined.3) (
If Rs< 1, then

_sin@rs) ¢ (T .d al.
(sabo= T fodng(ay)d—ylnﬂl(n[y+E],q). (3.10)
If s=nwith ne N, — {1}, then
nabo=(%) — 9 o ) 3.11
év ’a9 t] _(C) (n—l)'dun 1 -q U=7r% . ( . )

Due to the prefactor sin€)/x in the integral representation (3]110), the substitusen—n with n € Ny
leads to a vanishing contribution 6fs, a, b, ) when the first argument is a negative integer including.zero

This remark proves the following
Corollary 1. Let ne Ny, then/(-n,a,b,c) = 0.

In order to find the representation &fs, a, b, ¢) valid for Rs > 1, note that foy — 0 we have the
behavior
1

GRS +00). (3.12)

Zn(sy) =
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where the first term results from thee = 0 contribution in [(I.1L). This is the term responsible for the
restriction’Rs < 1 found in the previous results. The analytic continuatidrf3ol0) to the full plane is

found by observing that

(s y) = yi F sy +1). (3.13)

By substituting [(3.113) in the representatién (3.10) we fimak the second term i (3113) gives a function
holomorphic fors € C. The resulting contribution td_(3.10) coming from the firstrh in [3.1B) gives,

instead, the integral
A d
- _S_ §:| . )
Io_fdyy dylnﬂl(n[y+c :q . (3.14)
0

which is valid forR s < 1. At this point, partial integration can be applied repdbtéo obtain a representa-

tion that extends expressidn (3.14) further to the rigHRaf= 1. For example, after one partial integration

(3.14) reads

1

d
lo = _1—5 @lnﬂl( [y+

y_ fdy ror & Inﬁl( [y+ ] q) , (3.15)

which is now valid forR's < 2. After n partial integrations a representation valid 885 < n + 1 is found

and [3.11) can be verified from there. The above representatso shows

‘(Lab,c) = %d% Inda(u; )| 1 M, (3.16)

= % c 191 (71'6, Q)
where the first term comes frotg, and the second term from the pole/g§,y + 1) ats = 1. The second

term can be simplified noting

In Pufrft+2]iq) - _ir (3.17)
21 (ﬂ%; Q)

which can be proved starting from the propefty(3.3).

IV. THE DERIVATIVE OF THE DOUBLY-PERIODIC BARNESZETA FUNCTION AT NEGATIVE
INTEGERS

In addition to the results already presented, from the malegpresentatioi (3.110) one can compute

the derivative of the doubly-periodic Barnes zeta functatin respect to the first variable. férentiating
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(3.10) leads to the result

cosrs)c® fol dy Zu(s; Y)dgy In 4 (ﬂ [Y+ 2] ;Q)

+ @ﬁfoldygﬁ,(sw%lnﬁl(n[ﬁg];q), (4.1)

{'(sa,b,c)

where, here and in the rest of this work, the prime indicatferéntiation with respect to the varialdeBy

settings = 0 in (4.1) and by noting that far € Ny the following relation holds [6]

_ Bn+1(x)
Zn(=n,x) = o1 (4.2)
with Bp(X) denoting the Bernoulli polynomials defined in terms of treribulli numberdBy as
5 (n
_ n—k
Bn(X) = Z(k)skx : (4.3)
k=0
we find
n+1 1
o _ (1l ”"‘1&‘[ k1 d ([ i‘])
'(-n,a,b,c) = (-1)""c Z( K )n+l . dy y' dylnﬁl SVASSICIE (4.4)

k=0

Integrating by partg_(414) yields the result

_ 1 n _ 1 ) 1+2;
g’(—n,a,b,C) — %|nﬂl(ﬂ[%+l];q);)(n:;1)8k+%Bmlln%

)(n—k+ 1)ka01dy y“klnﬁl(n[y+2];q). (4.5)

ol
Q0
N—

(1) & (n+ 1
n+1 — k
At this point it is convenient to distinguish between twoesisn = 0 andn > 1. The reason for this

distinction lies in the relation [6]

n 0 forn>1
Z(n+ 1)Bk - (4.6)
k=0 K By for n=0.

By exploiting the above relation and (3117), one obtains

, _ a i L al.
7(0,ab,c) = —|m91(n6,q)+ : +f0 dy Inﬂl(n[y-i- E],q) , @.7)
and, whem > 1,
, (=1t (-1)"c" & n+1 1 i aj
{(-nab,0) =ir B+ DI (n—k+ 1)kaO dy y° Inﬂl(n[y+ E] ,q) (4.8)

The integrals that appear in(#.7) ahd {4.8) can be compubed the results of the following lemma.
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Lemma2. For 0 < 9z < 737 with g = €77, one has a Fourier-type representation

2" cos(h2)

CF n (4.9)

In9:(z q) = In g+ Inn() + In(2sinz) - 22

Proof. The logarithmic derivative of the first Jacobi theta funotean be represented in terms of an infinite

series for < Iz < 737 as [5, 6]

. % " sin(22)
5= Sin(2n2) = cotz + 42 (4.10)

d & q2n
—In¥1(z q) = cotz+ 4 .
nd1(z g) = cotz+ r;l 1 2, 1 2P cos(@) 1 g

dz
Anti-differentiation of[(4.10) yields

g cos(h?)

— H 2 A
@ - @+ sinz+ )" In(1- 26" cos(2) + ¢™") , (4.12)

n=1

In9+(z q) = f(g)+In smz—ZZ

where f(q) is an arbitrary function. In order to determine the unknoffg) we use the infinite product

representation [%, 6]

91(z q) = 2G(q)g* sinzﬁ (1- 207" cos(2) + ¢*) | (4.12)
n=1
where
Ga@=[](1-¢). (4.13)
n=1

From equation[{4.12) and by recalling that the Dedekind @tatfon is defined fofir > 0 andq = €"" as

n(7) = et [T-a). (4.14)
n=1
one can easily find
INnd1(zg) =In2+Inn(r)+ = 1 In g+ Insinz+ Z In 1- 297" cos(2) + o ) (4.15)
n=1

By comparing[(4.111) with{4.15) we finally find that
1
f(@ =In2+Inn(r) + élnq. (4.16)
Substitution of the explicit expressidn (4116) for the ftime f(q) in (4.11) yields the clain{419). i

The use of[(4.19) in the expressidn (4.7) allows us to obtaérfdHowing result for the derivative of the

doubly-periodic Barnes zeta functions& 0,

{'(0,ab,c) = - Inﬁl( ,q)+|§+ Inq+|nn(ig)+folln(ZSin[ﬂ(Y+%)D. (4.17)
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Whenn > 1, we use once again the resllt {4.9)Yin{4.8). By performiigygubstitution and by recalling
(4.8) one obtains

(o)

In- k(c) 2; 1q2|qz| TIn- k"(a)

Brst, (4.18)

(1"
n+1

( 1)ncn
n+1

'(-n,ab,c) = (n+ 1)(n k + 1)By
k_

where we have introduced for typographical conveniencéuthetions

Tn k f dy y*- kIn Zsm[ (y+ )]) (4.19)

T Kl f dy Y™ cos(2nl [y+ ]) (4.20)

Note that the integral appearing [n(4.17) reduces, acegrti the definition[(4.19), td, (a/c).
The integrals[(4.19) and (4.20) can actually be explicidynputed in terms of polylogarithmic functions

and trigonometric functions, respectively. The followilggnma provides an expression for the function

Inhk(a/o).

Lemma 3. For n € Ng and for Ae C\Z,

imn iTA
InA) = 2N+ H)(n+2) n+1
(A1 n+l

n+1 k;(nﬂ)( l)kZ(k I)'(zirA)l[kzl‘*(kj'_l)A_j]L"ﬂ(ez”iA)- (4.21)

Proof. Performing an integration by parts leads to the expression

In2 N i
n+1 n+1

In(A) = In sin(rA) - —— f dy y*cot(r[y+ A]) . (4.22)

The integral in[(4.2R) containing the cotangent can be eitlylicomputed in terms of polylogarithmic

functions. First, by exploiting the change of variabjes A — y, we obtain

1 n+1 A+l
+1 — n+1 A1k
fo dy Y"1 cot(n [y + A]) = E ( . )( A) fA dy ycot(ny) , (4.23)

k=0
and by rewriting the cotangent in terms of complex exporésthe integral on the right-hand side[of (4.23)

takes the form

A+l A+l A+l

f dy y<cot(ny) = —i f dy <+ 2|f dy \——— (4.24)
A A 92”'y

This can be rewritten using the polylogarithmic functioffined for|z < 1 ands € C by the sum

: — 2"

LIS(Z) = E >
n=1

(4.25)
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and by analytic continuation in the entire compleglane [7]. Of particular importance to our analysis is

the following property satisfied by the polylogarithmic @tion [7]

1d . ; : i
and since
) . ety
Lio (e”) = - 27 (4.27)
we have that
1d. . i ey
- %d_yl—ll(ezmy) = e27riy 1 . (428)
The result[(4.28) employed ih (4]24) yields
. A+1 e271iy 1 A+l d . iy
2|fA dy %m = _7_rfA dy )%d_yLll(EZﬂ ) . (4.29)
Integrating by part& times and using, at each step, the relation (4.26) leads to
1 (AL d. . oy 18 K (1N N
_;fA dy ¥ g Lin () = _;;(k_n)! Gt ()]
k k—n
_ 1 K (D) 5 (K= ) akeney iA
_ ﬂn;(k_n)! (%i)”;( | )A Line1 (€24) . (4.30)

In light of the previous result and after computing the elatagy integral on the right-hand side 6f (4.24)

we can conclude that

A+l i ke 18 K ()" Sk-n -
d t - Ak+1—| _ - Ak—l’l—|L' eZﬂIA )
fA Y " cot(my) k+1|;( | ) n;)(k—n)!(zm)n;( | ) ines (€)
(4.31)
By substituting expressiof (4131) in (4123) we obtain, faPR),
2 in 1 in(—A)™2 T3+ 1) (-1 &S k+ 1\
In(A) = n+l+n+1+n+l|nsm(ﬂA)+ n+1 k ) k+1 I A

k=0 1=1

k-

Z; (kj_ ')A—iJ Liig (€774) . (4.32)

A ¥ M1 o K i\
T Thr1 é( k )(_1) ;(k—l)! (ﬁ)

The above result can be simplified further, in fact

(A2 & (n + 1) (~1)t K3 (k + 1) Al _ A2 s (n + 1) (~1)<+
T T+l A

1k+1
N+l k | k+1 | nt 1 k | k+1 (1+_) _11’ (4.33)

k=0 k=0

and by using the relation, valid far e C [6],
m k+1 m+1
Z (m) a*t (a+1) 1 ’ (4.34)

— klk+1 m+ 1
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one obtains

iﬂ(—A)n+2 n+1 (n+ 1)(_1)k+1 k+1 (k+ 1) 0 in (4.35)

n+1 k ) k+1 &\ | T (h+1D(+2)°
Thel = 0 contribution from the last term i (4.832) can be simplifigdfbllowing an argument similar to

the one leading froni (4.83) tb (4.35). By noticing that [7]

Li;(2=-In(1-2, (4.36)
one obtains
k . .
(_A)l’l+1 s n+1 Kk k —ir; iA) _ |7TA |n2 1 . 37T|
it 2« ( 1); A Liy (€74) = 1 nel e SnEA) - g (437)
By substituting [(4.35) and (4.B7) in the expression (4.B2)dlaim [4.211) immediately follows. i

Let us now focus on the analysis of the functigh_x(a/c) in (4.20), which can be rewritten, after a

suitable change of variables, as

2l 2l

cos(27rl ) dx X cosx + ———— sin (erl ) dx X sinx.. (4.38)

a) 1
0 (27T|)k+1 0

In-ki (c (2t

The use of known reduction formulae for the trigonometriegnals on the right-hand side 6f(4138) yields
deXk{COSX} _ [ sinx [Zgll ki (—1) X2 4 {coSX} 2] k! C1X2 . (439)
sinx) | —cosx £ (k- 21)! sinx) &4 (k-2 - 1)! ’ '

where ] denotes the integer part &f The application of the expressidE(_Z].39).38) provitte result

)
w3 = . K=21 - D)

[ |
(27T|];k+l sm(zma) Z . k'2 )I( 1)) (2nl)2) (L_l)k)(_l)[%]kg _ (4.40)

2
We can conclude that the equatién (4.18), together withxpéait expressiond(4.21) and (4140), gives

=~

(-1)i(2rl)k-2i-1 &N e

cos(27rl ) (Ll)kﬂ)

1
(2ﬂ|)k+1

a formula for computing the derivative of the doubly-pertoBarnes zeta function at all negative integer
points. Moreover, an expression 010, a, b, ¢) is obtained from[(4.17) by using (4]21) with= 0. The
results obtained in this section allow for a verfi@ent way of computing”’(—n, a, b, c) as the explicit
formulae can be easily implemented in an algebraic comgutggram. For completeness, we display the
expression for’(-n, a, b,c) whenn=0,n= -1, andn = -2.

Forn =0, one has

7(0,ab,c) = —|nﬁ1(n%‘;q) Inq+|nn( b)+m(%—%), (4.41)
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for n = -1, we obtain
(Labg = mlin(@)- €3 T Lain(on?) @.42)
and forn = -2, one gets

. o ol
7 (-2,a,b,c) = —%Lig(ez’”i) - ; D 1?—q21|13 cos(znlg) . (4.43)
1=1

The above expressions are valid in the range of parameteddbelow equatior (1.3) and have to be

periodically continued, as is clear from the fact that thegnal representatiof (4.4) is periodic.

V. CONCLUDING REMARKS

In this work we have performed a detailed analysis of the merphic extension of the doubly-periodic
Barnes zeta function in the entire complex plane. The cantdagral representation (2.3) allowed us,
after a suitable deformation of the integration contoughitain the meromorphic extension of the doubly-
periodic Barnes zeta functiafs, a, b, c). This analytically continued expression revealed to béqadarly
appropriate for the explicit computation of the valugs, a, b, c) and of the derivative”’(-n, a, b, ¢) for
n € Np.

The process of analytic continuation delineated in thiskwsiquite general and its applicability is not
limited exclusively to the study of the doubly-periodic Bas zeta function. In fact, the method developed
here can be applied to more general elliptic functions. @lthh the representation of elliptic functions in
terms of integrals oveR™ has been constructed, for instancelin [3], our method worddige a contour
integral representation for the class of elliptic functorsince we have seen that such representation has
some advantages, such as the double-periodicity of thétgesd the almost straightforward computation
of the values and derivative at specific points, it could,hpps, provide either new results or simplify
already known ones regarding elliptic functions. This seémbe an interesting idea which deserves further
investigation.

Aside from their intrinsic mathematical interest, our fesean find applications in problems related
to physical systems. The Thirring model is used to descrilmple interacting field theories [10]. The
one-loop partition function for generalized Thirring méslis proportional to the derivative at= 0 of the
doubly-periodic Barnes zeta functian [8]. The resuli (3 dlitained here can then be directly applied to the

analysis of these interacting field models.
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