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Abstract. Generalized Chebyshev iteration (GCI) applied for solving linear equations with nonselfadjoint 

operators is considered. Sufficient conditions providing the convergence of iterations imposed on the domain of 

localization of the spectrum on the complex plane are obtained. A minimax problem for the determination of 

optimal complex iteration parameters is formulated. An algorithm of finding an optimal iteration parameter in the 

case of arbitrary location of the operator spectrum on the complex plane is constructed for the generalized simple 

iteration method. The results are applied to numerical solution of volume singular integral equations (VSIEs) 

associated with the problems of the mathematical theory of wave diffraction by 3D dielectric bodies. In particular, 

the domain of the spectrum location is described explicitly for low-frequency scattering problems and in the general 

case. The obtained results are discussed and recommendations concerning their applications are given. 
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1. Introduction.  Analysis of the scattering of electromagnetic waves by three-dimensional 

inhomogeneous anisotropic dielectric structures is of crucial importance for studying various applied and 

theoretical issues. In the short-wave range, the asymptotical methods have proved to be the most efficient 

technique. In the resonance and low-frequency ranges, it is necessary to solve exact equations that 

describe the wave scattering; namely, the Maxwell equations with radiation conditions at infinity or 

volume singular integral equations (VSIEs) with respect to the wave field in the dielectric structure. 

Partial differential equations (PDEs) may seem to be more appropriate for numerical solution because 

their discretization results in a system of linear algebraic equations (SLAE) with a sparse matrix, while in 

the case of a VSIE this matrix is dense. However, when a scattering problem is considered, the solution 

must satisfy the condition at infinity; therefore, in order to provide the required accuracy the unknown 

wave field must be determined in a domain which is much larger than the actual dielectric scatterer. 

Finally, taking into account that the scattering problem is three-dimensional, we obtain a SLAE of 

extremely high size when PDEs are discretized and solved numerically by a finite-difference (FD) or a 

finite-element method (FEM). Application of approximate conditions at infinity often leads to significant 

loss of accuracy that cannot be controlled. 

In view of these difficulties, we develop and apply the VSIE method. Using the fast discrete 

Fourier transform and taking into account that the VSIE kernels depend on the difference of arguments, 

we consider fast algorithms of the matrix-vector multiplication. Next, using iteration techniques, we 

perform efficient numerical solution of the initial scattering problems by the VSIE method [9]. 

Recall main parameters that govern efficiency of a numerical algorithm: number T of arithmetic 

operations which is necessary for obtaining the sought-for solution with the required accuracy and 

volume M of the memory required for implementation of the algorithm. 

Matrix-vector multiplication is the most laborious operation when iteration techniques are 

applied. Therefore, the number of these multiplications in the process of implementation of the algorithm 

will be called the number of iterations. The value of T may be estimated from the formula  

MA TTTLT  )( 0 . 

Here L is the number of iterations, AT  is the number of arithmetic operations for multiplying a matrix by 

a vector,  0T  is the number of arithmetic operations for other calculations performed within one iteration, 

and MT  is the number of arithmetic operations for forming the SLAE matrix when an integral equation is 

discretized.  As a rule, ATT 0  и AM TLT  . 
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The memory volume required for implementation of the algorithm can be estimated by the 

expression 

ITERA MMM   

 

Here AM  and ITERM  are the memory volumes required, respectively, for storing the SLAE matrix or the 

corresponding array and implementing the iteration procedure. 

Quantities AT , MT , and AM  depend solely on the method of dicretization of the integral 

equation, while  L, 0T , and ITERM  are governed by the iteration algorithm in use. 

Since the VSIE kernels depend on the difference of arguments, we can provide the fulfillment of 

the condition NM A ~ , where N is the matrix size using efficient dicretization. 

The value of AT  is another important characteristic of the algorithm. If no special algorithms are 

used, then 
2NTA  , which causes abnormal computational expenses due to huge matrix dimensions. 

Using the fast discrete Fourier transform, it is possible to create an efficient algorithm with 

)(~ NLOGNTA , where )(NLOG  is a function taking values on the set of whole numbers and equal 

to the sum of all prime factors of number N. Obviously, this is a slowly varying function with respect to 

increasing; for example, 42)10( 6 LOG  and 56)10( 8 LOG . 

Now consider minimization of the number of iterations L and quantities 0T  and ITERM  which are 

governed by the iteration algorithm. Usually, the integral equations under study are solved by the iteration 

algorithm called Generalized Minimal Residual Algorithm (GMRES) and its various modifications [4]. 

When this method is applied, the iterations parameters are determined in the course of calculations and 

depend on the current iteration index. Such methods may be called nonstationary iteration algorithms. 

GMRES-type algorithms are very popular; however, their implementation requires comparatively large 

amount of computer memory with NnM ITER  , where n is the dimension of the Krylov subspace (note 

that the rate of convergence of iterations to the solution increases together with n). Also, the number of 

iterations required for providing reasonable accuracy of solution is often very large. 

There is another family of iteration methods called stationary iteration algorithms for which the 

iterations parameters are determined before the iteration procedure. For a stationary iteration algorithm, 

the values of 0T  и ITERM  turn out to be minimal. These methods are usually applied for solving 

equations with selfadjoint operators for which the boundaries of the spectrum location on the real axis of 

the complex plane are known. The Chebyshev iteration and the method of simple iteration [6] belong to 

this family. For this methods we have .NM ITER 
 

Iteration techniques, mainly GMRES and its modifications, are widely used for numerical 

solution of VSIEs [ 6, 7,11,13]. Our goal is to work out efficient iteration methods for numerical solution 

of VSIEs  in the low-frequency range. The problems of this class find broad applications in various 

domains; however, unlike high-frequency range, the specific features connected with this particular range 

of frequencies have not been taken into account as far as efficient numerical approaches are concerned. 

The Born iteration method constitutes here the only exception. However, this method can be used solely 

when the permittivity of the dielectric scatterer is close to that of free space; this condition is a very 

severe limitation  which does not hold in the majority of applied problems.   In this work, we propose to 

fill this gap and apply the generalized Chebyshev iterations and the method of simple iteration to solve 

VSIEs  numerically in the low-frequency range. The latter requires the knowledge concerning the location 

of the VSIE operator spectrum on the complex plane, which in its turn may be considered as a urgent 

problem of algebra and numerical analysis. In fact, all modern iteration techniques aimed at solution of 

very big linear equation systems employ the information on the operator spectrum which enables one to 

improve significantly the algorithm productivity. We describe explicitly the domain of the spectrum 

location on the complex plane for low-frequency VSIEs without any restrictions imposed on the 

permittivity function. This result plays a crucial role for creating  efficient methods and algorithms for 

numerical solution of VSIE and the corresponding scattering and diffraction problems. The very recent 

findings [7, 14, 15] also show that they are extremely important for the solution to inverse problems of 

reconstructing permittivity of 3D dielectric bodies.   
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     It should be noted also that utilization of modern multi-processor computers leads to substantial 

increase in the rate and performance of computations when VSIE is applied because that latter admits 

excellent parallelization for very large and dense matrices.  

       In Section 2 we describe the generalized method of simple iteration (GSI) for solving equations with 

nonselfadjoint operators [9] and construct a finite algorithm of finding an optimal iteration parameter in 

the case of arbitrary location of the operator spectrum on the complex plane. In Section 3 we describe the 

generalized Chebyshev iteration (GCI) applied for solving equations with nonselfadjoint operators. These 

techniques demand the knowledge of the spectrum localization on the complex plane. It is not possible to 

obtain this information for the majority of problems. However, one can do it in a number of important 

particular cases. In Section 4 we formulate the problems of electromagnetic scattering and reduce them to 

VSIEs. In Section 5 we generalize the results obtained in [1] and describe the domain of the spectrum 

location explicitly for low-frequency scattering problems and in the general case. In Section 6 we 

illustrate theoretical findings of this study by the results of computations obtained for a representative 

scattering problem, namely, low-frequency scattering of a plane electromagnetic wave from an 

inhomogeneous dielectric ball, and compare our iterative strategies and methods employing optimal 

parameters with some typical results obtained by a state-of-the-art algorithm. In Section 7 we discuss the 

obtained results and give recommendations concerning their applications. 

 

2.  Generalized simple iterations.  Consider a linear operator equation 

(2.1)                                                                        fuA ˆ , 

in the Banach space E, where Â  is a bounded and therefore continuous operator (generally, 

nonselfadjoint). 

Write equation (2.1) in the equivalent form 

(2.2)                                                                     /ˆ fuBu  . 

 

Here B̂  is a linear operator defined by 

(2.3)                                                                          





AI
B

ˆˆ
ˆ 

 , 

and 0  is an arbitrary complex number. 

 

DEFINITION. The number 

)ˆ(|,|sup0 B  , 

is called the spectral radius of operator B̂ . Here  )ˆ(B  the spectral set of B̂  on the complex plane; that 

is, a set of points    such that operator )ˆˆ( IB   has no inverse defined on the whole space  

 

The following statement is proved in the theory of linear operators [5]. 

 

THEOREM 2.1. The linear operator equation fuBu  ˆ  has the unique solution for every Ef   and 

the successive approximations 

(2.4)                                                           ,...1,0,ˆ
1  nfuBu nn  

converge to the solution at any initial approximation Eu 0  if the spectral radius of the operator 

satisfies 1)ˆ(0 B . Conversely, if iterations (2.4) converge at any Efu ,0 , then 1)ˆ(0 B . The 

following estimate is valid for the rate of convergence 

(2.5)                                                     .,))ˆ(( 0 constCBCuu n

n    

Note that if B̂  is a normal operator then one can set 1C in (2.5). 

 

Theorem 2.1 yields the convergence of the successive approximations  

(2.6)                                                      ,...1,0,/ˆ
1  nfuBu nn   
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to the solution of (2.2) and hence of (2.1) at any Efu ,0  if the spectral radius of operator B̂  is less 

than one, that is,  

(2.7)                                               )ˆ()(,1|)(|sup)(0  B . 

 

From (2.3) it follows that iterations (2.6) can be represented in the form 

(2.8)                                                  ,...1,0,)ˆ(
1

1  nfuAuu nnn


 

 

Our next goal will be to answer the question: for which location of the spectrum of initial operator Â  on 

the complex plane one can determine complex numbers   such that iterations (2.8) converge to the 

solution of (2.1). 

It is easy to show that there is a one-to-one correspondence between the spectra of operators Â  

and B̂  given by the expression 

(2.9)                                              )ˆ(),ˆ(,/)(  BA  . 

 

Using (2.7) and (2.9) and geometric considerations one can prove the following [9] 

 

THEOREM 2.2. The complex numbers   at which iterations (2.8) converge to the solution of (2.1) at 

any Efu ,0 , exist if and only if the origin of the complex plane is situated outside the convex envelope 

of the spectrum of operator Â . 

 

Here we used the following definition. 

 

DEFINITION.  The convex envelope of M is intersection of all convex sets containing M. 

 

Assume that the condition of Theorem 2.2 holds. Then a natural question arises concerning the 

determination of iteration parameter 0  which provides the best convergence rate. From (2.7), (2.9), and 

Theorem 2.1 it follows that iterations (2.8) would converge to the solution with the rate of geometrical 

progression having the common ratio 

 

(2.10)                                                 )ˆ(,
sup

)(0 A



 


 . 

 

The best convergence rate will be when   takes the value at which function )(0   attains 

minimum. Let S  denote a circle on the complex plane with the origin at   with the minimal radius 

)ˆ(,sup AR     that envelops all points of the spectrum of operator Â . Draw the tangent 

lines to S  from the origin and denote by   the angle between them (see Fig. 2.1 where the spectrum 

occupies the shaded region). Then formula (2.10) yields ).2/(sin)(0    Thus, we have proved the 

following statement. 
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Figure 2.1: The choice of the optimal iteration parameter. 

 

THEOREM 2.3.  Let the origin of the complex plane be situated outside the convex envelope of the 

spectrum of operator Â . Denote by 0S  a circle on the complex plane which contains all points of the 

spectrum of operator Â  and “can be seen” from the origin at a minimal angle 0 . Then the best 

convergence rate of iterations (2.8) to the solution of equation (2.1) is attained when 0 , coincides with 

the origin of circle 0S . The iterations will converge to the solution with the rate of geometrical 

progression having the common ratio  ).2/(sin 00    

 

Note that if Â  is a selfadjoint and positive definite operator, then these results are well-known. 

Indeed, in this case the spectrum of the operator is situated on the positive real semi-axis on the complex 

plane which yields, by virtue of Theorem 2.3, 2/)(0 mM  , where M and m are the upper and 

lower bounds of the spectrum, and coincides with the classical result. 

All the proofs for the iteration method under consideration are geometric since the use of purely 

analytical techniques for nonselfadjoint operators is very complicated. We apply the same approach for 

constructing a finite algorithm for determination of the sought-for circle 0S  and the corresponding 

iteration parameter 0  for a given convex envelope of the spectrum which does not contain the origin. 

Assume to this end without loss of generality that this envelope is an arbitrary convex polygon with n 

vertices on the complex plane. 

The following propositions are valid. 

 

PROPOSITION 2.1.  Assume that the spectrum of the operator is localized on a rectilinear segment. 

Then 0  will be a point of intersection of the medial vertical to the segment and a circle drawn through 

its endpoints and the origin so that the segment will be a chord of the sought-for circle 0S . 

PROPOSITION 2.2.  For a polygon with n vertices the sought-for circle 0S  will go at least through two 

vertices of the polygon. 

 

Proof of Proposition 2.1. Clearly, this segment will be a chord of the sought-for circle. Next, 

consider minimum of )2/(sin   with respect to point x situated on the medial vertical taking into 

account that the endpoints belong to the boundary of the circle. If the segment lies on a beam drawn 

through the origin then )2/(sin   has one extremum which is a point of minimum, namely, the medial 

Im 

Re 

m 

  

R 


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point. If the segment does not lie on these beams, then )2/(sin   has two extremum points coinciding 

with the points of intersection of the medial vertical to the segment and the circle that goes through the 

endpoints and the origin. A circle that does not contain the origin corresponds to the minimum which 

proves the proposition (see Fig. 2.2). 

 
Figure 2.2: Optimal iteration parameter for a segment 

 

Proof of Proposition 2.2. Clearly, at least one point of the polygon will belong to the boundary of the 

sought-for circle; otherwise, its radius may be decreased without shifting the origin. Assume that not 

more than one vertex lies on the circumference and join the origin of the circle with this vertex of the 

polygon (origin of the circle 1  in Fig. 2.3). Then, by shifting the origin towards the vertex one can 

construct a smaller circle contained in the initially constructed circle and containing the polygon (origin 

of the circle 2  in Fig. 2.3). The latter constitutes a contradiction which proves the proposition. 

Figure 2.3: Illustration to the proof of Proposition 2.2. 

 

Describe a finite algorithm of finding, for a given convex polygon, the sought-for circle 0S  and 

Im 

Re

m 

2  

1  

 

Im 

Re

m 

0  
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therefore the best iteration parameter 0 . 

 

Step А. The number of all segments joining the vertices of the polygon is n(n-1)/2. We consider 

successively these segments and construct the best circle for each of them according to Proposition 1. 

If for a certain segment this circle contains the whole polygon then this circle will be the sought-for 

0S  and the algorithm stops. Note that there may be several such segments, however, the constructed 

circles will be the same. If none of the circles contains the whole polygon we go to step B. 

 

Step В. In this case, the sought-for circle 0S  will go through three vertices of the polygon. The 

number of all triangles constructed on vertices of the polygon is n(n-1)(n-2)/6. The sought-for 0S  will 

be a circle inscribed in one or several triangles. Note that there may be several such triangles, 

however, the constructed circles will be the same. The algorithm terminates.  

 

Proof of step A of the algorithm.  Let 1  and 2  be two sets of points on the complex plane whose 

convex envelopes do not contain the origin and 21   . Obviously, )()( 2010  SS   and 

)()( 2010   , where )(0 S  is a circle containing set   and can be seen from the origin at a 

minimal angle )(0  . Denote by 1  a segment of the polygon and by 2  the whole polygon. It is clear 

that if for a certain segment the constructed circle contains the whole polygon, then this circle will be the 

sought-for 0S . 

Proof of step B of the algorithm.  Assume that the sought-for circle 0S  has only two vertices   and 

  of the polygon on the boundary. Then, since the algorithm has not terminated on step A, the origin of 

this circle is shifted along the medial vertical with respect to the origin   of best circle for a segment 

joining points   and  . By shifting the origin towards  , one can construct a circle that can be seen 

from the origin at a minimal angle and contains the whole polygon. Thus, we have arrived at a 

contradiction which means that the sought-for 0S  has at least three vertices of the polygon on the 

circumference. 

 

Obviously, the constructed circle is unique. 

 

3. Generalized Chebyshev iteration. GSI employs only one iteration parameter. However, for 

solving an equation with a selfadjoint operator the Chebyshev iteration turns out to be more efficient. In 

this method, the iteration parameters depend on the iteration number. Below, we apply this method for 

solving equations with nonselfadjoint operators. Consider a linear operator equation (2.1) in the Banach 

space E  assuming to this end that Â   is a bounded operator and there exists a bounded inverse 
1ˆ A . 

We seek a solution to equation (2.1) using an iteration procedure 

),ˆ(11 fuAuu l

mm

l

m

l

m      1,...,1,0  nm , ,...1,0l  

(3.1)                                                  )0(
0
0 uu  , 1,1

0  luu l
n

l
, 

where )0(u  is an initial approximation and m  are complex iteration parameters. From (3.1) we see that 

the iteration procedure constitutes a sequence of layers and each layer consists of n iterations with an 

identical set of parameters. 

Denote by 
l
mh  the iteration residuals defined according to the formulas 

(3.2)                                      ),ˆ( fuAh l

m

l

m      1,...1,0  nm , ,...1,0l  

Now (3.1) and (3.2) yield 

(3.3)                                     ,ˆ
11

l
mm

l
m

l
m hAhh    1,...1,0  nm , ,...1,0l  
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From (3.3) it follows that within each l-th layer the first and the last residuals are coupled by a 

relationship 

(3.4)                                                               
l

n

m

m

l

n hAIh 0

1

)ˆˆ(


  . 

Successively applying (3.4) we obtain that after completing k layers (3.1) residual 
k
nh  is coupled with 

initial residual 
0
0h  by the inequality 

(3.5)                                                         
0

0

1

])ˆˆ([ hAIh
n

m

k

m

k

n 


  . 

Estimate (3.5) implies that the iteration parameters must minimize the norm 



n

m

k

m AI
1

])ˆˆ([  . 

Denote 

(3.6)                                                  



n

m

k

mnk AIB
1

1 ])ˆˆ([),...,(ˆ  . 

For any bounded operator B̂  the following estimate [5] holds 

(3.7)                                                        ,,)ˆ(ˆ
0 constCBCB    

where )ˆ(0 B is the spectral radius of operator B̂ . If B̂  is a normal operator then C=1. 

Applying (3.6), (3.7), and the theorem of the spectrum mapping [3], we obtain 

(3.8)                                              )])1([max(),...,(ˆ

1)(
1

k
n

m
m

Az
nk zCB 


 


. 

The following obvious inequalities are valid 

(3.9)                              
k
n

k
n

k
n

k
n hAuAfAuuAAuu 111 ˆˆˆ)(ˆˆ   , 

where u is the sought-for solution to equation (2.1). Now from (3.5), (3.6), (3.8), and (3.9) it follows that 

(3.10)                                    
0
0

1)(

1 )])1(max([ˆ hzCAuu k
n

m
m

Az

k
n 



  


 

Therefore, the determination of an optimal set of iteration parameters n ,...,1  reduces to determination 

of a complex polynomial of degree n  

(3.11)                                                            



n

m
mn zzP

1

)1()(  , 

which has a minimal maximum of the absolute value in the domain of location of the spectrum of 

operator  A on the complex plane. Namely, we have to solve a minimax problem 

(3.12)                                                        



n

m
m

Az
opt z

m 1)(}{
)1(maxmin 


 

with respect to { m }. Obviously, the iteration parameters do not vanish. Therefore, performing the 

change of variables mm  /1 , we can represent problem (3.12) in the form 

(3.13)                                              



















 






n

m
m

Azn

m
m

opt z
m 1)(

1

}{
)(max

1
min 






 

From (3.13) we see that the case n = 1 corresponds to GSI; the determination of the corresponding 

iteration parameter was considered above. 
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According to (3.10) iteration procedure (3.1), (3.12) converges if 1opt . If the convex 

envelope of operator Â  does not contain the origin of the complex plane, then, taking into consideration 

Theorem 2.3, we have 1])([ 00  n
opt  , where 0 is the GSI iteration parameter. Thus we have 

proved the following statement. 

 

THEOREM 3.1. If the convex envelope of operator Â  does not contain the origin of the complex plane, 

then there exists a set of complex iteration parameters n ,...,1 defined by (3.12) at which 1opt  and 

iteration procedure (3.1) converges to the solution of equation (2.1).  

 

Note that unlike Theorem 2.2, Theorem 3.1 constitutes only sufficient conditions providing convergence 

of GCI.  

In general, for the arbitrary spectrum localization on the complex plane the solution to problem 

(3.12) or (3.13) is not known if  n  > 1.  

Consider several particular cases. 

Assume that the spectrum of the operator lies on a segment of the beam drawn from the origin of 

the complex plane. If the spectrum is located on a segment [a, b] , b>a>0, of the real axis, then we arrive 

at a well-known classical solution: the sought-for real iteration parameters n ,...,1  are the roots of the 

Chebyshev polynom. Then the real iteration parameters  n ,...,1  are determined from the formula  [6] 

(3.14)                                     .,...,1,
2

)12(
cos

2

)(

2

)(
nm

n

mabab
m 








  

We demonstrate expressions for parameters  m  because for them the formulas are algebraically 

more convenient than for mm  /1 . From (3.14) it is clear that parameters m , nm ,...,1  belong to 

segment  [a, b]. 

Let the spectrum of the operator be located on a segment of a beam drawn from the origin of the 

complex plane. Then formula (3.13) yields )exp(),...,exp(1  ii n , where   is the angle of 

inclination of the beam to the real axis of the complex plane and m  are given by  (3.14). 

Assume now that the spectrum of the operator is contained in a circle 0S  and the origin of the 

complex plane is situated outside this domain. We prove that in this case, all iteration parameters are the 

same for any n:  

(3.15)                                                              01 /1...   n , 

where 0  is the origin of circle 0S  on the complex plane. 

Draw a beam from the origin of the complex plane through the origin of the circle and denote by 

1D  the diameter on the beam. By 2D  denote the diameter of the circle perpendicular to 1D . Consider the 

case when the spectrum of the operator is located in domain 1D . Then the iteration parameters m , m = 1 

,…, n, lie, by virtue of (3.14), on segment 1D . Consider two very narrow ellipses constructed on 

diameters 1D  and 2D  denoting them by 1

~
D  and 2

~
D . Consider the cases when the spectra lie in domains 

1

~
D  and 2

~
D . Obviously, the iteration parameters m  in these cases will be very close to those when the 

spectra are on diameters 1D  and 2D . The iteration parameters for 2D  will be close to  2D  

symmetrically with respect to the origin of 0S . Without loss of generality, one may assume that segment 

1D  is on the real axis. Then the equations for ellipses 1

~
D  and 2

~
D  will have the form 

})(,{),(
~ 2

2

2
2

01 R
b

y
xxyxyxD  , 

(3.16)                                           }
)(

,{),(
~ 22

2

2

0

2 Ry
a

xx
yxyxD 


 , 

where  ,0 Rx   and 1,,, 0000  babbaa . 
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Consider first the case n = 2. Perform a continuous transformation of ellipse 1

~
D  first to circle 0S  

and then to ellipse 2

~
D  symmetrically with respect to the origin of 0S . Iteration parameters 21,  will 

also undergo continuous transformation. When ellipse 1

~
D  is transformed to circle 0S  the iteration 

parameters will be a function of b, )(11 b  , )(22 b  , where b varies from 0b  to 1. When circle 

0S  is transformed to ellipse 2

~
D  the iteration parameters will be a function of a, )(11 a  , 

)(22 a  , where  a varies from 1 to 0a . Taking into account the symmetry, we see that in the process 

of transformation of a domain, the iteration parameters first merge to a point and then diverge; they merge 

when the domain is transformed to circle 0S  because the direction of the domain transformation changes 

to a perpendicular one. Then from (3.1), taking into account that the iteration parameters are equal, it 

follows that the Chebyshev iteration procedure for a circle is identical to simple iterations. Thus we obtain 

(3.15) for n = 2. 

Now prove (3.15) for 
kn 2 , where  k is an arbitrary whole number, using the induction. For k = 

1 the statement was proved. Assume that the statement holds for k = l and prove that it is valid also for  k 

= l + 1. Taking into account the symmetry, we see that when ellipse 1

~
D  is transformed to circle 0S  the 

iteration parameters 
1̀2...,,1,  l

m m  in (2.14) must merge pairwise at 1b . Therefore, from (3.13) 

we have the following minimax problem for circle 0S  

(3.17)                                              








l

l
m m

m
Sz

m
m

opt z
2

1

2

2

1

2
}{

)(max
1

min
0








 

From (3.17) it follows that this problem is equivalent to the case 
ln 2 . Thus for all n that are the powers 

of number 2, relation (3.15) holds. Thus we have 

(3.18)                                        

n
n

m Sz

n

m
m

Sz x

R
zz

m








 

 
01 01

}{

1
1max)1(maxmin

00 



 

 

The right-hand side of (3.18) specifies, according to Theorem 2.3, the convergence of n successive 

iterations in GSI. 

Now prove ad absurdum that (3.15) holds for all n. Assume that there exists a number 0n , for 

which (3.15) is not valid. Then there exists iteration parameters 0
)(

...,,1,0 nm
n

m  , for which the 

inequality 

(3.19)                                                 

0
0

0

0 01

)(
)1(max

nn

m

n
m

Sz x

R
z 











  

holds. Take a 0k  such that 10
02 nn

k
 , where  01 n . Consider the set of iteration parameters  

{ 00 2...,,1,/1;...,,1, 000
)( k

m
n

mm nmnm    }. 

Using (3.19), we have the chain of inequalities  


 



0

0
0

0

0

0

0

2

1 01

2

1

)
1

1(max)1(max)1(max

kk

nm Sz

n

m
m

Szm
m

Sz
zzz


 < 

(3.20)                                        

0
0

0
0

0 2

0

2

1 00

)
1

1(max

k
k

x

R
z

x

R

nm Sz

n




















  
 

 

Comparing (3.18) and (3.20), we arrive at contradiction. Thus, if the spectrum of the operator is a circle 

0S , equality (3.15) holds for all  n. 
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In the general case, when the spectrum of the operator lies in the complex plane, an algorithm of 

determination of iteration parameters is not known and it is necessary to apply numerical methods. 

 

 

4. Statement of electromagnetic scattering problems.  Consider the following class of the 

electromagnetic scattering problems. Assume that in a bounded three-dimensional domain Q the medium 

is characterized by a permittivity tensor ̂  (a 3x3 matrix) and its components are functions of the 

coordinates. Outside domain Q the medium is isotropic and its parameters are constant, i.e. everywhere 

const 0  and const 0 . It is necessary to determine the electromagnetic field excited by an 

external field with the time dependence )exp( ti ; both an incident plane wave and current 
0J may be 

the source of external field. The statement of the corresponding mathematical problem is as follows: find 

vector-functions E  and H that satisfy the Maxwell equations 

 

(4.1)                                            
0ˆcurl JEH  i ,        HE 0curl i  

 

and the radiation conditions at infinity 

0lim 0 






















uik

r

u
r

r
,    )(

2
3

2
2

2
1 xxxxr  , 

where  000 k . In (4.1) 
0J  is the given current generating external field 

00 , HE  and, in line with 

the physical essence of the problem, ,0Im 0   0Im 0  , and 0Im 0 k . 

Rewrite equations (4.1) in the equivalent form 

 

(4.2)                                              HEJEH 00 curl,curl  ii  . 

pJJJ  0
,    EJ )ˆˆ( 0Iip   . 

In (4.2), 
pJ  is the electric polarization current which does not vanish only in domain Q. 

We may formally consider (4.2) as the Maxwell equations in a homogeneous medium, assuming 

that the electromagnetic field is generated by current J . Then a solution to (4.2) satisfying the radiation 

conditions at infinity can be expressed in terms of vector potential A  using the known formulas [10] 

 

 dyRGyx )()()( JA , 

(4.3)                                        .curl,divgrad
1

0

0 AHAAE 



i

i  

In (4.3)  

(4.4)                                                               
R

Rki
RG

4

)exp(
)( 0 , 

where yxR  ,  is the Green’s function of the Helmholtz equation. From (4.2)—(4.4) we obtain that 

the unknown electromagnetic field for the problem under study can be represented in the form  

 

 
Q

r dyRGyIykxx )()()ˆ)(ˆ()()( 2
0

0 EEE   
Q

r ExdyRGyIy 3,)()()ˆ)(ˆ(divgrad E  

(4.5)                         
Q

r ExdyRGyIyixx 30

0 ,)()()ˆ)(ˆ(curl)()( EHH  , 

where ),,( 321 xxxx  , ),,( 321 yyyy  ,  and 0/ˆˆ  r . 

Below we will denote the permittivity tensor r̂  by ̂ . Since Îˆ   ( Î is the identity tensor) 

outside domain Q, we can reduce the problem to a volume integrodifferential equation with respect to 

electric field E


 in domain Q 
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(4.6)           
Q

dyRGyIkx )()()ˆˆ()( 2
0 EE   

Q

QxxdyRGyI ),()()()ˆˆ(divgrad 0EE . 

If we find a solution to (4.6) in domain Q, we can determine the electromagnetic field outside the domain 

using integral representations (4.5). 

Note that operation grad div cannot be applied under the integral sign in (4.6) because double 

differentiation of G with respect to the coordinates yields the kernel singularity of the order ~
3/1 R  and 

the resulting integrals diverge. However, outside domain Q operation grad div in (4.5) can be applied 

under the integral sign. 

Using the theorem concerning differential properties of weakly singular integrals [7] we can 

reduce equation (4.6) to a VSIE [9] 

 

 
Q

dyRGyIyvpxIxx )(grad)grad),()ˆ)(ˆ((..)()ˆ)(ˆ(
3

1
)( EEE   

(4.7)                                    .,)()()()ˆ)(ˆ( 02
0 QxxdyRGyIyk

Q

 EE  

Here symbol  (*,*)  denotes the inner product of vectors and ... vp a singular integral, i.e. an integral 

over a domain where an infinitesimal ball centered in a vicinity of the point x = y is extracted. 

Note that equation (4.7) describes the scattering problems with minimal restrictions imposed on 

parameters of the medium; namely, it is assumed that the permittivity is a bounded function of the 

coordinates. However, when the spectrum of the operator is studied one has to impose certain restrictions 

on the permittivity tensor required by the fact that we apply in our proofs the results of the theory of 

singular equations. Taking into account these restrictions, we will assume in what follows that the tensor 

components are Hölder-continuous functions of the coordinates. We use in this connection the following 

 

DEFINITION.  u is a Hölder-continuous function in domain D if the inequality 

 

01,const,)()(  


CyxCxuyu , 

 

holds for any Dyx , . 

 

5. Spectrum of the integral operator.  The spectrum of operator Â  is a set   of the points on 

the complex plane Z such that the operator )ˆˆ( IA   is not invertible everywhere in the Hilbert space H. 

The points of   at which )ˆˆ( IA   is not a Noether operator belongs to the continuous part of the 

spectrum (essential spectrum) of Â . The points of   at which there exists a nontrivial solution  u of the 

homogeneous equation 0ˆ  uuA   belongs to the discrete part of the spectrum of Â  [3]. 

First we choose an appropriate Hilbert space. The integrals of the squared moduli of the 

characteristics of the electromagnetic field enter the energy conservation law (the Poynting theorem). 

Therefore, the space of square-integrable functions is the most ‘physical’ space as far as the analysis of 

integral equations associated with electromagnetic scattering problems are concerned. Below, we will use 

Hilbert space 2L  with the inner product 

 xdxx )()(),( *VUVU . 

The following statement holds [9] 

THEOREM 5.1. Assume that the Cartesian components of tensor )(ˆ x  are Hölder-continuous functions 

everywhere in Euclidean space 3E . Then the VSIE operator in (4.7) is a Noether operator in )(2 QL  if 

and only if the following condition holds 

(5.1)                                                           0)(
3

1,




mnnm
mn

x   
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for all Qx  and real numbers 321 ,,    such that .12

3

2

2

2

1    

For an isotropic medium, equation (5.1) takes the form 

 

Qxx  ,0)( . 

Write integral equation (4.7) in a symbolic form 

 

(5.2)                                                     ,))ˆ((ˆˆ fuISuuA    

 

where operator Ŝ  is given in (4.7). Obviously, 

(5.3)                                                  




















 I

I
SIIA






1

ˆˆˆ)1(ˆˆ . 

Introduce a tensor-function 

(5.4)                                                               










1

ˆ)(ˆ
),(ˆ

Ix
x . 

Substituting (5.4) into (5.3), we obtain 

(5.5)                                                      ))ˆ(ˆˆ)(1(ˆˆ ISIIA   . 

 

Comparing (5.5) and (5.2), taking into account (5.4) and the relation 12
3

2
2

2
1   , and applying 

Theorem 5.1 we see that the set 1  on complex plane  Z  defined from the conditions 

 

(5.6)                                     1,,)( 2
3

2
2

2
1

3

1,

 


 Qxx mnnm
mn

 

 

belongs to the continuous part of the spectrum of the operator of equation (4.7). The latter condition 

implies that the point 1  belongs to 1 ; in fact, by virtue of the Hölder-continuity, the permittivity 

tensor becomes a scalar quantity on the boundary of domain Q, i.e. nmnm   . 

For an isotropic medium, we have the following formula for the points of the continuous 

spectrum 

(5.7)                                                              Qxx  ,)( . 

 

Denote by   the minimal simply connected set on complex plane Z containing 1 . Consider a 

simply connected set  \Z
. Then taking into consideration the foregoing analysis, we can state 

that )ˆˆ( IA   is a Noether operator if 
 . It is known [5] that in every connected component of the 

domain where an operator is of Noether type, the operators )ˆˆ( IA   have the same index. If Â , 

then operator )ˆˆ( IA   has a bounded inverse defined everywhere; therefore the index of the operator is 

zero. Since domain   is bounded there exist points 
0  such that Â0  ; consequently, the 

index of (Noether) operators )ˆˆ( IA   equals zero at 
  and they are Fredholm operators. We have 

proved the following 

 

THEOREM 5.2. The set 1  on the complex plane defined by (5.6) belongs to the continuous spectrum of 

the operator of integral equation (4.7). In addition, )ˆˆ( IA   is a Fredholm operator if 

 \Z 
, where    is the minima simply connected set containing 1 . 

 

Note that domain 1  of the continuous spectrum is governed solely by the permittivity values and is 

independent of geometrical properties of domain Q. 
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From Theorem 5.2 it follows that points 
  belong either to the resolvent set of operator Â  

or to its discrete spectrum. Generally, it is not possible to describe sufficiently accurate the domain of 

localization of the discrete spectrum of operator (4.7). However, we can do it in one very important 

particular case.  

 

Below we consider the problem of the low-frequency scattering of electromagnetic waves when 

diameter D of domain Q is much less than the wavelength, i.e. 
0

2

k
D


 . 

Equation (4.7) may be also considered in the static case when the wavenumber 00 k . This 

circumstance shows an essential difference between three-dimensional and two-dimensional problems, 

because in the latter case a transformation to the static case of stationary integral equations cannot be 

performed. From (4.7) we obtain  

 

(5.8)        
Q

dyRGyIkAkA )()()ˆˆ())0(ˆ)(ˆ( 2
00 EE   

Q

dyRGyI )(gradgrad)),()ˆˆ(( 0E , 

 

where  )(ˆ
0kA  and )0(Â  are the operators of integral equations for the stationary and static cases and 

(5.9)                                                      
R

Rik
RG

4

1)exp(
)( 0

0


 . 

The second integral operator in (5.8) is not a singular one because due to (5.9) its kernel has no 

singularity at x = y and is a smooth function of coordinates. Therefore, from (5.8) it follows that 

 

0)0(ˆ)(ˆlim 0
00




AkA
k

. 

 

Then, using the known result [5] of functional analysis concerning convergence of the spectra of 

operators we have the following 

 

LEMMA 5.1. The spectrum of low-frequency integral operator )(ˆ
0kA  converges to the spectrum of static 

integral operator )0(Â  when 00 k . 

 

In the static case, integrodifferential equation (4.6) which is equivalent to singular integral 

equation (4.7) can be written in the form 

 

(5.10)                             
Q

xdyRyIyx )())4/1)(())(ˆ(divgrad)( 0EEE  . 

 

The solution of homogeneous equation (5.10) at 00 E  satisfies the differential equations 

(5.11)                                                     0)ˆ(div,0curl  EE  . 

 

The first equation in (4.11) follows from the identity  rot grad = 0. The second equation follows 

from the identities  grad div = curl curl +   and div curl = 0 and the differential equation 

 JA   which is satisfied by the volume potential dyRyx  )4/1()()( JA  [10]. 

From the first equation in (5.11) we have gradE . Consequently, equations (5.11) are 

reduced to a second-order differential equation with respect to a scalar function   

 

(5.12)                                                            0)gradˆ(div  . 

 

Let   be a differentiable function defined everywhere. Then the following obvious identity holds 
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(5.13)                                 gradˆgrad)gradˆ(div)gradˆ(div  . 

 

Set   . Then integrating (5.13) over the whole space and taking into account (5.12) and the 

divergence theorem, we obtain an integral relationship 

 

(5.14)                                          





RS

R
dS

n
d


 lim)grad,gradˆ( , 

where  RS  is a sphere of radius R centered at the origin and  n  is the normal vector to the sphere. Since 

  is a harmonic function outside domain Q, the integrand n /  decays at infinity not slower than 

3R . Thus, the limit on the right-hand side of (5.14) equals zero and every solution of homogeneous 

equation (5.12) and consequently of homogeneous integral equation (5.10) with gradE  satisfies the 

integral relationship 

(5.15)                                                           0)grad,gradˆ(  d . 

 

From (5.5), it is clear that   will be a point of the discrete spectrum of the operator of equation 

(5.10) if there exists a nonzero solution ),( x  of equation (5.12) with the permittivity function (5.4). 

Then, from (5.15) and (5.4) it follows that the corresponding   can be determined from the formula 

(5.16)                                         






xdx

xdxxx

2
),(grad

)),(grad),,(grad)(ˆ(




 . 

Obviously it is not possible to determine functions ),( x .  However one can use (5.16) to find a 

domain of localization of the points of the discrete spectrum on complex plane Z. 

Consider first the isotropic case. From (5.16) we obtain that of the points of the discrete spectrum 

are given by 

(5.17)                                                         






xd

xd

2

2

grad

grad




 . 

Expression (5.17) is closely related to the formula specifying the center of mass of a plane figure 

which can be located only inside a convex envelope of the figure. One can show in a similar 

manner that the values of   is situated only inside a convex envelope of the domain of 

permittivity Qxx ),( , i.e. inside a convex envelope of 1 . Denote this set by 0 . Obviously, 

the inclusion  0  is valid, where   is determined according to Theorem 5.2. Therefore, 

domain 0\Z  may contain only the points of the discrete spectrumа which are not situated there 

according to the analysis performed above. We have proved the following 

 

THEOREM 5.3. In the case of isotropic medium the whole spectrum of the operator of equation (5.10) 

and therefore of singular operator (4.7) at 00 k  is situated inside a convex envelope of the set given 

by formula (5.7). 

 

For the anisotropic case the situation is more complicated because expression (5.16) cannot be 

treated in the same manner as in the isotropic case. Namely, write tensor-function )(ˆ x  as 

(5.18)                   
i

xx
x

xx
xxixx

2

)(ˆ)(ˆ
)(ˆ,

2

)(ˆ)(ˆ
)(ˆ,)(ˆ)(ˆ)(ˆ

*

2

*

121











 . 

1̂  and 2̂  are Hermitian tensors for all Qx  so that their eigenvalues are real numbers. Denote by  

)(,)( )1(
max

)1(
min xaxa  and )(,)( )2(

max
)2(

min xaxa  the minimal and maximal eigenvalues of Hermitian tensors 

)(ˆ
1 x  and )(ˆ

2 x . 

From (5.16) and (5.18) it follows 
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(5.19)                    .2,1,
),(grad

)),(grad),,(grad)(ˆ(
,

221 




k

xdx

xdxxx
i

k

k




  

Since 2,1,),ˆ( kVVk


  are real quantities for any three-dimensional complex vectors V


, then 1  and 

2  in (5.19) are also real quantities. Next, for all x we have 

.2,1,),(grad)()),(grad),,(grad)(ˆ(),(grad)(
2)(

max

2)(

min  kxxаxxxxxа k

k

k   

(5.20) 

Now, substituting (5.20) into (5.19), we obtain the following 

 

THEOREM 5.4. The whole spectrum of the operator of equation (5.10) and therefore of singular 

operator (5.7) at 00 k  is situated inside a rectangle whose sides are parallel to the axes of the complex 

plane and the left lower and right upper vertices have the coordinates ),( )2(
min

)1(
min AA , ),( )2(

max
)1(

max AA , 

where   

.2,1,,)(max,)(min )(

max

)(

max

)(

min

)(

min  nQxxaAxaA nnnn
 

 

Note that Theorem 5.4 gives less exact information about the domain of localization of the spectrum as 

compared with the isotropic case. From Theorems 5.3 and 5.4 it follows that if the medium is lossless, 

then the whole spectrum of the operator lies close to a segment of the real axis of the complex plane. 

Lemma 5.1 establishes a possibility of using the obtained information about the spectrumе for 

solving the problem of low-frequency electromagnetic scattering with the help of VSIEs and 

stationary iteration methods set forth in Sections 2 and 3. 

 

All the results in this Section are proved under the assumption that the parameters of the medium 

are given as Hölder-continuous functions. However, these restrictions are not essential from the practical 

viewpoint. In fact, one really important family of the media where the parameters are not described by 

Hölder-continuous functions is a class of piecewise continuous permittivity functions. A domain occupied 

by the scatterer with a constant value of the permittivity constitutes the simplest example. Note in this 

respect that in the vicinity of the interface the permittivity can be represented as a Hölder-continuous 

function which undergoes a finite break along an infinitesimal segment. Then, all the results can be 

applied in the case of piecewise continuous permittivity functions (piecewise smooth media). 

Explain the above conclusion by using the following example. Let domain Q in equation (4.7) be 

a ball and the permittivity function (in the isotropic case) have the following form in spherical coordinates 

(5.21)                                            
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In (5.21) R is the radius of the ball and 021  ddR . 

The solid line in Fig. 5.1 shows the continuous part of the spectrum while the whole spectrum of 

the operator associated with a low-frequency scattering problem lies inside a triangle. 
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Figure 5.1: Spectrum of the integral operator. 

 

When 1d  tends to R the continuous part of the spectrum remains unchanged while its discrete part (in the 

low-frequency case) undergoes variation but remains inside the triangle.  

 

 6. Numerical experiments. Let us illustrate theoretical findings of this study by the results of 

computations obtained for a representative problem: low-frequency scattering of a plane electromagnetic 

wave from an inhomogeneous isotropic dielectric ball; the parameters of the ball taken according to 

(5.21) are ii 22,3 12   , 3/2,2/ 12 RdRd  . Consider the spectra of the VSIE operators. 

There is a correspondence between the spectrum of the integral operator and its discrete (matrix) analogue 

[5]. Of course, a matrix has only eigenvalues and has no continuous spectrum; therefore we cannot see 

continuous (bold) lines as in Fig. 5.1. However the eigenvalues will thicken along the lines of continuous 

spectrum. 

 Dicretizing VSIE (4.7), we obtain a SLAE of dimension N, where N is determined from the 

conditions of approximation of the integral operator. Figure 6.1 shows the spectra of the SLAE matrices 

calculated for three values of the radius of the ball (5.21)  
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a) b) c) 

 

Figure 6.1. Spectra for the ball radii 20/R  (a), 6/R  (b), and 2/R  (c) 

 

One can see from Fig. 6.1 that for all values of the ball dimensions the spectrum of the operator contains 

the lines corresponding to the VSIE continuous spectrum. The size of the ball in Fig. 6.1 (a) is within a 

low-frequency range and the whole spectrum of the operator is contained in the triangle with the vertexes 

(1,0), (3,1), (2,2). In Fig. 6.1 (b) one can see the points of the spectrum of the operator appearing outside 

the triangle. Fig. 6.1 (c) shows a resonance range and the convex envelope of the spectrum differs 

considerably from the initial triangle. 

 The  calculated spectra of the SLAE matrices for a homogeneous isotropic dielectric ball of the 

radius 30/R  are presented in Figs. 6.2 and 6.3. 
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Figure 6.2. Spectra of the SLAE matrices for a homogeneous dielectric ball of the radius 30/R  

calculated for the permittivity values 20,15,8,2 . 
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Figure 6.3. Spectra of the SLAE matrices for a homogeneous dielectric ball of the radius 30/R  

calculated for the permittivity values .1015,412 ii   

 

It can be seen that the spectra of the operators lie in the complex plane inside the segment  ],1[   which 

agrees with the theory developed in this study. Note that for lossless bodies the spectrum is situated on the 

real axis.  

We also calculated the spectra of the SLAE matrix in the quasi-static range for a homogeneous 

isotropic dielectric cube having the same permittivities. The obtained graphs coincide with those shown in 
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Figs. 6.2 and 6.3, which confirms, in line with the results of this work, that the spectrum is independent of 

the shape of the scatterer. 

 The spectra of the SLAE matrices calculated for an inhomogeneous dielectric ball of the radius 

30/R , 3/2,2/ 12 RdRd  , and permittivity given by (5.21) are shown in. Fig. 6.4. 

 

 
Figure 6.4. Spectra of the SLAE matrices for an inhomogeneous dielectric ball of the radius 

30/R and permittivity given by (5.21) with 12 , =(2+2i, 3+i), (10+4i, 10). 

 

For other 12 , dd  the complex spectra of the operators determined for the same values of 12 ,  are 

always contained inside the triangle with the vertexes (1,0), 12 , . 

Mutual location of the spectra of the VSIE operators and SLAE matrix eigenvalues calculated in 

[2, 8] also demonstrate complete agreement with the theoretical results presented in this work. 

Compare now the convergence of GSI, GCI and GMRES. As a representative problem we choose 

the scattering of a plane electromagnetic wave from a dielectric ball with the radius 30/R . Table 6.1 

gives the number of iterations L required for attaining the relative computational error 

0

0

E

EEA





 , 

where Â  is a discrete analogue of the integral operator and E


 is the calculated approximate solution. 

Computations were performed until 510 . 

 

Table 6.1. 

 

      GSI GCI,  

n = 5 

GCI,  

n = 10 

GMRES,  

n = 2 

GMRES,  

n = 5 

GMRES,  

n = 10 

 =2 L=10 L=10 L=10 L=8 L=10 L=10 

 =8 L=55 L=25 L=30 L=32 L=25 L=30 

 =15 L=155 L=80 L=80 L=3044 L=1175 L=680 

 =20 L=723 L=240 L=210 L=4002 L=1250 L=830 

 =12+4i L=55 L=30 L=30 L=84 L=50 L=40 

 =15+10i L=76 L=40 L=30 L=144 L=75 L=60 

i222   

i 31  

L=16 L=15 L=10 L=26 L=25 L=20 

 

 

For GCI we present the number of iterations L for two values of parameter n entering iteration 

procedure (3.1), (3.12). For GMRES we consider three values of the dimension n of the Krylov subspace. 

The first six rows of Table 6.1 contain the data for the scattering from a lossless and then lossy 

homogeneous dielectric ball and the last two rows for an inhomogeneous dielectric ball with the 

permittivity given by (5.21) and 3/2,2/ 12 RdRd  . For GCI the optimal iteration parameter was 
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determined in all cases according to the algorithm of Section 2. For the lossless homogeneous dielectric 

ball the GCI iteration parameters were calculated by formula (3.14) because in this case the spectrum of 

the operator is situated close to the real axis. For the lossy homogeneous dielectric ball the spectrum of 

the operator is situated on the complex plane close to a segment with the endpoint (1,0); the exact values 

of the GCI iteration parameters (3.12) are not known. However, their good approximations can be 

determined by the following algorithm: formula (3.14) is used for calculating the iteration parameters for 

a segment S of the real axis equally long with complex segment (1,  ), then segment S is turned around 

point (1,0) until it merges with complex segment (1,  ) so that finally the sought-for iteration parameters 

are located on the complex segment. For an inhomogeneous dielectric ball the spectrum is located inside 

the triangle for which the exact values of the GCI iteration parameters are not known either; in this case 

we determine approximate values of the optimal iteration parameters that lie on the sides of the triangle 

using the algorithm described above for a segment. The data of Table 6.1 clearly shows that the GMRES 

convergence rate is close to that of GSI and GCI only for moderate values of the permittivity.  

We see that as the permittivity increases, the stationary iteration methods with optimal iteration 

parameters determined according to the algorithms developed in this work turn out to be much more 

efficient, sometimes by an order of magnitude (see e.g. the fourth row of Table 6.1), at least for the low-

frequency scattering problems. In addition, the memory volume required for implementation of the 

stationary algorithms (the dimension of the Krylov subspace) is approximately n times smaller than that 

for GMRES. 

 

7. Discussion and conclusions. The theory of GSI (Section 2) is developed in its complete form. 

In fact, for an arbitrary domain of the spectrum localization on the complex plane we have constructed a 

finite algorithm of finding the optimal iteration parameter. 

In Section 3 we have described GCI applied for solving linear equations with nonselfadjoint 

operators. We have obtained sufficient conditions providing the convergence of iterations imposed on the 

domain of localization of the spectrum on the complex plane. A minimax problem for the determination 

of optimal complex iteration parameters has been formulated. Note that the memory volume required for 

the GCI implementation does not depend on the number n of layers in iteration procedure (3.1) and is 

governed, as well as for simple iterations, by the relationship NM ITER  , where N is the SLAE 

dimension.  

We have obtained the following important results: if the spectrum of the operator is a circle 0S on 

the complex plane, the problem degenerates. It means that all iteration parameters merge and become 

equal to the GSI optimal iteration parameter. Also it is reasonable to take small 53n  when GMRES 

is used. Greater dimensions lead mainly to increasing the memory volume rather than to significant 

improvement of convergence. Our numerical investigations including the results of Section 6 confirmed 

this conclusion several times.  

In Section 4 we set forth VSIEs associated with the problems of electromagnetic wave scattering 

by dielectric structures. In Section 5 we study the spectrum of integral equations. In the general case and 

for the resonance wavelength range, we describe explicitly the continuous part of the spectrum of the 

operator on the complex plane. We would like to strengthen that this part of the spectrum depends solely 

on the permittivity and is independent of the shape of the scatterer which is confirmed by the numerical 

results of Session 6. Note that it is not possible to obtain sufficiently exact information on the location of 

the discrete spectrum in the general case, and in particular, for the scattering problems in the resonance 

wavelength range. For the low-frequency scattering problems we determine highly accurate the 

localization of the whole spectrum including its discrete part. Theoretical estimates of the spectrum 

location on the complex plane agree completely with the calculated eigenvalues of the SLAE matrix 

resulting from VSIE discretization and presented in Section 6. If the medium is lossless (or losses are 

negligible) the formulas obtained in this study show that the spectrum of the operator lies close to a 

segment of the real axis and one can use optimal iteration parameters given by (3.14).  

Let us formulate the main conclusion of this study: from the viewpoint of computational 

resources, the considered stationary iteration methods are the most efficient techniques for the numerical 

solution of VSIEs describing three-dimensional low-frequency electromagnetic wave scattering by 

dielectric structures. 

 

Acknowledgements. This work was partly supported by the Visby research program of the 

Swedish Institute.   



 21 

  

REFERENCES 

 [1]   N.V. Budko, A.B. Samokhin, and A.A. Samokhin. A Generalized overrelaxation method for    

         solving singular volume integral equations in low-frequency scattering problems, Differential  

         Equations, 41 (2005) 1262-1266. 

[2]   N.V. Budko, A.B. Samokhin.  Spectrum of the volume integral operator of electromagnetic  

         Scattering,  SIAM J. Sci. Comput., 28 (2006) 682-700. 

[3]   N. Danford. J. Schwartz. Linear operators, Spectral operators, Wiley, 1988. 

[4]   M.H. Gutknecht. Lanczos-type solvers for nonsymmetric linear system of equations. Swiss Center  

        for scientific computing, Zurich, 1997. 

[5]   L.V. Kantorovich, G.P. Akilov. Functional analysis, Pergamon Press, Oxford, 1982. 

[6]   R.E. Kleinman, P.M. van den Berg. Iterative methods for radio-wave problems, The Review of 

Radio Science, Oxford University Press, (1993), 54-74. 

[7].  K. Kobayashi, Y. Shestopalov, Y. Smirnov. Investigation of electromagnetic diffraction by a    

dielectric body in a waveguide using the method of volume singular integral equation, SIAM J. 

           Appl. Maths., 70 (2009) 969-983  

[8]   G.I. Marchuk. Methods of numerical mathematics, Springer, Berlin, 1982. 

[9]   S.G. Mikhlin. S. Prössdorf. Singular integral operators, Springer, Berlin, 1986. 

[10]   J. Rahola, On the eigenvalues of the volume integral operator of electromagnetic scattering, 

        SIAM   J. Science Comput., 21 (2000) 1740-1754. 

[11] Y. Saad, M.N. Schultz. GMREZ: A generalized minimal residual algorithm for solving  

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) 856-869. 

[12]   A.B.Samokhin. Integral equations and iteration methods in electromagnetic scattering, VSP,  

       Utrecht, 2001. 

[13]  T.K. Sarkar (Ed.) Application of conjugate gradient method in electromagnetics and signal 

analysis, Elsevier, New York, 1991. 

    [14].  Y. Shestopalov, Y. Smirnov. Existence and uniqueness of solution to the inverse problem of  

          complex  permittivity reconstruction of a dielectric body in a waveguide  Inverse Problems,   

          26 (2010) 105002  

[15].  Y. Shestopalov, Y. Smirnov. Determination of permittivity of an inhomogeneous dielectric body  

      in a waveguide Inverse Problem,  27 (2011) 095010  

    [16]  J.A. Stratton. Electromagnetic theory, McGraw-Hill, New York, 1941. 


