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1. Introduction and statement of the main results

The so called Kolmogorov systems are differential equations of the
form

ẋi = xifi(x1, . . . , xn) for i = 1, . . . , n.

These systems appear in applications that the per unit of change ẋi/xi

of the dependent variables xi = xi(t) are given functions fi(x1, . . . , xn)
of these variables at any time. These systems are also called Lotka–
Volterra systems because were started to be studied by them in [19]
and in [23], respectively. Later on Kolmogorov came, giving some gen-
eralisations in [14] and then some authors denote them by Kolmogorov
systems.

There are many natural phenomena which can be modeled by the
Kolmogorov systems such as mathematical ecology and population dy-
namics [21], chemical reactions, plasma physics [15], hydrodynamics
[3], economics, etc.

Starting with Volterra, mathematicians have been interested in Kol-
mogorov systems particularly in

• their integrability, i.e. when such differential systems have first
integrals (see for instance [1, 2, 4, 5, 6, 7, 8, 17, 18, 22]),or

• in their periodic orbits (see for example [9, 10, 11, 13, 16, 20,
24, 25, 26]).

See also the references quoted in those articles.

In this paper we are interested in studying the integrability and the
periodic orbits of the 2–dimensional Kolmogorov systems of the form

(1)
ẋ = x(Pn(x, y) +Rm(x, y)),
ẏ = y(Qn(x, y) + Rm(x, y)),

where n and m are positive integers and Pn, Qn and Rm are homoge-
neous polynomials of degree n, n and m, respectively.

Let U be a non–empty open and dense subset of R2. We say that
a non–locally constant C1 function H : U → R is a first integral of
the polynomial differential system (1) in U if H is constant on the
trajectories of the polynomial differential system (1) contained in U ,
i.e. if

dH

dt
=

∂H

∂x
x(Pn(x, y) +Rm(x, y)) +

∂H

∂y
y(Qn(x, y) + Rm(x, y)) = 0,

in the points of U .
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We define the trigonometric polynomials

(2)
f(s) = Qn(cos s, sin s) sin

2 s+ Pn(cos s, sin s) cos
2 s,

g(s) =
(
Qn(cos s, sin s)− Pn(cos s, sin s)

)
cos s sin s.

Our main result on the integrability and the periodic orbits of the
Kolmogorov system (1) is the following.

Theorem 1. Consider a polynomial Kolmogorov system (1). Then the
following statements hold.

(a) If g(s) 6≡ 0 and m 6= n, then system (1) has the first integral

(3)

H = (x2 + y2)(n−m)/2 exp

(
(m− n)

∫ arctan(y/x)

F (s)ds

)

+(m− n)

∫ arctan(y/x)

exp

(
(m− n)

∫ u

F (s)ds

)
G(u)du,

where F (s) = f(s)/g(s) and G(s) = Rm(cos s, sin s)/g(s).

(b) g(s) 6≡ 0 and m = n, then system (1) has the first integral

(4) H =
√
x2 + y2 exp

(
−
∫ arctan(y/x)

(F (s) +G(s))ds

)
.

(c) If g(s) ≡ 0, then system (1) has the first integral H = y/x.

(d) System (1) has no periodic orbits.

Theorem 1 is proved in section 2.

2. Proof of Theorem 1

If we write system (1) in polar coordinates (r, θ) where x = r cos θ
and y = r sin θ, then we obtain

(5)
ṙ = rn+1f(θ) + rm+1Rm(cos θ, sin θ),

θ̇ = rng(θ),

where the functions f(θ) and g(θ) are given in (2).

If g(θ) 6≡ 0 and m 6= n we take as new independent variable the
variable θ, then the differential system (5) becomes the differential
equation

(6)
dr

dθ
= rF (θ) + rm+1−nG(θ),

where the functions F (θ) and G(θ) are the ones defined in statement
(a) of Theorem 1.
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We note that the differential equation (6) is a Bernoulli differential
equation, see for more details [12]. Then, doing the change of vari-
ables ρ = rn−m the Bernoulli differential equation becomes the linear
differential equation

dρ

dθ
= (n−m)

(
ρF (θ) +G(θ)

)
,

which has the first integral

(7)

H = ρ exp

(
(m− n)

∫ θ

F (s)ds

)

+(m− n)

∫ θ

exp

(
(m− n)

∫ u

F (s)ds

)
G(u)du,

Hence statement (a) of Theorem 1 is proved.

Suppose now that g(θ) 6≡ 0 and m = n. Then the differential equa-
tion (6) becomes

dr

dθ
= r
(
F (θ) +G(θ)

)
,

which has the first integral

(8) H = r exp

(
−
∫ θ

(F (s) +G(s))ds

)
.

Therefore it follows statement (b) of Theorem 1.

Assume now that g(θ) ≡ 0. Then, from (5) it follows that θ̇ = 0.
So the straight lines trough the origin of coordinates of the differential
system (1) are invariant by the flow of this system. Hence, y/x is a
first integral of the system, and this completes the proof of statement
(c) of Theorem 1.

The equilibrium points of the Kolmogorov system (1) are located at
the origin, or on the x or y axes, or in some of the open four quadrants
obtained from R2 removing the x and y axes. Since the axes x and y
are formed by trajectories of the system (1), surrounding the equilibria
located on these axes cannot be periodic orbits. Let γ be a periodic
orbit surrounding an equilibrium located in one of the open quadrants,
and let hγ = H(γ).

Assume that g(s) 6≡ 0 and m 6= n. Then, the curves H = h with
h ∈ R, which are formed by trajectories of the differential system (5),
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can be written as

r(θ) =

[
1

h

(
exp

(
(m− n)

∫ θ

F (s)ds

)

+(m− n)

∫ θ

exp

(
(m− n)

∫ u

F (s)ds

)
G(u)du

)] 1

m− n
.

Therefore the periodic orbit γ is contained in the curve

r(θ) =

[
1

hγ

(
exp

(
(m− n)

∫ θ

F (s)ds

)

+(m− n)

∫ θ

exp

(
(m− n)

∫ u

F (s)ds

)
G(u)du

)] 1

m− n
.

But this curve cannot contain the periodic orbit γ contained in one of
the open quadrants because this curve at most have a unique point on
every ray θ = θ∗ for all θ∗ ∈ [0, 2π).

Suppose that g(s) 6≡ 0 and m = n. From (8) now the curves H = h
with h ∈ R can be written as

r(θ) = h exp

(∫ θ

(F (s) +G(s))ds

)
.

So the periodic orbit γ must be contained in the curve

r(θ) = hγ exp

(∫ θ

(F (s) +G(s))ds

)
.

Again this curve cannot contain the periodic orbit γ for the same reason
than in the previous case.

Finally assume that g(s) ≡ 0. Then since all the straight lines
through the origin are formed by trajectories, clearly the system has no
periodic orbits. This completes the proof of statement (d) of Theorem
1.
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[4] L. Cairó and J. Llibre, Phase portraits of cubic polynomial vector fields of
Lotka–Volterra type having a rational first integral of degree 2, J. Phys. A 40
(2007), 6329–6348.
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