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Abstract
We develop a blind deconvolution scheme for input-output systems described by distributed
parameter systems with boundary input and output. An abstract functional analytic theory based
on results for the linear quadratic control of infinite dimensional systems with unbounded input
and output operators is presented. The blind deconvolution problem is then reformulated as a
series of constrained linear and nonlinear optimization problems involving infinite dimensional
dynamical systems. A finite dimensional approximation and convergence theory is developed. The
theory is applied to the problem of estimating blood or breath alcohol concentration (respectively,
BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A
distributed parameter model with boundary input and output is proposed for the transdermal
transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC
or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify
distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical
results involving actual patient data are presented.
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1. Introduction
A linear input-output model or system of the form

(1.1)

is known as a convolution or convolution integral. We say the output signal y(t) is the result
of convolving the input signal, u(t), with the (typically, but not exclusively nonnegative)
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convolution kernel, filter, or impulse response function K(t). Such a model naturally arises
as a result of the variation of constants formula when the underlying dynamics of the system
are governed by a time invariant linear system of (ordinary, partial, or functional)
differential equations. In this context, the convolution kernel involves either a scalar or
matrix exponential in the case of a finite dimensional system (e.g., the underlying system is
either one, or a system of, ordinary differential equation(s)), or in the case of an infinite
dimensional or distributed parameter system (e.g., when the underlying system is one, or a
system of, functional or partial differential equation(s)), a semigroup of bounded linear
operators on the underlying infinite dimensional state space.

It is frequently the case in applications that the output signal, y(t), given by (1.1) is known,
measured, or observed, and one wants to determine the input signal, u(t), that produced it.
This is known as the deconvolution problem; formally, it is the problem of mathematically
inverting the linear transformation L which can be written as u(t) = (L–1y)(t). In general, this
inversion or deconvolution tends to be both mathematically and computationally ill-posed
and challenging since the forward process involves filtering with its inherent loss of
information. In actual practice, of course, the entire continuous output signal y(t) will not be
known for every t ≥ 0. Rather, we will have a discrete sampling of y in the form yi = y(iτ), i
= 0,1,2, ..., for some sampling time τ > 0. In this case, the convolution integral, (1.1), is
replaced by its discrete time form as a convolution sum as

(1.2)

The deconvolution problem now takes the form: Given the yi's, determine an input signal,

u(t), such that (1.2) is satisfied where ui = u(iτ), i = 0,1,2, ..., and  is a (typically
nonnegative) discrete filter or convolution kernel.

In addition, in many applications, the deconvolution problem that has to be solved is blind in
that an analytic or numerical representation for the convolution filter or kernel, K or , is
unknown or unavailable. Consequently, before the deconvoluion problem can be solved, the
kernel K or  must be estimated. The work we present here is motivated by a particular
blind deconvolution problem involving a portable wearable biosensor that measures the
alcohol (or more precisely, ethanol) content in perspiration.

Approximately 1% of alcohol consumed by humans is excreted through the skin (Swift, [1]).
Alcohol emitted through the skin can be measured and correlated to blood or breath alcohol
concentration (BAC or BrAC). Transdermal alcohol sensing, when applied and interpreted
properly, may be a useful method for monitoring BACs over relatively long periods of time
(Swift and Swette, [2]). Several devices, including the WrisTAS™ (Giner, Inc., Newton,
MA) and SCRAM© (Alcohol Monitoring Systems, Inc., Denver, CO), have been developed
to measure transdermal alcohol concentration (TAC) at essentially continuous rates for
weeks at a time. Although data from TAC sensors have been shown to correlate with alcohol
consumption and BrACs, to date, TAC sensors have primarily been used as abstinence
monitors.

There is considerable interest in developing a mathematical model based approach for
extracting estimates of BAC or BrAC from TAC signals collected in the field. Now even
though TAC sensors are bench calibrated, a high degree of variance in their measurements
of transdermal alcohol is observed from device to device and from subject to subject. This
may be a result of the fact that, at least at present, the devices are handmade, or that they are
highly sensitive to external sources of alcohol, or that the exchange of ethanol between body
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water and the environment through the multiple layers of the skin is subject to more
variability from individual to individual than is ethanol exchange in the lungs between the
blood and exhaled CO2. Indeed, a breath analyzer measures BrAC by relying on a relatively
simple model from elementary chemistry (i.e., Henry's Law) for the exchange of gases
between circulating pulmonary blood and alveolar air involving a single parameter known as
the partition ratio or coefficient (Labianca, [3]) which is reasonably robust and is presumed
to not require calibration to each individual. TAC sensors and TAC models, on the other
hand, involve a number of parameters that can vary significantly from subject to subject and
device to device. Another problem is that, although it is not surprising that the BAC (and
therefore, the BrAC) and TAC signals are highly correlated, the observed TAC signal is in
fact the result of passing the BAC signal through a low pass filter, to wit, the skin.
Consequently, in comparing contemporaneous BrAC and TAC measurements we typically,
but not consistently, observe that peaks have been attenuated and displaced.

As a part of this study, we develop a comprehensive first principles mathematical model
based data analysis system that produces estimates of BAC or BrAC from TAC data
collected by TAC sensors. The system is based on a forward model for the transport of
ethanol from the blood through the skin to the TAC sensor, and its oxidation by the TAC
sensor in the form of a Fick's Law based diffusion process for ethanol molecules through the
interstitial fluid in the epidermal layer of the skin with input and output on the boundary
(see, for example, Okubo, [4], Anderson and Hlastala, [5], and Dumett et al., [6]). To extract
BAC or BrAC from TAC data, the model must first be calibrated to the device being worn
and to the individual being tested. In this calibration phase, simultaneous BrAC and TAC
measurements are obtained during a laboratory alcohol challenge session. These data are
then used to fit parameters in the forward model to the individual subject being tested and to
the particular TAC unit being worn. At this point the subject is sent out into the field
wearing the TAC sensor for a period as long as two weeks. Under normal circumstances,
while in the field the subject does not take breath measurements or maintain a drinking diary
of the number of standard drinks they consumed or when they consumed them. Then, when
the subject has returned from the field and the TAC measurements have been downloaded
from the sensor, the fit model and mathematical inversion techniques are used to first
identify individual drinking episodes and to then produce estimates for BrAC or BAC from
the TAC data collected during the period that subject wore the sensor in the field.

The forward model is a linear time invariant initial-boundary value problem for a parabolic
partial differential equation with unknown diffusivity and boundary gains. The input is the
BAC or BrAC signal which we want to determine and the output is the TAC signal
measured by the sensor. Consequently, the problem of estimating the BAC or BrAC signal
from measurements of TAC can be formulated as a deconvolution problem in which, as a
result of the unknown parameters in the model, the convolution filter or kernel is unknown.
To wit, we have a blind deconvolution problem. Moreover, since the BAC or BrAC input
and the TAC output are on the boundary, the input and output operators in the resulting
abstract formulation of the model are unbounded with respect to the natural state space for
the problem. Indeed, the input operator will have range in a space larger than the natural
state space and the output operator will have domain in a space smaller than the natural state
space.

Our approach to solving the blind deconvolution problem is to reformulate it as a series of
constrained optimization problems. First, we use the data from the alcohol challenge session
to fit the unknown parameters in the underlying distributed parameter model (see, for
example, Banks and Kunisch, [7] or Banks and Ito, [8]). This takes the form of a nonlinear
least squares fit to data which serves to estimate the unknown convolution filter. The
subsequent deconvolution of the field BAC or BrAC from the field TAC is then formulated
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as a regularized linear least squares fit to data with nonnegativity constraints. This
optimization problem takes the form of a quadratic programming problem (see, for example,
Bertsekas, [9] and Bradley et al., [10]). A third optimization problem, together with the
alcohol challenge data, is used to optimally estimate the regularization parameters. To
enhance the accuracy and efficiency of the deconvolution process, we pre-process the field
TAC signal to identify individual drinking episodes that can be deconvolved separately. Our
scheme is based on the Hodrick Prescott filter (see, for example, Brauer, et al, [11], Hodrick
and Prescott, [12], Ley, [13], or Danthine and Girardin, [14]), which itself takes the form of
an optimization problem.

An outline of the remainder of the paper is as follows. In Section 2 we rely on results from
the theory of linear quadratic control of infinite dimensional systems with unbounded input
and output (see, for example, Curtain and Salamon, [15], Pritchard and Salamon, [16],
Gibson and Rosen, [17], and Banks and Ito, [18]) to come up with an abstract functional
analytic formulation for the class of distributed parameter systems with input and output on
the boundary of interest to us here. In Section 3 we formulate the optimization problems that
form the basis for our approach to solving the blind deconvolution problem. We also
develop an abstract finite dimensional approximation and convergence theory. In Section 4
we derive the first principles mathematical model for the transdermal alcohol biosensor
problem of interest to us here and the associated blind deconvolution problem of estimating
BAC or BrAC from TAC data. We then show how the abstract theory developed in Sections
2 and 3 can be applied to solve it. In Section 5 we present a sampling of the results from our
numerical studies. We present the results of testing our approach as well as comparing it to
other methods (Carey and Hustad, [19], Hustad and Carey, [20], Matthews and Miller, [21],
National Highway Traffic Safety Administration, [22]) for estimating BAC or BrAC in the
field. A final sixth section has some discussion, conclusions, and suggested avenues for
further research.

2. Discrete Time Distributed Parameter Systems with Unbounded Input and
Output
2.1. The Abstract Initial-Boundary Value Problem with Unbounded Input and Output

We consider a class of distributed parameter initial-boundary value problems that have been
studied earlier in the context of linear quadratic control (see, for example, Curtain and
Salamon [15] and Gibson and Rosen [17]). Let W, V, and H be Hilbert spaces such that

 with the embeddings dense and continuous. Taking H as the pivot space, it then
follows that  and , with the dual embeddings again dense and
continuous. Let Q be a compact subset of Rρ, for each q ∈ Q let ,

, and , and consider the distributed parameter system
with, in general, unbounded input and output given by

(2.1)

(2.2)

(2.3)

(2.4)
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where φ0 ∈ H, and . We say that this system has unbounded input and output
since, in general, the linear operators Γ(q) and C(q) are unbounded or not continuous with
respect to the H norm, H being the natural state space in which to formulate the problem.
Note also that Δ(q) is not intended to denote the Laplacian although we intentionally use this
notation to suggest a Laplacian-like differential operator that is unbounded on H.

2.2. Re-Formulation as an Abstract Evolution Equation
We require the following additional assumptions on the operators Δ(q) and Γ(q): We assume
that Γ(q) is surjective and that its null space,  is dense in H,
and that the operator  defined by ,

, , is closed, densely defined and has nonempty resolvent set.
We assume further that for each T > 0, all φ0 ∈ W, and u ∈ C1(0, T; Rμ) with Γ(q)φ0 = u(0),

there exists a unique function  that depends continuously on
φ0 and u and that satisfies (2.1)-(2.3) on [0,T].

Under these assumptions, it can be shown (see Hille and Phillips, [23]) that the operator A(q)

defined above is the infinitesimal generator of a C0 semigroup,  of bounded
linear operators on H. However, as a result of the unboundedness of the operators Γ(q) and
C(q) with respect to H, the existence of this semigroup on H as it stands is not sufficient to
define even a mild solution to (2.1)-(2.3) and to make sense of the output given in (2.4). To
do this we must extend this semigroup to a larger space than H.

Since the operator A(q) is densely defined, closed, and the infinitesimal generator of a C0

semigroup on H, it has an adjoint operator, , that is densely
defined and closed (see, for example, Helmberg, [24]). Define the space Z* to be the Hilbert
space Dom(A(q)*) endowed with the graph Hilbert space norm associated with the operator
A(q)*. It follows (see Curtain and Salamon, [15]) that . That is, the space Z*
is embedded in H with the embedding dense and continuous and therefore H is densely and
continuously embedded in the space Z defined to be the dual of the space Z*. The

semigroup, , can now be uniquely extended to a C0 semigroup 
of bounded linear operators on Z. The infinitesimal generator is the extension of the operator

A(q) to an operator  in  defined by the expression

for , and ζ ∈ Dom(A(q)*) =Z*. In this expression,〈·,·〉Z,Dom(A(q)*)
denotes the duality pairing between the space Z*=Dom(A(q)*) and its dual Z.

For each q ∈ Q, let  denote any right inverse of 

(recall Γ(q) was assumed to be surjective) and define  by

Note that B̃(q) is well defined since, if  and  are two right inverses of Γ(q), then

 and hence B̃1(q) = B ̃2(q) since Ã(q) = Δ(q) on
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. Following Curtain and Salamon, [15] we define the mild solution to the initial
boundary value problem (2.1)-(2.3) to be the mild solution to the abstract initial value
problem (IVP) in Z given by

(2.5)

that is

(2.6)

Curtain and Salamon have shown that φ given by (2.6) satisfies

.

In order to make sense of the output equation (2.4), additional assumptions are required.
Indeed, we must assume that the operators eÃ(q)t, for t > 0, have range in V, and that

We note that these assumptions will typically require additional assumptions on the
operators Δ(q) and Γ(q), the initial data φ0 and/or the input u. We will say more about this
when we consider abstract parabolic systems in Section 4 below. When these additional
assumptions hold, we have

(2.7)

The integral in (2.6) and (2.7) is in Z. Consequently, in general, the operator C(q) can not be
passed around the integral sign in (2.7) unless it is closed with respect to the Z norm.
Typically, in the case of deconvolution problems, we have φ0 = 0. In this case, if we take the
input u to be a Dirac delta distribution in the i-th input, u(t) = δ(t)ei, t ≥ 0, where ei denotes
the standard unit vector in the i-th coordinate direction, i = 1,2, ···, μ, then the i,j-th entry in
the v × μ matrix function

(2.8)

gives the response at time t > 0 of the system's i-th output channel to a unit impulse in the
system's j-th input channel.

2.3. The Discrete or Sampled Time Formulation
In this paper, we are primarily concerned with discrete time or sampled systems. Toward
this end let the sampling time τ > 0 be given and consider zero order hold inputs of the form
u(t) = ui, t ∈ [iτ, (i + 1)τ), i = 0,1,2, ..., (typically ui = u(iτ), i = 0,1,2, ..., where u is a given
continuous time input). Set φi = φ(iτ), i = 0,1,2, ..., and let

Then, since
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ψi satisfies the initial value problem

(2.9)

The solution to the IVP (2.9) can be obtained from the variation of constants formula (2.6)
and since u is constant on each subinterval [iτ, (i + 1)τ) and the initial data and forcing term
are all elements in H, it follows that it is in fact a classical solution (see, for example, Pazy,
[25]). Thus we obtain

or that

(2.10)

where  and

(2.11)

It is not difficult to show (see Gibson and Rosen, [17]) that, as in the continuous time case,
the operator B̂(q) is well defined and does not depend on the particular choice of Γ+(q). It

can also be shown that  is in agreement with the standard formula
for the input operator when a (finite dimensional or bounded input) continuous time system
is converted to a discrete or sampled time system. We note also that if Γ+(q) can be chosen

so that , then the expression for B ̂(q) given in (2.11) simplifies
to become

Once again, as in the continuous time case, making sense of the output equation (2.4) in the
discrete time case requires additional assumptions. In general, you would want it to be true

that ,  and φ0 ∈ V. Note that, in the simplified

case in which , it is enough to require that

, Range(Γ+(q)) ∈ V, and φ0 ∈ V. In this case, with φ0 = 0, we find
from (2.10) that the output sequence yi, t = 0,1,2, ..., is given by

(2.12)

i = 0,1,2, ..., with the discrete or sampled time response at time t = iτ of the system's i-th
output channel to a unit impulse in the system's j-th input channel given by the i,j-th entry in
the v × μ matrix function
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(2.13)

where for t ≥ 0, [t] denotes the greatest integer less than or equal to t.

3. The Blind Deconvolution Problem and Abstract Approximation Theory
3.1. The Calibration and Deconvolution Problems

We formulate the blind deconvolution problem in two phases: a training or calibration
phase, (T), in which the convolution kernel or filter and regularization parameters used in
the deconvolution phase are estimated using specifically designated training or calibration
data, and a deconvolution phase, (D), in which the estimated kernel and regularization
parameters are used to deconvolve the input from the output data that has been provided. In

the case of the training phase we assume that training data of the form  is given
where both the ỹi ∈ Rv and the ũi ∈ Rμ have been uniformly sampled from continuous time
signals, ỹ and ũ, respectively, with sampling time τ > 0. That is, ỹi = ỹ(iτ) and ũi = ũ(iτ), i
= 0,1,2, ..., n. We assume that the system was initially at rest (i.e., that φ0 = 0) and formulate
the training or calibration phase as an optimization problem in the form of a nonlinear least
squares fit to data.

(T) Find q* ∈ Q which minimizes the quadratic performance index

where the  are given by (2.12) with ui = ũi, i = 0,1,2, ..., n, or equivalently, by

(3.1)

For the deconvolution phase we assume that we have been given output data of the form

 with ŷi ∈ Rv and let U denote a compact subset of Cμ[0,T]. Once again, we formulat
the deconvolution problem as constrained nonlinear least squares fit to data.

(D) Find u* ∈ U which minimizes the quadratic performance index

(3.2)

where the  are given by (2.12) with ui = u(iτ), i = 0,1,2, ..., n and q = q*, or
equivalently

(3.3)

3.2. Finite Dimensional Approximation and Convergence
The optimization problems (T) and (D) above would have to be solved numerically. And
while the constraints given in (3.1) and (3.3) are discrete time, they are still infinite
dimensional operator equations and, consequently, require finite dimensional approximation.
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For each N = 1,2, ..., let HN denote a finite dimensional subspace of V with basis 

with the property that for every ψ ∈ V, there exists ψN ∈ HN such that  in V.

For each q ∈ Q and N = 1,2, ..., let  satisfy

i. There exist constants M and ω, independent of N such that

, t ≥ 0.

ii.
For every sequence  with , there exists

 with Reλ > ω such that

 in V, for each ψ ∈ V, where ρ(A)
denotes the resolvent set of a linear operator A, Rλ(A) = (λ – A)–1 denotes the
resolvent operator of a linear operator A at λ ∈ ρ(A), and PN denotes the orthogonal
projection of V on to HN with respect to either the V or H inner products.

Assumptions (i) and (ii) are a version of the hypotheses of the well-known Trotter Kato
semigroup approximation theorem (see, for example, Pazy, [25], Kato [26], or Banks and

Ito, [8]). Consequently, we have  in V for each ψ ∈ V

uniformly in t for t ≥ 0 in compact subintervals of R whenever  with

.

For each q ∈ Q and N = 1,2, ..., we set

and consider the finite dimensional linear discrete time systems

(3.4)

It follows that  in V for each ψ ∈ V,

, for each v ∈ Rμ, , and

 uniformly in t for t ≥ 0 in compact subintervals of R whenever

 with , where K(t; q) and  are given by (2.8) and (2.13),

respectively, and both KN(t, qN) and  are given by the obvious modifications of
those expressions.

We consider the sequence of approximating optimization problems, (TN), defined
analogously to problem (T) as follows.

(TN) Find qN* ∈ Q which minimizes the quadratic performance index

Rosen et al. Page 9

Appl Math Comput. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where the  are given by (3.4) with ui = ũi, i = 0,1,2, ..., n.

In the case of problem (D), there is the additional complexity that the feasible set is also a
subset of an infinite dimensional space. Consequently, we introduce a second level of
approximation. For each M = 1,2, ..., let UM denote a finite dimensional subspace of Cμ[0,

T] with basis , let L denote the multi-index L = [N, M], and consider the sequence
of approximating optimization problems (DL)

(DL) Find  which minimizes the quadratic performance index

(3.5)

where the  are given by

(3.6)

and where qN* in (3.6) is a solution to problem (TN) and .

Under the assumptions we have made above, using what are by now familiar arguments (see

Banks and Kunisch, [7]), it can be argued that if  is any sequence of solutions to
the training optimization problems, (TN), then there exists a convergent subsequence

 with  and q* a solution to problem (T). Also, in a

similar manner, it can be argued that, if  is a sequence of solutions to the
deconvolution problems (DLj) with Lj = [Nj,Mj] satisfying Nj < Nj+1 and Mj < Mj+1, j =

1,2, ..., then there exists a convergent subsequence  with Ljk = [Njk, Mjk],

, , where q* is a solution to problem (T) and u* is a
solution to problem (D).

3.3. Gradient Computation, the Adjoint, and Differentiating the Matrix Exponential
There are a couple of computational issues related to the solution of the approximating
optimization problems (TN) and (DL). Local minima for problem (TN) will typically be
found using a gradient based scheme. This will require the computation of the gradient (with

respect to q ∈ Q) of the performance index , . Since q ∈ Q, the evaluation

 requires the solution, or integration, of the discrete dynamical system (3.4), which,
although linear, its solution depends on the parameters, q, in a highly nonlinear fashion.

Consequently, the best way to compute  is via the adjoint method (see, for example,
Levi and Rosen, [27]).
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For i = 0,1,2, ..., n, set  and define the adjoint
system corresponding to (3.4) by

The gradient of , , can then be computed as

The tensor ∂C(q)/∂q can be computed directly, but the computation of the tensors ∂ÂN(q)/∂q
and ∂B̂N(q)/∂q involve the computation of the derivative with respect to q of the matrix
exponential eAN(q)t. These derivatives can be computed at the same time that eAN(q)t and in
particular, ÂN(q) is computed by making use of the sensitivity equations. Indeed, for t ≥ 0
and q ∈ Q, set ΦN(q;t) = eAN(q)t. Then ΦN(q;·) is the unique principal fundamental matrix
solution to the initial value problem

(3.7)

Then, setting ΨN(q; t) = ∂ΦN(q; t)/∂q (it is easiest to see how this works if one thinks of q as
a scalar), differentiating (3.7) with respect to q, interchanging the order of differentiation,
and using the product rule, we find that

(3.8)

Then, combining the two initial value problems (3.7) and (3.8), we obtain

(3.9)

We note that a more general derivation of the relationship given in (3.9), based on power
series expansions along with even further generalizations from the exponential to any
analytic function and efficient computational (numerical) algorithms, can be found in
Najfeld and Havel, [28].

3.3. Mitigation of the Effects of Over-Fitting and Regularization
To mitigate the effects of over-fitting (e.g., high amplitude and unphysical excessive
oscillations in ) due to the inherent ill-posedness of the deconvolution
problem, we augment the deconvolution performance index given in (3.2) with Tychonov
regularization or penalty terms (see, for example, Banks and Kunisch, [7]). Recalling that

 we write , and then augment the performance index,

, for problem (DL) given by (3.5) with terms that are quadratic in uM, or equivalently in

the . Indeed, we let 〈·,·)UM,r denote an appropriately weighted inner product on UM
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weighted by the entries in a non-negative vector r. The performance index for the
deconvolution problem (DL) now becomes

(3.10)

Given nonnegative values for the components of the regularization weight vector, r, finding

, or equivalently the , in an appropriately defined compact subset of
RMM

 that minimize (3.10), is a standard linear-quadratic programming problem (i.e., a
problem that has a quadratic pay-off or performance index and linear constraints (in the

)) for which accurate and efficient algorithms and software are readily available (e.g.,
the MATLAB routine LSQNONNEG). One difficulty in actually doing this in practice,
however, is making an appropriate choice for the value of the regularization weight vector,
r, in (3.10). If it is too “small,” there will be insufficient regularization and a non-physical
(e.g. highly oscillatory) uL* will result. If, on the other hand, it is too “large,” excessive
regularization occurs and the resulting uL*, when convolved with the convolution kernel

 to obtain , will not provide a good fit to the data .

To remedy this, we make further use of our training data, , and introduce a
modification to our training or calibration procedure that will allow us to estimate an, in
some sense, optimal value for the regularization weight vector, r. More precisely, we add a
second calibration phase in the form of an optimization problem, (DL,R), wherein we choose
a nonnegative rL* which minimizes:

(3.11)

where, for a given value of r, ũL*(·,r) is the minimizer of (3.10) with  and

with  in (3.10) and  in (3.11) being the output resulting from (3.6)

corresponding to the inputs , and , respectively (note that in
this case m = n). This optimal value of the regularization weighting vector r, r*, is then used

in the performance index, , as  when the now regularized deconvoluion
problems, (DL,R), are solved.

4. Estimating Blood or Breath Alcohol Concentration from Biosensor
Measurements of Transdermal Ethanol and Abstract Parabolic Systems
4.1. A Distributed Parameter Model for the Transdermal Transport and Measurement of
Ethanol

We view the blood-skin-TAS system in input-output form, where the underlying process
that maps input to output is the transport through, and filtering by, the various layers of the
skin and the processing of the perspiration containing the ethanol in the form of a vapor by
the TAC sensor. The input signal, u(t), is the BAC or BrAC at time t while the output signal,
y(t), is the measured TAC signal at time t. Our goal is to produce an estimate of either BAC

or BrAC, û*(t), given measured TAC from the field, , and training data, ,
consisting of simultaneous measurements of TAC and BAC or BrAC. To accomplish this,
we use the approach presented in the previous two sections by formulating the problem of
determining û*(t) as a blind deconvolution. We do this by developing a first principles
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mathematical model for the forward system based upon physics and physiology in the form
of an infinite dimensional distributed parameter system with unbounded (boundary) input
and unbounded output.

Towards this end, we let φ(t, x) denote the concentration in moles/cm2 of ethanol in the
interstitial fluid in the skin at depth x cm at time t seconds. Let L denote the skin thickness in
cm. We model the transport of ethanol through the skin as a diffusion process

(4.1)

where D denotes the diffusivity in units of cm2/sec. We model the boundary conditions by
setting the flux at the boundaries to be proportional to the difference in concentrations on
either side of the boundary. They take the form

(4.2)

(4.3)

where αi, i = 0, L denote the constants of proportionality in units of cm/sec, the parameters δ
and β respectively denote the partition coefficients for ethanol between air and the interstitial
fluid in the epidermal layer of the skin and between the interstitial fluid in the epidermal
layer of the skin and blood in appropriate units of concentration, and u denotes the
concentration of ethanol in the blood as given in BAC (or BrAC) units. We assume that
there is no alcohol in the skin at time t = 0, which yields the initial conditions

(4.4)

We model the processing by the TAS sensor of the ethanol evaporating from the surface of
the skin via a linear relation. Consequently, we obtain the output equation

(4.5)

where γ denotes the constant of proportionality in units of TAC units × cm2/mole.

We note that there are a number of variations to the model given by (4.1) – (4.5) that could
also be considered. For example, we could have included an advection term of the form

 in the partial differential equation (4.1) or we could have reduced the number of
distinct parameters in the model by assuming that the constants of proportionality in the flux
boundary conditions at the upper and lower boundaries of the skin are the same (i.e., that α0
and αL in (4.2) and (4.3) satisfy α0 = αL), to mention just two possible modifications. For
the role that the underlying physical model plays in the present study, introducing additional
parameters into, or removing parameters from, the model can have significant consequences.
Indeed, increasing the number of degrees of freedom when we fit the model to calibration
data could potentially enhance the model's ability to capture the underlying dynamics of the
process. However, it could also increase the chances of over-fitting and the fitting of the
noise in the data rather than the underlying physical or biological process. In our numerical
studies, we found that the somewhat simpler model with α0 = αL provided highly accurate
and more than adequate fits to the calibration data generated by the alcohol challenge
protocol we employed here. However, as we will discuss later, one of the models with
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additional parameters might be more appropriate when the calibration data is generated via a
richer more sophisticated alcohol challenge protocol.

4.2. The Calibration problem
As it stands, the model given by the equations (4.1) – (4.5) is determined by the seven
parameters D, L, α0, αL δ, β and γ. These are the parameters that will be used to calibrate the

model from a given calibration input and corresponding output data set, .
However, not all five of the parameters are independent nor are they uniquely identifiable
from the input/output data. Indeed, it is an elementary exercise to show that, if {u(t),y(t)}t≥0
and φ satisfy (4.1) – (4.5), then it follows that {u(t),y(t)}t≥0 and  satisfy

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

where x̂ = x/L, t̂ = t/θ, , , , α = L/α0 and

, 0 ≤ x̂ ≤ 1, t̂ ≥ 0. Consequently, in calibrating the model, rather than
fit the seven parameters D, L, α0, αL δ, β and γ in (4.1) – (4.5), it is sufficient to fit the four

parameters,  and θ in (4.6) - (4.10). Moreover, inspection of (4.6) - (4.10) reveals that
the parameter θ simply serves to dilate or compress (relative to the diffusion clock t̂) the
input, u, and output, y. Moreover, for a given input signal, u(t), any change in θ can be

compensated for by appropriate changes to , and  so that the system produces the same

output signal y(t). It follows that it would not be possible to uniquely identify all of θ, ,
and  based on input/output measurements{u(t),y(t)}t≥0. Without loss of generality, set θ =
1, then t̂ = t and the number of unknown parameters to be fit is reduced to three, which we
denote by the vector q = [q1 q2 q3]T. The model can now be written in terms of q, u, and y as
given in (4.11) – (4.15)

(4.11)

(4.12)

(4.13)
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(4.14)

(4.15)

where q1 = D/α0L, q2 = αL/α0, and q3 = αLβγ/α0 and where, for simplicity, we have now
denoted , and x̂ simply by φ and x, respectively, with the understanding that they are no
longer the same as the φ and x in equations (4.1) - (4.5).

We next put the system (4.11) – (4.15) into the form of our abstract system (2.1) – (2.4) and
formally and precisely identify the relevant spaces and operators that appear in (2.1) – (2.5).
It turns out that the resulting system is abstract parabolic, which allows us to make use of the
rather extensive linear semigroup theory for this type of system to establish that the
necessary assumptions we made to develop the theory in the previous two sections are
indeed satisfied.

4.3. Abstract Operator Theoretic Formulation

Let  be given and let q = [q1 q2 q3]T ∈ Q. Let H = L2(0,1) together with

the standard innerproduct , and norm denoted by |·|, let W be
the Sobolev space W = H2,L(0,1) = {ψ ∈ H2(0,1): q1ψ′(0) – ψ(0) = 0} endowed with the
usual H2 innerproduct, and let V be the Sobolev space V = H1(0,1) together with its standard

innerproduct  and norm denoted by ∥·∥.
Then we have the usual dense and continuous embeddings  and

, where W* and V* denote the space of distributions dual to W and V,
respectively (see, for example, Adams, [29], Wloka, [30], Tanabe, [31], or Showalter, [32]).
Let  and  be given by

and

respectively, for ψ ∈ W, and let  be given by Cψ = ψ(0), for ψ ∈ V. In
this case we have that Γ(q) is clearly surjective and that

is dense in H = L2(0,1). It follows, as in Section 2, that the operator
 defined by

is closed, is densely defined and has nonempty resolvent set. It can also be shown (see, for
example, Friedman, [33]) that for each T > 0, all φ0 ∈ W, and u ∈ C1(0, T; R) with Γ(q)φ0 =
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u(0), there exists a unique function  that depends
continuously on φ0 and u, and that satisfies (4.11) - (4.13) on [0, T] with φ(0,x) = φ0, 0 < x <
1. It follows that the operator A(q) is the infinitesimal generator of a C0 semigroup, {eA(q)t: t
≥ 0} of bounded linear operators on H. Note that in our case here, the Lumer Phillips
Theorem can be used directly and in a straight forward manner to show that A(q) is the
infinitesimal generator of a C0 semigroup (see, for example, Pazy, [25]). Indeed, it is not
difficult to show that the operator A(q) is self adjoint and dissipative and therefore maximal
dissipative on its domain.

For the system of interest to us here, since we in fact have  with the
embeddings dense and continuous, we can make use of the theory of abstract parabolic
systems (see, for example, Tanabe, [31]) and it is sufficient to formulate the abstract system
with unbounded input and output in the space V*, a somewhat smaller space than the space
Z defined in Section 2. We do this by exploiting the weak or variational formulation of
(4.11) - (4.15).

For , we define the bilinear form a(q; ·, ·) : V × V → R and the
functions b(q; ·) : V → R and c(·) : V → R by

and

respectively, then the input-output system (4.11) – (4.15) can be written in weak form as

(4.16)

(4.17)

(4.18)

where 〈·, ·) now denotes the natural extension of the H innerproduct to the duality pairing
between V and V* and where we have suppressed showing explicit dependence on t
whereever possible.

For q ∈ Q, a compact subset of R+ × R+ × R+, using the Sobolev embedding theorem it is
straight forward to show that the bilinear form a(q; ·, ·) is bounded and coercive, uniformly
in q ∈ Q. That is, there exist positive constants λ, μ and ρ, independent of q ∈ Q such that

(4.19)

and

(4.20)

Rosen et al. Page 16

Appl Math Comput. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Moreover, a(·; ψ1, ψ2) and b(q; ·) are continuous on Q in the sense that there exist positive
constants σ and v such that

and

where d(·, ·) denotes any p-metric on R3.

If u ∈ L2(0,T) it can be shown (Lions, [34], Theorem III.1.2) that the system (4.16) - (4.18)
admits a uniquey solution

 that depends
continuously on u ∈ L2(0, T). It follows that the output y ∈ L2(0, T).

For q ∈ Q, the form a(q; ·, ·) : V × V → R defines a bounded linear operator

 by 〈Ã(q)ψ1, ψ2〈 = –a(q; ψ1, ψ2), for ψ1, ψ2 ∈ V (the boundedness follows
from (4.19)). Then, if we let  denote any of the Hilbert spaces V, H or V* and we consider
the linear operator  given by

then, using primarily (4.20), it can be shown (Tanabe, [31], Theorem 3.6.1, Banks and Ito,
[18]) that A(q) is closed, is densely defined and is the infinitesimal generator of an analytic
semigroup of bounded linear operators, {eA(q)t: t ≥ 0}, on . It follows that

For q ∈ Q, define the linear operators B(q): R → V* and C: V → R by

and

respectively, for q ∈ Q, ψ ∈ V, and v ∈ R. Then we may write equations (4.11) – (4.15) in
strong form as an abstract evolution equation in V* as

Note that if we take  to be given by
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(4.21)

then Γ(q)Γ+(q)v = v, v ∈ R, and as in Section 2, we have

(4.22)

Using the fact that {eA(q)t: t ≥ 0} is an analytic semigroup on V* and therefore that

, for ψ ∈ V*, we obtain from the abstract variation of constants formula
that

We note that, as in the more general case presented in Section 2, in the example we are
considering here, the output operator C is not closed with respect to V* and therefore cannot
be passed around the integral in (4.22). As in Section 2, we take u in (4.22) to be a Dirac
delta distribution with impulse at time t = 0 and obtain that, for q ∈ Q, the impulse respo nse
function k(·) = k(q; ·) from (2.1) for (4.11) - (4.15) is given by

(4.23)

with the understanding that the actual input/output map must in fact be interpreted in its
integral form as given above. Note that, for every q ∈ Q, {eA(q)t: t ≥ 0}, an analytic

semigroup on V*, ensures that  for every t > 0 and thus that, although
it cannot be directly computed without some form of finite dimensional approximation, the
expression given in (4.23) is a well-defined real valued function of t defined for all values of
t > 0.

For the discrete time formulation, let the sampling time τ > 0 be given and set φi = φ(iτ, ·), yi
= y(iτ) and ui = u(iτ), i = 0,1,2, ... Then, with the zero-order hold input u(t) = ui, t ∈ {iτ, (i +
1)τ), i = 0,1,2, ... , the variation of parameters formula yields

(4.24)

where

and

The fact that  and  follows from {eA(q)t: t ≥ 0} being an
analytic semigroup on V, H and V*. The integral in the definition of B̂(q) is an integral in V*.
Moreover, a(q; ·, ·) : V × V → R is an inner product on V whose induced norm ∥·∥a (via the
fundamental theorem of calculus and the Sobolev embedding theorem) is equivalent to the
standard norm on V. It follows that for q ∈ Q and ψ ∈ V
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for some constant c > 0. From (4.20) and the Riesz Theorem, we may conclude that
 is invertible with a bounded inverse. It then follows that B̂(q) in (4.24)

is given by

Then, noting that  given by (4.21) is in , it follows from (4.22)
that

Consequently, it follows that

and therefore that

4.4. Finite Dimensional Approximation
Finite dimensional approximation is achieved via the discretization of the spatial domain

using linear B-splines and Galerkin approximation. For N = 1,2, ..., let  denote the
set of standard linear B-splines on the interval [0,1] defined with respect to the usual

uniform mesh, , and set  (note the  are the usual “pup
tent” or “chapeau” functions of height one and support of width 2/N,

). Let PN: H → HN denote the orthogonal projection of H onto
HN with respect to the H inner product. Using the approximation properties of linear splines
(see, for example, Schultz, [35], Banks and Kunisch, [7], and Banks and Ito, [8]), it is not

difficult to argue that  in H for ψ ∈ H and in V for ψ ∈ V. For N = 1,2, ...,

and q ∈ Q, define  to be the finite dimensional linear operator
whose matrix representation is given by

(4.25)

(Note: In what follows, when the meaning is clear from the context, we will not distinguish
between finite dimensional operators on HN and elements in HN and their matrix and vector
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representations, respectively, with respect to the standard B-spline basis ). It is not
difficult to show that

where  is the orthogonal projection of V onto HN with respect to the inner product

We then set

and, noting that Γ+(q)v ∈ HN for all v ∈ R and all N = 1,2, ..., we obtain the finite
dimensional approximating model equations given by

where  denotes the vector representation of the linear polynomial given in (4.21) and
CN denotes the matrix representation for the operator , both with respect to

the basis  for HN. In convolution form we have

The approximating discrete time convolution kernel or impulse response function is given
by

The finite dimensional approximation scheme we have used here conforms to the abstract
approximation framework for abstract parabolic systems presented in Banks and Kunisch,

[7] and Banks and Ito, [8]. Consequently, it follows that  in V for ψ ∈

V, uniformly in q, for q ∈ Q and therefore that  and

 uniformly in q, for q ∈ Q and uniformly in t, for t ∈ [0, T].

To see how, in the case of this example, the requisite gradients for the adjoint scheme
described in the previous section are actually computed, we define the following (N + 1) ×
(N + 1) matrices. Let
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Then from (4.25), we have AN(q) = –M–1(q1K + L + q2R), and from (3.9), it follows that

(4.26)

To compute the other required derivatives note that

(4.27)

where

The other derivatives can now be computed using (4.26), (4.27), and the elementary rules of
differentiation. Note further, that since in our case 〈·,·〉a = a(q; ·, ·) is an innerproduct on V,
AN(q) is invertible. Consequently,

4.5. Identifying Drinking Episodes in the Data
A typical data record from the TAC sensor can be two weeks or more in duration and
contain multiple distinct drinking episodes. While it is possible to deconvolve the entire two
week long signal, it would be preferable, and most likely, more accurate to deconvolve each
individual drinking episode separately. This would require either manual or automatic
identification of the start and end times of each individual drinking episode. We implement
an automated drinking episode identifier as follows. In general, TAC data are noisy.
Consequently, recognizing the start of a drinking episode requires more than a simple up-
tick in TAC value since this may simply be a local short term disturbance. To remedy this,
we first pre-process the TAC data signal using a Hodrick-Prescott (HP) filter (see, for
example, Brauer, et al, [11] and Hodrick and Prescott, [12]). The HP filter, which is used
extensively in econometric analysis, decomposes a time series into a sum of two time series:
a cyclic component and a trend component. It does this by solving an optimization problem
that minimizes the sum of the squares of the second differences (effectively, variations in the
rate of change or the total curvature) in the trend component. More precisely, given field

TAC data  from which we would like to deconvolve a BAC or BrAC signal, u, the

HP filter decomposes  as
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where the cyclical component, , is given by , i = 0,1,2, ..., m, and the trend,

or smoothed component, , is taken to be the minimizer of

with λ a nonnegative weight used to control the degree of smoothing. Not surprisingly, the
weight λ is chosen to be larger the higher the sampling rate (i.e., the smaller the value of the
sampling interval τ) of the original field TAC signal ŷ. It is not difficult to show (see, for
example, Ley, [13] or Danthine and Girardin, [14]) that this optimization problem can be

solved in closed form as , where L = [Lij] is the (m – 1) × m matrix whose
entries are given by

The resulting trend component, , can be taken to be a smoothed version of the
original time series. We then identify the starting and ending times of the individual drinking
episodes by locating the times at which the trend series rises above a baseline level (a start
time) and then dips below a baseline level (an end time). We found this technique to be quite
accurate when applied to TAC data for which we knew, and could therefore compare, the
actual starting and ending times of the individual drinking episodes with the ones identified
by our scheme.

5. Numerical Results
5.1. Experimental data and Its Collection

In the results presented here, the second author served as the subject. She wore a
WrisTAS™ 7 sensor over an 18-day period of time, during which she collected breath
measurements and maintained a real-time drinking diary for all drinking episodes. Although
in actual practice BrAC measurements would only be available for a single (most likely the
first) drinking episode (for the purpose of calibrating the underlying model), BrAC
measurements in these data were collected during each drinking episode so that we could
assess how closely the BrAC estimates generated by the software agreed with actual BrAC
measurements taken with a breath analyzer.

The WrisTAS™ 7 is worn like a wristwatch with a Velcro strip for securing and removing
it. Its sensing system directly measures the local ethanol vapor concentration over the skin
surface at 5-minute intervals. The threshold BAC detectable by the WrisTAS device is
estimated in the range of 10-20 mg/dl. The TAC device was placed on her wrist 20 minutes
prior to consuming alcohol for the alcohol challenge session. The alcoholic beverage for the
challenge session was a mixture of 95% ethanol at room temperature, and a non-caffeinated
sugar-free carbonated soft drink in a 1:4 ratio designed to reach a peak BrAC of 0.055 to
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0.060 mg% as determined by body water weight. The drink was consumed evenly over a 15-
minute period. Following consumption, the subject rinsed her mouth twice and waited 5
minutes prior to taking the first BrAC reading (to avoid measuring “mouth alcohol”). BrAC
was recorded every 15 minutes from the start of the challenge session until BrAC returned
to .000. These are the data that were used for calibration.

The subject continued to wear the TAC device and consume alcohol ad libitum for the
following 17 days in the field trial phase. For each drinking episode, the subject would take
BrAC readings every 30 minutes until the BrAC returned to .000. The subject also recorded
on her smart phone the quantity of alcohol she had consumed; thus, this drinking diary was a
real-time measure of alcohol consumption. She also recorded for each episode the
percentage of alcohol in the beer and wine and whether she consumed food before, during,
or after drinking. As part of our study we looked at three common BrAC statistics for each
drinking episode: maximum BrAC, time of maximum BrAC, and area underneath the BrAC
curve.

5.2. Identification of the Drinking Episodes
Figure 5.1 shows the entire 18 day TAC signal along with the contemporaneous BrAC
measurements. The horizontal axis represents the number of the TAC data point (one every
5 minutes). The TAC measurements provided by the sensor are given in units of milligrams
per deciliter (mg/dl), while the BrAC measurements are in units of percent alcohol. The
boldface numerals that appear above the peaks in the plots serve to label the 11 drinking
episodes. In Figure 5.2a, (the left hand panel of Figure 5.2) we have plotted the TAC signal

along with the smoothed trend component, , as produced by the HP filter described in
the previous section. In Figure 5.2b (the right hand panel of Figure 5.2) we have plotted both

the trend, , and the cyclical, , components along with the TAC signal. Note

that in these plots the horizontal axis is labeled in hours. Recall, if  denotes the TAC
signal, then , i = 0,1,2 ..., m. The HP decomposition shown in Figure 5.2b (the
right hand panel of Figure 5.2) was achieved by taking the value of the smoothing parameter
λ to be λ = 75000.

Note that by identifying local minima below a specified threshold (20 mg/dl), our scheme
was able to automatically identify 13 drinking episodes, including all 11 actual drinking
episodes in the TAC data shown in Figure 5.1. The two extraneous drinking episodes
identified by our scheme are the ones in Figure 5.2a numbered 2 and 12. Table 5.1 gives the
starting and ending times of the 13 identified drinking episodes.

5.3. Calibration Results
We implemented our scheme in MATLAB. All optimization was carried out using the
MATLAB routine FMINCON for constrained optimization contained in the Optimization
Toolbox. All gradients were computed using the adjoint scheme as described above. To
check the results we also solved the optimization problems using the MATLAB routine
included in the standard installation of MATLAB, FMINSEARCH. This routine is for
unconstrained optimization and computes gradients numerically via finite differences. The
only real constraint on the parameters is that they remain nonnegative; we guaranteed this by
searching on the squares of the parameters rather than the parameters themselves. Both
approaches yielded essentially identical results.

In calibrating the model derived in Section 4 using each of the 11 drinking episodes, we
observed that, in several episodes, the converged optimal value for q2 was . For the
episodes in which , we observed that . Consequently, we concluded episodes
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which would be equally well described by a modified model in which we fix q2 = 0 and then
fit the data by simply adjusting the two remaining parameters, q1 and q3. The results of
calibrating this new two parameter model using each of the 11 drinking episodes in the data
as shown in Figure 5.1 are displayed in Table 5.2. A summary of the data presented in Table
5.2 is given in Table 5.3 below.

The results of the model calibration using Drinking Episode 1 are shown in the left panel of
Figure 5.3. The results obtained by using the other 10 drinking episodes to calibrate the
model are similar. The upper panel in Figure 5.3(a) shows the TAC data from Drinking
Episode 1 along with the fit model's prediction of the TAC data. The lower panel of Figure
5.3(a) shows the raw BrAC data along with the estimated BrAC signal deconvolved from
the TAC signal using the fit model and the optimal regularization parameters. In the right
hand panel of Figure 5.3, Figure 5.3(b), we have plotted the calibrated convolution kernels,
or impulse response functions, for the 11 drinking episodes shown in Figure 5.1 obtained
using the model derived in Section 4 with the appropriate optimal parameters  and  (with
q2 ≡ 0) as given in Table 5.2. The variance among the curves indicates that a more
sophisticated model than our two parameter linear diffusion equation may be in order.
However, the fact that we were able to fit each individual drinking episode relatively well
suggests that diffusion is likely the appropriate paradigm to describe the transdermal
transport of ethanol from the blood through the skin to the TAC sensor.

5.4. Deconvolution Results
We used the model calibrated with Drinking Episode 1 to de-convolve the BrAC signal from
the TAC signal for the other 10 remaining drinking episodes shown in Figure 5.1. In Table
5.4 we compare 5 different ways for obtaining BrAC information in the field. In particular,
we look at three different statistical measures typically used by alcohol researchers: peak
BrAC (P) in units of percent alcohol over the course of the drinking episode, the time (T) in
hours elapsed since the start of the data set at which the peak BrAC occurs, and the area (A)
under the BrAC curve.

The five different ways in which we computed these three statistics are: (1) directly from the
raw BrAC data provided to us by the subject, (2) from the estimated BrAC curve
deconvolved from the field TAC data signal using the approach we have presented here, (3)
from the estimated BrAC curve obtained by calibrating the model on each drinking episode,
(4) a standard method (see Matthews and Miller, [21], Carey and Hustad, [19], and Hustad
and Carey, [20]) for obtaining an estimate of BrAC based on a drinking diary (this method
does not use the field TAC data at all), and (5) directly from the raw TAC data collected by
the sensor in the field. Note that in comparing these different approaches, they require
different amounts of subject supplied data from the field, the collection of which places
different levels of burden on the subject. Method 1 requires that the subject use a breath
analyzer to provide field measurements of BrAC, Method 2 (the focus of our effort here)
requires simultaneous BrAC and TAC measurements for only a single drinking episode
(drinking episode 1 in this particular example) and only TAC data for all the remaining
drinking episodes in the field, Method 3 requires simultaneous BrAC and TAC
measurements from the field for all drinking episodes, Method 4 requires that the subject
maintain a drinking diary for all drinking episodes in the field, and Method 5 requires only
TAC data for all field drinking episodes.

In the left hand panel of Figure 5.4, Figure 5.4(a), we show a number of BrAC curves for
Drinking Episode 7. On the same set of axes we have plotted the raw BrAC data collected
with a breath analyzer in the field, an estimated BrAC curve deconvolved from the field
TAC signal using the method we have developed here with the model calibrated using
Drinking Episode 1, estimated BrAC curves using a field drinking diary and the method
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discussed in (Matthews and Miller, [21], Carey and Hustad, [19], and Hustad and Carey,
[20]) for both the case of standard drinks and percent alcohol for the drinks consumed, and
finally, the raw TAC data for Drinking Episode 7 collected by the sensor in the field. In the
right hand panel of Figure 5.4, Figure 5.4(b), we have plotted the convolution kernels or
impulse response functions obtained by calibrating the model using the data from Drinking
Episodes 3 and 8. Note that, for these two drinking episodes, the resulting convolution
kernels are very close to each other. In the left hand panel of Figure 5.5, Figure 5.5(a) we
have plotted the estimated BrAC curves for Drinking Episode 3. In this figure, the estimated
BrAC curve deconvolved from the field TAC signal using the method we have developed
here was obtained by first calibrating the forward model using the data for Drinking Episode
8. In the right hand panel of Figure 5.5, Figure 5.5(b), we have plotted estimated BrAC
curves for Drinking Episode 8. In this case, the estimated BrAC curve deconvolved from the
TAC signal was obtained using the technique described here with the forward model
calibrated using the data from Drinking Episode 3.

6. Discussion and Conclusions
6.1 Calibration

It is clear from the plots in Figure 5.3(b) and from the parameter values in Table 5.2 that
calibration of the model based on the different drinking episodes in Figure 5.1, lead to
different models. It would be valuable to try to identify what exactly it is that differentiates
the 11 drinking episodes and to then use this to improve our calibration protocol. Frequency
domain analysis could potentially be used to identify drinking patterns that could then be
correlated with the optimal values of the model parameters. Indeed, the optimal values of the
two model parameters,  and , may in fact characterize different drinking patterns or
profiles. If this were the case, an alcohol challenge protocol yielding richer calibration data
and a form of gain scheduling, in which different convolution filters are selected depending
on the characteristics of a particular drinking episode, could significantly improve the
accuracy of BrAC estimates. Figure 5.5 provides evidence that such an approach might
work. In Figure 5.4(b) we plot the impulse response function or convolution filter kernels
when the model is calibrated using Drinking Episodes 3 and 8. Note that these two curves
and their corresponding values of  and  are very similar. In Figure 5.5(a), we plot the
results of using the model calibrated with Drinking Episode 8 to deconvolve an estimated
BrAC signal from the TAC signal from Drinking Episode 3. In Figure 5.5(b), we do the
opposite and use the model calibrated with Drinking Episode 3 to deconvolve an estimated
BrAC signal from the TAC signal for Drinking Episode 8. In these two plots, there appears
to be reasonably close agreement between the estimated BrAC signal for the drinking
episode and the BrAC signal obtained when the drinking episode is used to calibrate the
model (i.e., when both the TAC and BrAC data are used in the deconvolution).

The fact that we can obtain reasonably good fits when each of the 11 drinking episodes is
used to calibrate the model suggests that diffusion is the appropriate modeling paradigm.
However, the fact that we observe variation in the models obtained from drinking episode to
drinking episode suggests that a more sophisticated, possibly nonlinear, diffusion model
with a higher dimensional parameterization may be more appropriate. For example, one
might consider a nonlinear Fickian based diffusion law involving a diffusivity that is a
function of ethanol concentration and/or the gradient of ethanol concentration. Of course in
this case, strictly speaking, extracting an estimate of the BrAC signal from the field TAC
signal can no longer be considered a deconvolution problem.
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6.2 Deconvolution
For all three types of BrAC measures, the calibrated BrAC estimation did the best. Among
the other methods, using the raw TAC data provided by the TAC sensor provides a
reasonable, second best estimate of peak BrAC. This approach, however, provides a less
accurate estimate of the area underneath the BrAC curves and a particularly poor estimate of
the time of peak BrAC. The drinking diary method was good at capturing the time of peak
BrAC, but was poorest at estimating the area under the BrAC curve. Our approach did
almost as well as the calibrated BrAC method at estimating the time of peak BrAC.
Although not as accurate as the calibrated BrAC method at estimating the area underneath
the BrAC curves, our method was considerably better than the other three methods in this
regard.

It is, of course, not surprising that deconvolution was more accurate when BrAC data from
each individual drinking episode was used to calibrate the model before the deconvolution.
Indeed, this approach is less blind. However, this requires subjects to not only continuously
wear the TAC sensor, but to also provide at least some contemporaneous BrAC
measurements from the field. Indeed, in comparing the data in Table 5.4 for the different
methods used to obtain estimated BrAC curves, one must take into account the amount of
field data the subject must provide. For example, estimates based on the raw TAC data,
while less accurate, require no active participation by the subject in data collection. The
drinking diary approach, on the other hand, requires the subject to maintain a detailed drink
diary in the field. This increases subject burden and decreases the naturalism of the drinking
environment. Our blind deconvolution approach requires an alcohol challenge session before
sending the subject out into the field, but once in the field, no active participation by the
subject in data collection is required. Thus naturalistic drinking behaviors should not be
affected.

In general, our results indicate that our approach is a relatively effective tool for obtaining
semi-quantitative measure of BrACs from TAC devices. It was able to produce relatively
consistent measures of BrAC, and given the relatively low real-time subject burden, our
approach appears to be an effective way to improve real-time objective measures of alcohol
consumption.
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Figure 5.1.
Plot of TAC and BrAC data showing the 11 actual drinking episodes.
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Figure 5.2.
(a) (left panel) Plot of trend component of TAC signal along with the automatically
identified drinkingepisodes. (b) (right panel) Plot of trend and cyclical components of TAC
signal produced by HP filter.
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Figure 5.3.
(a) Estimated TAC signal as output of fit model for drinking episode 1 (top left panel) and
estimated BrAC signal as deconvolved from TAC data using fit model for drinking episode
1 (lower left panel). (b) Convolution filters or impulse response functions obtained using
each of the 11 different drinking episodes in Figure 5.1 to calibrate the model (right panel).
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Figure 5.4.
(a) (left panel) Estimated BrAC signal for drinking episode 7 from Figure 5.1. (b) (right
panel) Convolution kernel or impulse response functions obtained by calibrating model
using drinking episodes 3 and 8 from Figure 5.1.
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Figure 5.5.
(a) (left panel) Estimated BrAC for Drinking Episode 3 using model calibrated using
Drinking Episode 8. (b) (right panel) Estimated BrAC for Drinking Episode 8 using model
calibrated using Drinking Episode 3.
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Table 5.3

Summary of data presented in Table 5.2.

Summary Minimum Value Maximum Value μ σ

q1
∗ 0.294 2.350. 1.038 0.721

q3
∗ 0.199 1.770 1.200 0.452

r1
∗ 0.100 0.210 0.130 0.040

r2
∗ 0.100 1.080 0.327 0.342

TAC L2 5% 33% 15% 9%

TAC L∞ 11% 32% 20% 7%

BrAC L2 17% 49% 27% 11%

BrAC L∞ 17% 77% 39% 19%

Peak BrAC 0% 42% 12% 12%

Time Peak 5% 86% 33% 30%

Area 0% 15% 6% 5%
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