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Abstract

A direct transformation from cartesian coordinates into hyperboloidal coordinates (con-
sidered for biaxial hyperboloids) is presented in this paper. The transformation problem is
reduced to the problem of finding the smallest positive root of a fourth degree polynomial.
The analysis of the polynomial’s roots is performed by an algebraically complete stratifi-
cation, based on symbolic techniques (mainly Sturm-Habicht sequences and its properties
related to real root counting), of a planar region situated in the positive quadrant. Two
approaches for computing the polynomial’s roots are presented, one based on the Mer-
riman method and the other one obtained using the Computer Algebra System Maple.
Our approach improves the solution presented in [2], being reduced to a few evaluations
of symbolic expressions.

1 Introduction

Hyperboloidal coordinates (λ, ϕ, h) for both biaxial and triaxial hyperboloids of one sheet
were first introduced in the literature in [2], together with two iteration processes for the
transformation of the 3D cartesian coordinates (X,Y, Z) of a point located, by means of
the hyperboloidal height h, out from the hyperboloidal surface, i.e. verifying the condition

X2

a2
+
Y 2

b2
− Z2

c2
≥ 1 ,

into hyperboloidal coordinates. Their applications range over the Geodesy field, being of
interest in hyperboloidal building and cooling tower construction.
In our paper, the hyperboloidal coordinates are considered for biaxial hyperboloids (one
sheet hyperboloids of revolution around the Z–axis). The 3D cartesian coordinates
(X,Y, Z) of a point located out from a hyperboloidal surface can be expressed in terms
of a latitude ϕ, a longitude λ, and a height h measured along the hyperboloidal normal
(see Figure 2) as follows:

X = (ν + h) cosϕ cosλ , (1)

Y = (ν + h) cosϕ sinλ , (2)

Z = (ν(e2 − 1)− h) sinϕ , (3)

where (see Figures 1 and 2):
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− ν is the prime normal section curvature:

ν =
a√

1− e2 sin2 ϕ
,

− e is the eccentricity of the hyperboloid defined in the X-Y plane:

e =

√
1 +

b2

a2
(4)

− a is the semi–axis of the hyperboloid defined in the X-Y plane.

They are analogously defined to the geodetic coordinates by replacing the reference el-
lipsoid with a reference biaxial hyperboloid of one sheet. Observe that for h = 0, the
hyperboloidal coordinates satisfy the equation of the biaxial hyperboloid of one sheet

X2

a2
+
Y 2

a2
− Z2

b2
= 1. (5)

A direct transformation from cartesian coordinates into hyperboloidal coordinates is pre-
sented in our paper, by relying on the direct transformation from cartesian coordinates
into geodetic coordinates presented in [6] and on the analogy between the ellipsoidal and
the hyperboloidal coordinates. In addition, in the same way as in [4], symbolic techniques
are used in order to analyze such transformation, thereby providing additional insights
such as the complete characterization of the range of applicability.
It is important to mention that, from the user’s point of view, our approach reduces the
process of transformation from 3D cartesian into hyperboloidal coordinates to a few mere
evaluations of symbolic expressions, and is also highly presumable to be less time con-
suming and more accurate than the approach presented in [2]. The arguments supporting
this afirmation will be given in Section 7.
The paper is organized as follows: the Section 2 presents Sturm–Habicht sequences and
their main properties, which will be used to completely characterize the sign behaviour
of the real roots of a fourth degree polynomial P ; in the Section 3, the polynomial P is
generated and an algebraic method that allows the direct symbolic transformation from
3D coordinates into hyperboloidal coordinates is provided; the Section 4 presents two
approaches for computing the roots of the polynomial P , the first one based on the Mer-
riman approach and the second one obtained using the Computer Algebra System Maple,
and conjectures the algebraical equalness of the roots obtained by these approaches; the
Section 5 is devoted to presenting an algebraically complete classification of a planar re-
gion situated in the positive quadrant, in terms of numbers of real roots of the polynomial
P which fulfill certain conditions; in the Section 6, three examples are presented, corre-
sponding to the three cases considered in the Section 4.1; finally, the Section 7 presents
several conclusions and a further research direction.

2 Preliminaries: The Sturm-Habicht coefficients

In this section, the definition of the Sturm–Habicht sequence and its main properties
related to the real root counting problem are introduced (for more details, see [3]).

Definition 1. Let P and Q be polynomials in R[x] and p, q ∈ N, such that the polynomials’
degrees are smaller than p and respectively q (deg(P ) ≤ p and deg(Q) ≤ q):

P =

p∑
k=0

akx
k, Q =

q∑
k=0

bkx
k.
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Figure 1: Fundamental geometry on the hyperbola.

If i ∈ {0, . . . , inf(p, q) − 1}, then the polynomial subresultant associated to P and Q of
index i is defined as follows: Sresi(P, p,Q, q) =

∑i
j=0M

i
j(P,Q)xj, where every M i

j(P,Q)
is the determinant of the matrix built with the columns 1, 2, . . ., p + q − 2i − 1 and
p+ q − i− j in the matrix:

mi(P, p,Q, q) =

p+q−i︷ ︸︸ ︷

ap . . . a0
. . .

. . .

ap . . . a0
bq . . . b0

. . .
. . .

bq . . . b0



 q − i p− i

.

The determinant M i
i (P,Q) will be called the ith principal subresultant coefficient and de-

noted by sresi(P, p,Q, q).

The following definition introduces the Sturm–Habicht sequence associated to P and Q as
the sequence of the subresultants associated to P and P ′Q modulo certain sign changes.

Definition 2. Let P and Q be polynomials in R[x] such that p = deg(P ) and q =

deg(Q). Let v = p+ q − 1 and δk = (−1)
k(k+1)

2 for k ∈ N. The Sturm–Habicht sequence
associated to P and Q is defined as the polynomial list {StHaj(P,Q)}j=0,...,v+1 where
StHav+1(P,Q) = P , StHav(P,Q) = P ′Q, and for every j ∈ {0, . . . , v − 1}:

StHaj(P,Q) = δv−jSresj(P, v + 1, P ′Q, v).

For every j ∈ {0, . . . , v + 1}, the jth Sturm–Habicht principal coefficient is defined as
follows:

sthaj(P,Q) = coef j(StHaj(P,Q)),

i.e. the coefficient of xj in the polynomial StHaj(P,Q).
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Remark 1. In the particular case of Q = 1, the Sturm–Habicht sequence associated to P
are denoted by StHaj(P ), and the Sturm–Habicht principal coefficients associated to P
by sthaj(P ).

In order to establish the relation between the real roots of a polynomial P in R[x] and
the polynomials appearing in the Sturm–Habicht sequence associated to P and Q (with
Q ∈ R[x]), the following integer numbers are introduced:

c[ϵ](P,Q) = #{α ∈ R : P (α) = 0, sign(Q(α)) = ϵ}, ϵ ∈ {+,−, 0}.

By studying the sign changes of Sturm–Habicht principal coefficients, highly useful in-
formation about the number of real roots of the considered polynomial can be obtained.
The following definitions present the sign change functions which allow the number of real
roots of a polynomial in R[x] to be computed.

Definition 3. Let I = {a0, a1, . . . , an} be a list of real, non-zero numbers

• V(I) represents the number of sign variations in the list {a0, a1, . . . , an}:

V(I) =


0 if n = 0,
V({a0, . . . , an−1}) + 1 if sign(anan−1) = −1,
V({a0, . . . , an−1}) otherwise.

• P(I) represents the number of sign permanences in the list {a0, a1, . . . , an}:

P(I) =


0 if n = 0,
P({a0, . . . , an−1}) + 1 if sign(anan−1) = 1,
P({a0, . . . , an−1}) otherwise.

The previous definition can be extended to lists of any real numbers (not necessarily
non-zero numbers). If I0 is the list obtained by eliminating all the zeros from a list I, then
V(I) := V(I0) and P(I) := P(I0) are defined.

Notation 1. Let {a0, a1, . . . , an} ⊂ R, with a0 ̸= 0 and with the following zero distribu-
tion:

I = {a0, a1, . . . , an} =

= {a0, . . . , ai1 ,
k1︷ ︸︸ ︷

0, . . . , 0, ai1+k1+1, . . . , ai2 ,

k2︷ ︸︸ ︷
0, . . . , 0, ai2+k2+1, . . . , ai3 , . . . ,

kt−1︷ ︸︸ ︷
0, . . . , 0,

ait−1+kt−1+1, . . . , ait ,

kt︷ ︸︸ ︷
0, . . . , 0}

where all the written elements ai are different from 0. Denoting i0 + k0 + 1 = 0, define
C(I) by

C(I) =

t∑
s=1

(
P({ais−1+ks−1+1, . . . , ais})−V({ais−1+ks−1+1, . . . , ais})

)
+

t−1∑
s=1

εis

where:

εis =


0 if ks is odd,

(−1)
ks
2 sign(ais+ks+1ais) if ks is even.

The relation between the number of real roots of a polynomial P ∈ R[x] and the polyno-
mial appearing in the Sturm–Habicht sequence associated to P is stated below.
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Theorem 1. If P and Q are polynomials in R[x] then:

Ω(P,Q) := C({sthap(P,Q), . . . , stha0(P,Q)}) = c[+](P,Q)− c[−](P,Q).

If P and Q are polynomials in R[x] and have no common real root, then (see [1]) c[+](P,Q)
and c[−](P,Q) can be easily computed in terms of Ω(P,Q) and Ω(P, 1):

c[+](P,Q) =
Ω(P, 1) + Ω(P,Q)

2

c[−](P,Q) =
Ω(P, 1)− Ω(P,Q)

2

(6)

3 Transformation from cartesian into hyperboloidal

coordinates

As mentioned in the Introduction, the 3D cartesian coordinates are related to the hyper-
boloidal coordinates by (see Figure 2)

X = (ν + h) cosϕ cosλ ,

Y = (ν + h) cosϕ sinλ ,

Z = (ν(e2 − 1)− h) sinϕ ,

where

ν2 =
a2

1− e2 sin2 ϕ
. (7)

In the following, an algebraic method that allows the direct symbolic transformation from
3D coordinates into hyperboloidal coordinates is provided. Observe that the case Z = 0
is trivial: if Z = 0, then ϕ = 0, ν = a, and h =

√
X2 + Y 2 − a. Therefore, the conditions

Z > 0, sin(ϕ) > 0 and cos(ϕ) > 0 are henceforth supposed to be verified. Obviously this
implies that ν(e2 − 1)− h > 0.

Let the positive coefficient k be defined as follows:

k :=
ν(e2 − 1)− h

ν
> 0,

Hence,
h = ν(e2 − 1)− kν = ν(e2 − k − 1) ≥ 0, (8)

and from (3) and (7),
Z = kν sinϕ,

consequently,

ν2 =
a2

1− e2 sin2 ϕ
=

a2

1− e2Z2

k2ν2

=
k2ν2a2

k2ν2 − e2Z2

and therefore

ν2 = a2 +
e2Z2

k2
⇒ ν =

√
a2 +

e2Z2

k2
.

Furthermore, from (1) and (2),

X2 + Y 2 = (ν + h)2 cos2 ϕ = ν2(e2 − k)2 cos2 ϕ = ν2(e2 − k)2
(
1− Z2

k2ν2

)
= (9)
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Figure 2: Distances ν, νe2 and ν(e2 − 1) − h on the hyperbola, and the definition of the
hyperboloidal height h.

= (e2 − k)2
a2k2 + e2Z2 − Z2

k2

and therefore
X2 + Y 2

(e2 − k)2
− Z2(e2 − 1)

k2
= a2 . (10)

On the other hand, by defining two new variables p and q as follows:

p :=
X2 + Y 2

a2
> 0, q :=

e2 − 1

a2
Z2 > 0 , (11)

the following formula can be deduced from (10) :

p

(e2 − k)2
− q

k2
= 1,

that is,
pk2 − (e2 − k)2q = k2(e2 − k)2 .

Through expansion, a degree 4 univariate polynomial (in k), whose coefficients depend on
e, p and q, is obtained:

P (e, p, q; k) := k4 − 2e2k3 − (p− q − e4)k2 − 2e2qk + qe4 = 0 (12)

Taking into account the generating process of the polynomial P (e, p, q; k), there must be
a positive real root k such that, given (X,Y, Z), the distance D := (ν(e2 − 1) − h) cosϕ
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(see Figure 3) can be calculated by using Equation (9):

D = (ν(e2 − 1)− h) cosϕ = kν cosϕ =
k
√
X2 + Y 2

e2 − k
> 0 . (13)

Observe that, since h ≥ 0, k must verify the condition e2 − k ≥ 1 (see (8)), and therefore
the denominator of D is positive.

Figure 3: Distance D.

Once D is computed, the hyperboloidal coordinates (λ, ϕ, h) can be computed from (7)
and (10) as follows:

ν =

√
a2 +

e2Z2

k2
=

√
X2 + Y 2

(e2 − k)2
+
Z2

k2
=

√
D2 + Z2

k
, (14)

h = ν(e2 − 1− k) =

√
D2 + Z2(e2 − 1− k)

k

λ = arctan

(
Y

X

)
tan

ϕ

2
=

sinϕ

1 + cosϕ
=

Z

D +
√
D2 + Z2

.

(15)

Remark 2. The conditions p > 0 and q > 0 are supposed to be verified. Observe that:

• Z ̸= 0 implies q > 0;

• p = 0 would imply X = Y = 0 and in this case the point (X,Y, Z) would be on the
Z-axis.
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Remark 3. Let ∆0(e; p, q) denote the polynomial
(
e2 − 1

)2
p− q −

(
e2 − 1

)2
. Due to the

geometry of the problem (the point given in 3D cartesian coordinates is located out from
the hyperboloidal surface), the following condition holds (see (11) and (4)):

∆0(e; p, q) ≥ 0. (16)

The case of a point located on the hyperboloidal surface (whose cartesian coordinates satisfy
the equation (5)), or equivalently the equation ∆0(e; p, q) = 0, is trivial. It is very easy to
prove that in this case the hyperboloidal coordinates (λ, ϕ, h) are:

h = 0

λ = arctan

(
Y

X

)
tan

ϕ

2
=

Z

(e2 − 1)(ν +
√
X2 + Y 2)

.

Furthermore, the condition
X2

a2
+
Y 2

a2
− Z2

b2
> 1 (17)

which is equivalent to
∆0(e; p, q) > 0 (18)

is supposed to be verified.

4 Computation of P (e, p, q; k)’s roots

In this section, two approaches for computing the roots of the polynomial P (e, p, q; k) are
presented. The first one was introduced at the ends of the 19th century by M. Merriman,
meanwhile the second one is based on using symbolic computation tools of the Computer
Algebra System Maple, and followed by a post-processing step of manually performed
simplification.

4.1 Computation of P (e, p, q; k)’s roots based on Merriman’s
approach

In order to compute the roots of P (e, p, q; k), by using the approach in [5] and keeping its
notation, the following parameters are determined:

N :=
(e4 + q − p)6

66

M :=
(e4 + q − p)3 + 54e4pq

63

S :=
3
√
M +

√
M2 −N

2

T :=
3
√
M −

√
M2 −N

2

u :=
e4 + 2p− 2q

12
+ (S + T )

v :=
e4 + 2p− 2q

6
− (S + T )

w := v2 + 3(S − T )2 .
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By considering that y1, y2 and y3 are the roots of the cubic

y3 − e4 + 2p− 2q

4
y2 +

(p− q)
(
p− q + 2e4

)
16

y − e4 (p+ q)2

64
= 0, (19)

and being y1 a real root (y2 and y3 may be real or complex conjugated roots), it follows
that

y1 = u ∈ R (20)

y2 + y3 = v ∈ R (21)

4 y2 y3 = w ∈ R (22)

(for more details, see [5]). Observe that (S − T )2 can be positive or negative (depending
on the sign of M2 −N).

Remark 4. It is important to mention that if M2 −N < 0, then:

• the expression
√
M2 −N stands for the complex number I

√
N −M2, and

• the expression
3
√
M +

√
M2 −N stands for the cubic complex root ψ+ I ω verifying

the conditions ψ > 0 and ω > 0.

In the following, the existence of the aforementioned cubic complex root ψ+ I ω is proved
(when M2 − N < 0). The complex number M +

√
M2 −N = M + I

√
N −M2 can be

written also as ρ(cos (θ) + I sin (θ), with ρ =
√
N and

cos (θ) =
M√
N
, sin (θ) =

√
N −M2

N
> 0 (hence, θ ∈ (0, π)) . (23)

By applying the De Moivre theorem, the equation z3 = M + I
√
N −M2 has the cubic

complex roots:

zj = 3
√
ρ

[
cos

(
θ + 2jπ

3

)
+ I sin

(
θ + 2jπ

3

)]
, j = 0, 1, 2 . (24)

The root of interest from our point of view is z0 = ψ + I ω, as (see (23))

cos

(
θ

3

)
> 0, sin

(
θ

3

)
> 0 .

The four roots of P (e, p, q; k) are thus presented as:

α1 :=
e2

2
+

√
u+

√
v +

√
w ,

α2 :=
e2

2
+

√
u−

√
v +

√
w ,

α3 :=
e2

2
−

√
u+

√
v −

√
w ,

α4 :=
e2

2
−

√
u−

√
v −

√
w .

(25)

In the following, the nature of these roots in the region of interest for us (that is, when
p > 0, q > 0 and ∆0(e; p, q) > 0) is examined, by means of the behaviour of the resultant
of P (e, p, q; k) and its derivative with respect to k (ignoring constant factors), denoted by
∆3(e; p, q),

∆3(e; p, q) = p3 − 3 p2 q − 3 e4 p2 + 3 p q2 − 21 e4 q p+ 3 e8 p− 3 e8 q − q3 − 3 e4 q2 − e12.

9



Observe that

∆3(e; p, q) = (p− q − e4)3 − 27e4pq , (26)

M =
27e4pq −∆3(e; p, q)

63
(27)

and the signs of M2 −N and ∆3(e; p, q) are opposite, as

M2 −N = −e
4pq

432
∆3(e; p, q) .

Moreover, if ∆1(e; p, q) denotes the polynomial 2p− 2q + e4, then

u =
∆1(e; p, q)

12
+ (S + T ) , (28)

v =
∆1(e; p, q)

6
− (S + T ) . (29)

In the following the three cases ∆3(e; p, q) < 0, ∆3(e; p, q) = 0 and ∆3(e; p, q) > 0 are
considered.

First, the case ∆3(e; p, q) < 0 is considered. It follows that M2 −N > 0, M > 0
and therefore S and T are both positive real numbers. Then

√
w is a real number,

v +
√
w > 0 and v −

√
w < 0. With respect to the real number u, it is easy to see that

if ∆1(e; p, q) ≥ 0, then
√
u is a real number. Otherwise, if ∆1(e; p, q) < 0, the Descartes

rule applied to the cubic (19) asserts that u is also positive (observe that the coefficient
of y2 in (19) is −1

4∆1(e; p, q)). In conclusion, α1 and α2 are the two positive roots and α3

and α4 are the complex conjugated roots.

Next, the case ∆3(e; p, q) = 0 is considered. It follows that M2−N = 0, M > 0,
S = T = 1

2
3
√
M > 0, w = v2. Moreover since p− q − e4 > 0, ∆1(e; p, q) > 0 and therefore

u > 0. Under these hypotheses, v must be positive. Therefore α1 and α2 are the two
different positive roots and α3 = α4 is the negative double root.

Finally, the case ∆3(e; p, q) > 0 is considered. On the one hand the roots y2
and y3 of the cubic (19) are real (see [5]) and the Descartes rule asserts that in this
case, the three roots, y1 = u, y2 and y3 must be positive (observe that the coefficient
of y is positive), so that u, v and w are positive. On the other hand, it follows that
∆1(e; p, q) > 0, M2 − N < 0, and S and T are complex conjugated numbers. In this
case (S − T )2 is negative and consequently v ±

√
w > 0. In the following, it will be

proved that α2 > α3. Let a and b be the real and respectively the imaginary part of S.
Therefore M + I

√
N −M2 = 8 (a+ I b)3, which implies that N −M2 = 8b

(
3a2 − b2

)
=

8b
(√

3a+ b
) (√

3a− b
)
and consequently (see Remark 4)

√
3a − b is positive. It is very

easy to prove that α2 > α3 if and only if 2u− v >
√
v2 − w. As 2u− v = 3(S + T ) = 6a,

√
v2 − w =

√
−3 (S − T )2 =

√
12b2 = 2

√
3b and

√
3a > b, the previous condition is

verified. As a consequence, α1 and α2 are the two positive roots and α3 and α4 are the
two negative roots.

Thus, the following conclusions can be drawn:

• The polynomial P (e, p, q; k) has two different positive real roots α1 and α2 (α1 > α2).

• If ∆3(e; p, q) < 0, then P (e, p, q; k) has two complex roots α3 and α4.

• If ∆3(e; p, q) = 0, then P (e, p, q; k) has a double negative root α3 = α4.

• If ∆3(e; p, q) > 0, then P (e, p, q; k) has two negative roots α3 and α4 (α3 > α4).
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4.2 Computation of P (e, p, q; k)’s roots via Maple

The Computer Algebra System Maple generically computes (i.e. expresses in terms of
p, q and e) the roots of the polynomial P (p, q, e; k) applying the Ferrari method. By
accomplishing a post-processing step of manually performed simplification, the parameters
α and β are defined as follows:

α := 3

√(
3
√
3pqe2 +

√
−∆3(e; p, q)

)2
,

β :=
1

3

(
∆1(e; p, q) + α+

(
p− q − e4

)2
α

)
.

(30)

Remark 5. If ∆3(e; p, q) > 0, then the expression 3

√(
3
√
3pqe2 +

√
−∆3(e; p, q)

)2
stands

for that cubic complex root verifying that its real and imaginary parts are positive. The
proof of the existence of this cubic root is similar to the one presented in Section 4.1.

The four roots of the polynomial P are presented in the following way:

k1 :=
1

2

(
e2 +

√
β +

√
∆1(e; p, q)− β +

2e2 (p+ q)√
β

)
,

k2 :=
1

2

(
e2 +

√
β −

√
∆1(e; p, q)− β +

2e2 (p+ q)√
β

)
,

k3 :=
1

2

(
e2 −

√
β +

√
∆1(e; p, q)− β − 2e2 (p+ q)√

β

)
,

k4 :=
1

2

(
e2 −

√
β −

√
∆1(e; p, q)− β − 2e2 (p+ q)√

β

)
.

(31)

Thus, the following result is conjectured: ki = αi for every i ∈ {1, 2, 3, 4}, and the
challenge to prove it is left for the readers.

5 Symbolic analysis of the positive roots of P

The previous section asserts that the polynomial P has two different positive roots. In
this section, the Sturm-Habicht coefficients and their properties are used to certify that
there is only one positive root of P which makes h = ν(e2 − 1 − k) positive. Thus, the
greatest positive root α1 must be discarded, being of interest from the geometrical point
of view only the smallest positive root α2.
As proven in Section 4.1 (see (25)), α1+α2 = e2+2

√
u, where u is a positive real number.

The generating process of the polynomial P (e, p, q; k) assures the existence of (at least)
one positive real root k which makes h positive. If both α1 and α2 made h positive, then
e2+2

√
u = α1+α2 ≤ 2e2−2 or equivalently 2

√
u ≤ e2−2, which is impossible if e <

√
2.

Thus, if e <
√
2 the existence of a unique positive real root of P which makes h positive

is certified. In the following, the case e ≥
√
2 is tackled.

The Sturm-Habicht coefficients and their properties are used in order to stratify the space
of the parameters p > 0, q > 0, verifying also the condition (18) (by considering that
the eccentricity of the hyperboloid defined in the X-Y plane is an arbitrary given value
e ≥

√
2), in sets (regions, curves or points) where the polynomial P (as a polynomial in

k) has a constant number of real roots (counted without multiplicities) making h positive.
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For this purpose, the polynomial Q(e; k) := −k + e2 − 1 is considered. The stratification
is performed by applying formulae (6) for polynomials P and Q (as polynomials in k).
For a formal exposition of the stratification (and generally of decompositions of sets defined
by polynomial inequalities), see [1].
The Sturm-Habicht coefficients associated to P are:

stha4(P ) = 1

stha3(P ) = 4

stha2(P ) = 4 (2 p− 2 q + e4)

stha1(P ) = 8 (p3 − 3 p2 q − e8 q + 3 p q2 + e8 p− 2 e4 q2 − 14 e4 q p− q3 − 2 e4 p2)

stha0(P ) = 16e4p(p3 − 3 p2 q − 3 e4 p2 + 3 p q2 − 21 e4 q p+ 3 e8 p− 3 e8 q − q3 − 3 e4 q2 − e12) .

The Sturm-Habicht coefficients associated to P and Q are:

stha5(P,Q) = 0

stha4(P,Q) = −4

stha3(P,Q) = 8 (2− e2)

stha2(P,Q) = 16 (p2 − 2 pq + q2 − 2 p− e2p+ 2 e4p+ 2 q − 5 e2q + e4q + e6 − e4)

stha1(P,Q) = 32 (e2p4 − p4 + 4 p3q − 3 e2p3q + 3 e2p2q2 − 6 p2q2 + 4 pq3 − e2pq3 − q4

+2 e4p3 + p3 − e2p3 − 2 e6p3 + 4 e2p2q + 14 e4p2q − 3 p2q − 20 e6p2q

−13 e4pq2 − 5 e2pq2 − 5 e6pq2 + 3 pq2 − q3 − 3 e4q3 + 2 e2q3 + e10p2

−2 e4p2 + 2 e6p2 − e8p2 + e8pq − 14 e4pq − 4 e10pq + 21 e6pq + 4 e6q2

−3 e8q2 − 2 e4q2 + e8p− e10p− e12q + 2 e10q − e8q)

stha0(P,Q) = 64 pqe4
((
e2 − 1

)2
p− q −

(
e2 − 1

)2) (
p3 − 3 p2 q − 3 e4 p2 + 3 p q2

−21 e4 q p+ 3 e8 p− 3 e8 q − q3 − 3 e4 q2 − e12
)
.

It is easy to prove, by algebraic manipulation of its coefficients, that stha2(P,Q) > 0 when
the conditions p > 0, q > 0 and ∆0(e; p, q) > 0 hold. After simplifying the aforementioned
Sturm-Habicht coefficients, the conclusion that Ω(P, 1) and Ω(P,Q) depend on the sign
of the following six polynomials is deduced.

∆1(e; p, q) = 2 p− 2 q + e4

∆2(e; p, q) = p3 − 3 p2 q − e8 q + 3 p q2 + e8 p− 2 e4 q2 − 14 e4 q p− q3 − 2 e4 p2

∆3(e; p, q) = p3 − 3 p2 q − 3 e4 p2 + 3 p q2 − 21 e4 q p+ 3 e8 p− 3 e8 q − q3 − 3 e4 q2 − e12

∆4(e; p, q) = 2− e2

∆5(e; p, q) = e2p4 − p4 + 4 p3q − 3 e2p3q + 3 e2p2q2 − 6 p2q2 + 4 pq3 − e2pq3 − q4

+2 e4p3 + p3 − e2p3 − 2 e6p3 + 4 e2p2q + 14 e4p2q − 3 p2q − 20 e6p2q

−13 e4pq2 − 5 e2pq2 − 5 e6pq2 + 3 pq2 − q3 − 3 e4q3 + 2 e2q3 + e10p2

−2 e4p2 + 2 e6p2 − e8p2 + e8pq − 14 e4pq − 4 e10pq + 21 e6pq + 4 e6q2

−3 e8q2 − 2 e4q2 + e8p− e10p− e12q + 2 e10q − e8q

∆6(e; p, q) = ∆3(e; p, q)∆0(e; p, q) .

These polynomials are considered as bivariate polynomials in p and q, whose coefficients
depend on the eccentricity e. Geometrically, the equations ∆i(e; p, q) = 0 (i = 1, 2, 3, 5)
represent planar implicit curves whose points have coordinates which depend on e.
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Observe that:

• the sign of ∆4(e; p, q) is − (if e >
√
2) or 0 (if e =

√
2)

• As ∆0(e; p, q) > 0, sign(∆3(e; p, q)) = sign(∆6(e; p, q)).

Thus, Ω(P, 1) and Ω(P,Q) really depend only on the signs of ∆i(e; p, q), (i = 1, 2, 3, 4, 5).
Let R be the planar region defined by the conditions p > 0, q > 0 and ∆0(e; p, q) > 0
(displayed in Figure 4). In the following, R is stratified according to the signs of the
polynomials ∆i(e; p, q), (i = 1, 2, 3, 4, 5).

Figure 4: The region R to be stratified and its borders: ∆0 = 0 (magenta) and p-axis, with
p ≥ 1 (navy)

The stratification is performed by determining (by means of geometrical and algebraical
manipulations of the expressions ∆i(e; p, q) and its coefficients) the intersection points
between the curve ∆i(e; p, q) = 0 and the borders of the region R, and between pairs of
curves ∆i(e; p, q) = 0, ∆j(e; p, q) = 0 (j = 1, 2, 3, 5), for i = 1, 2, 3, 5. The results are
presented in Table 1 , Figure 5 and Figure 6.

Point Belonging to
A (1, 0) p-axis, ∆0 = 0 and ∆5 = 0
B (e4, 0) p-axis, ∆2 = 0, ∆3 = 0 and ∆5 = 0
C ∆0 = 0 and ∆2 = 0

D

(
3e4 − 4e2 + 2

2e2(e2 − 2)
,
e8 − 2e6 + 3e4 − 4e2 + 2

2e2(e2 − 2)

)
∆0 = 0 and ∆1 = 0, if e >

√
2

Table 1: Intersection points of the curves ∆i = 0, (i = 1, 2, 3, 5) in the region R.

Except for D (which exists only if e >
√
2), the existence of the obtained intersection

points does not depend on the value of e ≥
√
2. Although the coordinates of the point C

can’t be explicitly expressed in terms of e, it is easy to prove (using, for instance, Sturm–
Habicht coefficients and their properties) that the curves ∆0(e; p, q) = 0 and ∆2(e; p, q) = 0
has a unique intersection point in the positive quadrant.
In the following, the behavoiur of the curves ∆i(e; p, q) = 0 (i = 1, 2, 3, 5) in the region
R is explained. It is independent from the value of e ≥

√
2, except for ∆1(e; p, q) = 0

(whose behaviour has to be analyzed for e >
√
2 and for e =

√
2). In Figures 5 and 6:

• The straight line ∆1(e; p, q) = 0 appears in red. If e >
√
2, it enters the region R

through the point D. Otherwise (if e =
√
2), it doesn’t enter the region R, as it is
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parallel with ∆0(e; p, q) = 0; in this case, it is displayed with a discontinue line, in
order to highlight that it is not situated in the region of interest for us.

• The curve ∆2(e; p, q) = 0 appears in blue. It enters the region R through the pointA,
reaches again the p-axis at the point B (this curve segment is henceforth called the
“left branch of ∆2”) and afterwards remains in R (this curve segment is henceforth
called the “right branch of ∆2”).

• The curve ∆3(e; p, q) = 0 appears in green. It enters the region R through the point
B.

• The curve ∆5(e; p, q) = 0 appears in cyan. It enters the region R through the
point A, reaches again the p-axis at the point B (this curve segment is henceforth
called the “left branch of ∆5”) and afterwards remains in R (this curve segment is
henceforth called the “left branch of ∆5”).

• The straight line ∆0(e; p, q) = 0 appears in magenta.

Figure 5: ∆1 = 0 (red), ∆2 = 0 (blue), ∆3 = 0 (green), ∆5 = 0 (cyan) and ∆0 = 0 (magenta),
for e >

√
2.

By means of a point testing in each set (region or curve) generated by the aforementioned
stratification, the signs of the polynomials sthaj(P ) and sthaj(P,Q) (see Tables 5 and
4) are obtained as follows:

sign({sthaj(P )}j∈{4, 3, 2, 1, 0}) =

= {+, +, sign(∆1(e; p, q)), sign(∆2(e; p, q)), sign(∆3(e; p, q))},

and
sign({sthaj(P,Q)}j∈{4, 3, 2, 1, 0}) ={

{−, −, +, sign(∆5(e; p, q)), sign(∆3(e; p, q))} if e >
√
2

{−, 0, +, sign(∆5(e; p, q)), sign(∆3(e; p, q))} if e =
√
2 .
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Figure 6: ∆1 = 0 (red), ∆2 = 0 (blue), ∆3 = 0 (green), ∆5 = 0 (cyan) and ∆0 = 0 (magenta),
for e =

√
2.

As explained in Section 2, both the number of real roots of the polynomial P (p, q, e; k)
which make h positive and the number of real roots of P (p, q, e; k) which make h negative
are constant when (p, q) belongs to any of the sets (regions or curves) generated by the
stratification of the region R, provided by the curves ∆i(e; p, q) = 0. These curves divide
the region R into n regions: R1, R2, . . . , Rn, where n = 7 if e >

√
2 and n = 6 if e =

√
2

(see Figures 5, 6, 7 and Tables 3, 2).
The formulae (6) provide (as shown in Tables 5 and 4): r, the number of real roots of
P which make h positive, and s, the number of real roots of P which make h negative
(remember that these roots are counted without multiplicities).
The obtained results prove that, when the parameters p and q belong to the region R, the
polynomial P (e, p, q; k) has a unique positive real root which makes h positive:

• If ∆3(e; p, q) < 0 (in the region R), then P (e, p, q; k) has one positive real root which
makes h positive, α2.

• If ∆3(e; p, q) = 0 (in the region R), then P (e, p, q; k) has two real roots (counted
without multiplicities) which make h positive, the positive one α2 and the negative
ones α3 = α4.

• If ∆3(e; p, q) > 0 (in the region R), then P (e, p, q; k) has three real roots which make
h positive, the positive one α2, and the negative ones α3 and α4.

6 Examples

In this section, three examples are presented, corresponding to the three cases (∆3(e; p, q) <
0, ∆3(e; p, q) = 0 and ∆3(e; p, q) > 0) studied in the Section 4.1.
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Figure 7: The curves ∆j = 0 displayed around the points A and C (up), B (middle) and (for
e >

√
2) D (down).
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Region Ri Its borders
i = 1 upper branch of ∆1

lower branch of ∆0 = 0
i = 2 lower branch of ∆1

upper branch of ∆2 = 0
∆0 = 0

i = 3 p ∈ [1, e4]
upper branch of ∆5

lower branch of ∆2

∆0 = 0
i = 4 p−axis with p ∈ [1, e4]

lower branch of ∆5,
i = 5 lower right branch of ∆2

upper right branch of ∆5

i = 6 lower right branch of ∆5

upper right branch of ∆3

i = 7 p-axis with p ≥ e4

lower branch of ∆3

Table 2: Description of the regions R1, R2, . . . , R7 for e >
√
2.

Region Ri Its borders

i = 1 p ≥ 1/2 +
√
6/4

upper branch of ∆2

∆0 = 0
i = 2 p ∈ [1, e4]

upper branch of ∆5

lower branch of ∆2

∆0 = 0
i = 3 p−axis with p ∈ [1, e4]

lower branch of ∆5,
i = 4 lower right branch of ∆2

upper right branch of ∆5

i = 5 lower right branch of ∆5

upper right branch of ∆3

i = 6 p-axis with p ≥ e4

lower branch of ∆3

Table 3: Description of the regions R1, R2, . . . , R6 for e =
√
2.
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Set sign(sthaj(P )) sign(sthaj(P,Q)) r s
Region R1 {+, +, –, –, – } {–, –, +, –, – } 1 1
Region R2 {+, +, +, –, – } {–, –, +, –, – } 1 1
Regions R3 and R5 {+, +, +, +, – } {–, –+, –, – } 1 1
Region R4 and R6 {+, +, +, +, – } {–, –, +, +, – } 1 1
Region R7 {+, +, +, +, + } {–, –, +, +, + } 3 1
Curve ∆1 with ∆0 > 0 {+, +, 0, –, – } {–, –, +, –, – } 1 1
Curve ∆2 with ∆0 > 0 {+, +, 0, –, – } {–, –, +, –, – } 1 1
Curve ∆5 with ∆0 > 0 {+, +, +,+, – } {–, –, +, 0, –} 1 1
Curve ∆3 with ∆0 > 0 {+, +, +,+, 0 } {–, 0, +, +, 0 } 2 1

Table 4: Number of real roots of P with Q > 0 (r) and Q < 0 (s), for e >
√
2 .

Set sign(sthaj(P )) sign(sthaj(P,Q)) r s
Region R1 {+, +, +, –, – } {–, 0, +, –, – } 1 1
Regions R2 and R4 {+, +, +, +, – } {–, 0+, –, – } 1 1
Region R3 and R5 {+, +, +, +, – } {–, 0, +, +, – } 1 1
Region R6 {+, +, +, +, + } {-, 0, +, +, + } 3 1
Curve ∆2 with ∆0 > 0 {+, +, +, 0, – } {–, 0, +, –, – } 1 1
Curve ∆5 with ∆0 > 0 {+, +, +,+, –} {–, 0, +, 0, – } 1 1
Curve ∆3 with ∆0 > 0 and p > e4 {+, +, +,+, 0 } {–, 0, +, +, 0 } 2 1

Table 5: Number of real roots of P with Q > 0 (r) and Q < 0 (s), for e =
√
2 .
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Remark 6. Obviously, the values appearing in these examples may be expressed exactly,
using rational numbers and radicals, but huge written expressions (difficult to simplify)
would be generated. For this reason, most of the values are displayed as floating point real
numbers with four decimals.

Example with ∆3(e;p,q) < 0. Consider the biaxial hyperboloid of one sheet defined
by the semi axis a = 20, b = 35 and the point (X,Y, Z) = (100, 25, 170), located out of
the hyperboloid.
In this case, the eccentricity of the hyperboloid defined in the X-Y plane is equal to

e =

√
65

4
and the values of p and q are (see (11)):

p =
425

16
, q =

14161

64
.

Observe that the point (p, q) is placed in the region R1 (∆1(e; p, q) < 0, ∆2(e; p, q) < 0,
∆3(e; p, q) < 0, ∆4(e; p, q) < 0, ∆5(e; p, q) < 0) and hence the polynomial P has two
positive real roots and two complex roots,

α1 = k1 = 5.9867,

α2 = k2 = 3.0328,

α3 = k3 = −0.4473 + I 14.1746,

α4 = k4 = −0.4473− I 14.1746.

Using the smallest positive root, α2 = k2, the hyperboloidal coordinates of the point
(X,Y, Z) are (see (15))

h = 3.4007,

λ = 0.2449,

ϕ = 0.5104.

Example with ∆3(e;p,q) > 0. Consider the biaxial hyperboloid of one sheet defined
by the semi axis a = 100, b = 10 and the point (X,Y, Z) = (150, 120, 12), located out of
the hyperboloid.

In this case, the eccentricity of the hyperboloid defined in the X-Y plane is e =

√
101

10
.

The values of p and q are (see (11)):

p =
369

100
, q =

9

62500
.

The polynomial P has two positive and two negative roots,

α1 = k1 = 2.9309,

α2 = k2 = 0.0073,

α3 = k3 = −0.0074,

α4 = k4 = −0.9107.

Using the smallest positive root, α2 = k2, the hyperboloidal coordinates of the point
(X,Y, Z) are (see (15)):

h = 4.3713,

λ = 0.6747,

ϕ = 1.4540 .
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Example with ∆3(e;p,q) = 0. Consider the biaxial hyperboloid of one sheet defined
by the semi axis a = 100, b = 100 and the point (X,Y, Z) = (200, 364.9894, 100), located
out of the hyperboloid.
In this case, the eccentricity of the hyperboloid defined in the X-Y plane is e =

√
2. The

values of p and q are (see (11)):

p = 17.3217, q = 1 .

Observe that the point (p, q) is placed in the region ∆3(e; p, q) = 0, with ∆0(e; p, q) > 0
(∆1(e; p, q) > 0, ∆2(e; p, q) > 0, ∆3(e; p, q) = 0, ∆4(e, p, q) = 0, ∆5(e; p, q) > 0) and hence
the polynomial P has two positive and two negative roots,

α1 = k1 = 6.1072,

α2 = k2 = 0.4125,

α3 = k3 = −1.2598,

α4 = k4 = α3.

Using the smallest positive root, α2 = k2, the hyperboloidal coordinates of the point
(X,Y, Z) are (see (15)):

h = 209.7298,

λ = 1.0695,

ϕ = 0.7461.

7 Conclusions

In our paper, a direct transformation from cartesian coordinates into hyperboloidal coor-
dinates (considered for biaxial hyperboloids) has been presented. Its practical significancy
resides in applications in the Geodesy field, being of interest in hyperboloidal building and
cooling tower construction.
At our knowledge, the issue of transforming the Cartesian coordinates into hyperboloidal
coordinates has been treated so far only in [2], where the presented solutions are based
on numerical iteration processes.
Our approach, based on symbolic techniques, improves the solution presented in [2], as it
is reduced to a few mere evaluations of symbolic expressions. Given the 3D cartesian coor-
dinates of a point located out from a hyperboloidal surface, the coordinate transformation
process consists only in evaluating:

• the positive root α2 (see (25)) (or k2 (see (31)),

• the distance D (see (13)) and

• the hyperboloidal coordinates (see (15)).

Consequently, it is very accurate and (without having computing the complexities of the
algorithms presented in [2] and for sake of the utmost correctness) highly presumable to be
less time consuming: our solution has been generically (i.e. symbolically) computed once,
as presented in this paper, and remains at any user’s disposal for further application (i.e.
evaluations); moreover, the precision of the aforementioned evaluations may be chosen by
the user.
The transformation problem has been reduced to the problem of finding the positive
roots of a fourth degree polynomial and the analysis of the polynomial’s roots has been
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performed by an algebraically complete stratification of a planar region situated in the
positive quadrant. In order to compute the polynomial’s roots, two approaches have
been presented: one based on the Merriman method and the other one obtained using
the Computer Algebra System Maple, which applies the Ferrari method. In this sense,
a conjecture concerning the algebraical equalness of the roots has been proposed to the
readers.
One of the main topics of our further work consists in studying the case of the hyper-
boloidal coordinates considered for triaxial hyperboloids and providing a similar (sym-
bolic) approach for the tranformation of the cartesian coordinates.
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