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Abstract

Information spreading in a population can be modeled as an epidemic. Campaigners (e.g. election campaign man-
agers, companies marketing products or movies) are interested in spreading a message by a given deadline, using
limited resources. In this paper, we formulate the above situation as an optimal control problem and the solution
(using Pontryagin’s Maximum Principle) prescribes an optimal resource allocation over the time of the campaign. We
consider two different scenarios—in the first, the campaigner can adjust a direct control (over time) which allows her
to recruit individuals from the population (at some cost) toact as spreaders for the Susceptible-Infected-Susceptible
(SIS) epidemic model. In the second case, we allow the campaigner to adjust the effective spreading rate by incentiviz-
ing the infected in the Susceptible-Infected-Recovered (SIR) model, in addition to the direct recruitment. We consider
time varying information spreading rate in our formulationto model the changing interest level of individuals in the
campaign, as the deadline is reached. In both the cases, we show the existence of a solution and its uniqueness for
sufficiently small campaign deadlines. For the fixed spreading rate, we show the effectiveness of the optimal control
strategy against the constant control strategy, a heuristic control strategy and no control. We show the sensitivity of
the optimal control to the spreading rate profile when it is time varying.

Keywords:
Information Epidemics, Optimal Control, Pontryagin’s Maximum principle, Social Networks,
Susceptible-Infected-Recovered (SIR), Susceptible-Infected-Susceptible (SIS).

1. Introduction

Use of social networks by political campaigners and productmarketing managers is increasing day by day. It gives
them an opportunity to influence a large population connected via the online network, as well as the human network
where two individuals interacting with each other in daily life are connected. A piece of information, awareness of
brands, products, ideas and political ideologies of candidates spreads through such a network much like pathogens
in the human network, and this phenomenon is called an “information epidemics”. The goal of the campaigner is to
‘infect’ as many individuals or nodes as possible with the message by the campaign deadline. Such an effort incurs
advertisement cost. Some campaigns aim to create a ‘buzz’ about some topic by engaging people in a conversation
about some topic (a scenario encountered in political campaigns, for example). Others are more focused: for example,
advertisements to maximize the sale of a product or promotion of a movie. Resource limitations (monetary, manpower
or otherwise) indicate the need to formulate optimal campaigning strategies which can achieve these goals at minimum
cost. Such an optimization problem can be formulated as an optimal control problem. An optimal control problem
aims to optimize a cost functional (a function of state and control variables) subject to state equation constraints that
govern system evolution.

In this paper, we aim to address the problems described above. We assume a homogeneously mixed population.
Individuals communicate and exchange messages with one another on their own, giving rise to information epidemics.
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Information can be communicated to the population directlyby the campaigner (direct recruitment of individuals to
spread the message). However, recruiting individuals and direct information communication comes with a cost (such
as placing advertisement in the mass media). A campaigner may also provide incentives to individuals for spreading
the message. Such an incentive is termed as a word-of-mouth incentive and it rewards an individual who refers a
product or a piece of information to others.

The campaigner possesses limited resources and is unable tocommunicate information to the entire population.
Not only resource allocation among different strategies, but also the timing of direct recruitmentof individuals and
giving out word-of-mouth incentives are crucial for maximizing the information epidemic. We model the information
spreading process as a Susceptible-Infected-Susceptible(SIS) and Susceptible-Infected-Recovered (SIR) epidemic
process with time varying information spreading rate, and formulate an optimal control problem which aims to mini-
mize the campaign cost over a given period of time.

SIS and SIR epidemic processes are suitable for modeling information epidemics due to the similarities in the
ways disease spreads in a biological network and this information spreads in social networks. When susceptible and
infected individuals interact, the topic of interest may come up with some probability, which will lead to transfer of
information from infected to susceptible individual. Thisprocess is very similar to the way in which a communicable
disease spreads in a population. The SIS model is suitable for cases when we are trying to engage the population in a
conversation about some topic. Such a scenario can be encountered in political campaigns. SIS allows infected nodes
to ‘recover’ back to the susceptible state, so that it can receive a different message about the same topic. The SIR
model is suitable for situations where nodes participate inmessage spreading for random amounts of time and then
recover (and stop message dissemination). Such a scenario may be encountered in viral marketing of a newly launched
product or promotion of a movie, where information about theproduct is transmitted by enthusiastic individuals who
gradually lose interest in promoting the product.

Related Work: Although there are a lot of studies onpreventing the spread of disease and computer viruses
in human and computer networks through optimal control [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], information epidemics have
attracted less attention (see for example [11]). Apart fromdifferences in epidemic models, our objective is to maximize
the spread of information while the studies discussed aboveaim to contain the epidemic. To be more precise, the above
studies aim to remove individuals from the infected class through the application of control signal(s), while our aim is
the opposite. In addition, the cost functions used by [2, 6] and [7] are linear in control, while our cost is quadratic in
control. [8] and [9] assumed a time-varying state variable in the cost function, while our formulation considers only
the final system state. [1] considered a metapopulation model of epidemics which is different from the models used
in this paper. The SIR model is used in [3] and [5], but the controls (level of vaccination and treatment) are specific
to biological epidemics and unsuitable for information epidemics. The work in [10] aims to prevent the epidemic
and the author uses educational campaigns as controls. The educational campaigns encourage susceptibles to protect
themselves from the disease and increase the removal rate ofinfected individuals.

[12] and [13] analyze the so called Push, Pull and Push-pull algorithms for rumor spreading on technological and
social networks. The connection graph of the nodes is known.The authors fix the strategy for information spreading:
nodes may either ‘Push’ the information to their neighbors,‘Pull’ the information from them or do both. The aim is to
compute bounds on the number of communication rounds required to distribute the message to almost all the nodes for
the given connection graph. Similarly, the authors in [14] aim to compute bounds on the number of communication
rounds required for distributed computation of the averagevalue of sensor readings (e.g. temperature) for sensors
deployed in a field. Note that finding optimal strategies for information spreading is not the aim of [12, 13, 14].

The study in [15] defines an information or a joke spreading ina population as a rumor. It aims to maximize
the spread of rumor in the Daley-Kendall and Maki-Thompson models, which are different from the Kermack-
McKendrick SIS/SIR models used in this paper. We believe that certain scenarios like political campaigns are better
modeled by Kermack-McKendrick SIS model (recovery is independent of interaction between individuals) than the
Daley-Kendall/Maki-Thompson models (when two infected meet, one or both recover). Moreover, [15] used impulse
control, while our models assume the system can be controlled over the whole campaign period. The Authors in
[16] and [17] devise optimal advertisement and pricing strategies for newly launched products. But they do not con-
sider viral message propagation, where individuals in the population interact with one another to spread a piece of
information, as is the case in this paper.

Optimal control of spreading software security patches in technological networks is discussed in [18]. The system
model used by [18] is tailored to technological networks andis different from the one used in our study. The study uses
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a four-compartment model (instead of the two and three compartment models used in our study) with an additional
compartment for representing the number of nodes destroyedby the malware (apart from susceptibles, infected and
recovered nodes). In addition, the controls used are the fraction of disseminators and the dissemination rate of the
security patches, which are different from the controls used in this paper.

Cost minimization for marketing campaigns is explored in [11]. The cost functional used there is linear in control,
while our model assumes a quadratic cost. Although [11] usesSIS and SIR models like we do, but the objective
functional is different from ours. The objective functionals in our models areweighted sums of the fraction of nodes
which have received the message by the campaign deadline andthe costs of applying controls. In contrast, the
objective functional in [11] for the SIS case is to minimize the campaign cost (subject to a constraint on the fraction
of infected nodes at the deadline) and for the SIR case, the objective is to maximize the fraction of nodes who have
received the message (subject to a budget constraint for running the campaign). Moreover, we discuss the uniqueness
of the solutions to our models; this is not discussed by [11] and [18]. Furthermore, we study the effect of word-of-
mouth control on epidemic spreading, which is not explored in the above studies.

A major difference between an information epidemic and a biological epidemic is that in the case of a biological
epidemic, the infection rate and recovery rate are constantthroughout the season (assuming that pathogens do not
mutate within a season). On the other hand, the interest level of the population during the campaign period (for
elections or promotions of upcoming movies) changes as we approach the deadline (poll date or movie release date).
We have modeled this by making the effective information spreading rate a time varying quantity. Previous studies
have ignored this characteristic of information epidemics.

The following are the primary contributions of this paper:

(i) Formulation of optimal control problems for maximizinginformation spread in two different models. In the
first, information spreads through an SIS process and in the next, through an SIR process. The control signal
in the SIS model is the intensity with which direct recruitment of spreaders from the population can be done.
The SIR model has an additional control signal—the word-of-mouth control, which controls the spreading rate
of the information epidemic. Our formulation involves a quadratic cost function and a time dependent effective
information spreading rate.

(ii) We show the existence of a solution in both the problems.
(iii) We establish uniqueness of the solution in both the cases, when the campaign deadline is sufficiently small.
(iv) We compare the overall cost incurred by the optimal control strategy with the constant control strategy, a heuristic

control strategy and no control, when the information spreading rate is constant throughout the campaign period.
(v) When the effective spreading rate varies over the campaign duration, wedemonstrate the sensitivity of the

optimal control with respect to different effective spreading rate profiles.

The rest of the paper is organized as follows: Sections 2 and 3formulate the optimal control problem for SIS
and SIR information epidemics, respectively. Sections 4 and 5 analyze the respective problems. Results are shown in
Section 6 and conclusions are drawn in Section 7.

2. System Model and Problem Formulation: SIS Epidemic

We consider a system ofN nodes (or individuals) which is fixed throughout the campaign time 0≤ t ≤ T . In the
case of SIS epidemics, individuals are divided into two compartments—susceptible (those who are yet to receive a
tagged message) and infected (those who have already received the message). A susceptible node becomes infected at
a certain rate if it comes in contact with an infected individual. The idea is to create a ‘buzz’ in the population about
some topic (e.g. a political campaign). An infected node can ‘recover’ back to the susceptible state which allows
it to receive a different message about the same topic. This makes SIS a suitablemodel for such scenarios. By the
campaign deadlineT , the number of infected individuals (who are engaged in somesort of discussion about the topic)
is the quantity of interest.

Let S (t), I(t) denote the number of susceptible and infected nodes at timet. Let s(t) = S (t)/N ≥ 0 andi(t) =
I(t)/N ≥ 0, therefores(t) + i(t) = 1. The information spreading rate at timet is denoted byβ′(t), which is assumed
to be a bounded quantity. Practical considerations will impose such a restriction onβ′(t). In a small intervaldt at
time t, a susceptible node that is in contact with a single infectednode, changes its state to “infected” with probability
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β′(t)dt. We assume that each node in the population is in contact withan average ofkm others, chosen randomly,
at any time instantt. Thus, any susceptible node will have an average ofkmi(t) infected neighbors and will acquire
information with probability 1− (1− β′(t)dt)kmi(t) ≃ β′(t)kmi(t)dt. Since a fractions(t) of population is susceptible, the
rate of increase of infected nodes in the population due to susceptible-infected contact isβ′(t)kmi(t)s(t). We define the
effective spreading rate at timet asβ(t) = β′(t)km. An infected node “falls back” to being susceptible with a rate γ.
In the limit of largeN, the mean field equations for the evolution ofs(t) andi(t) in the (uncontrolled) SIS process is
given by [19, equations adapted for time varyingβ(t)],

ṡ(t) = −β(t)s(t)i(t) + γi(t),

i̇(t) = β(t)s(t)i(t) − γi(t).

The objective functional is chosen to beJ = −i(T )+
∫ T

0
bu2(t)dt. The rationale behind such a choice is as follows.

Applications like poll campaigns only care about the final number of infected individuals on the polling day,i(T ), and
not on the evolution history,i(t), 0 ≤ t < T . This is captured in the first term of the objective functional. The cost of
running the campaign accrues over time and this is represented by the integral. The choice of quadratic cost function
is consistent with the literature [3, 9].

Let u—a bounded Lebesgue integrable function—denote the recruitment control applied by the campaigner, with
u(t) representing its value at timet. We defineU as follows:

Definition 1.

u ∈ U , {u : u is Lebesgue integrable, 0 ≤ u(t) ≤ umax}.

Thus,umax uniformly bounds all functions inU. The control signalu denotes the rate at which nodes are directly
recruited from the population to act as spreaders. Practical constraints on executing the control will impose the
property of boundedness on the control signal. Thus the optimal control problem can be formulated as:

min
u∈U

J = −i(T ) +
∫ T

0
bu2(t)dt (1)

subject to: ˙s(t) = −β(t)s(t)i(t) + γi(t) − u(t)s(t)

i̇(t) = β(t)s(t)i(t) − γi(t) + u(t)s(t) (2)

i(t) ≥ 0, s(t) ≥ 0

i(t) + s(t) = 1

i(0) = i0, s(0) = 1− i0.

Here,i0 denotes the initial fraction of infected nodes who act as seeds of the epidemic.

3. System Model and Problem Formulation: SIR Epidemics

An SIR epidemic model has an additional compartment—recovered—in addition to the susceptible and infected
classes discussed before. It is suitable in modeling situations where nodes participate in message spreading for a
random amount of time and then “recover” (and stop message dissemination). Such a scenario may be encountered in
viral marketing of a newly launched product or promotion of amovie, where enthusiastic individuals gradually lose
interest in promoting the product.

Let R(t) andr(t) = R(t)/N ≥ 0 denote the number and fraction of recovered nodes at timet so thats(t)+ i(t)+r(t) =
1. The effective information spreading rate at timet is β(t). Simultaneously, infected nodes switch to “recovered” at
a rateγ, independent of others. The mean field equations governing the SIR process in the limit of largeN are [19,
adapted for variableβ(t)]:

ṡ(t) = −β(t)s(t)i(t)

i̇(t) = β(t)s(t)i(t) − γi(t)

ṙ(t) = γi(t).
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In this case we assume that the campaigner can allocate her resources in two ways. At timet, she can directly
recruit individuals from the population with rateu1(t), to act as spreaders (via advertisements in mass media). In
addition, she can incentivize infected individuals to makefurther recruitments (e.g. monetary benefits, discounts or
coupons to current customers who refer their friends to buy services/products from the company). This effectively
increases the spreading rate of the message at timet fromβ(t) to

(

β(t)+u2(t)
)

whereu2(t) denotes the “word-of-mouth”
control signal which the campaigner can adjust at timet. The controls,u1 ∈ U1 andu2 ∈ U2, where the sets are defined
as follows:

Definition 2.

U1 , {u : u is Lebesgue integrable, 0 ≤ u(t) ≤ u1max},

U2 , {u : u is Lebesgue integrable, 0 ≤ u(t) ≤ u2max}.

The cost of applying the control is quadratic over the time horizon of the campaign, 0≤ t ≤ T , and the reward is
the total fraction of population which received the messageat some point in time, i.e.,i(T ) + r(T ) = 1− s(T ). The
optimal control problem can then be stated as:

min
u1∈U1,u2∈U2

J = −1+ s(T ) +
∫ T

0

(

bu2
1(t) + cu2

2(t)
)

dt (3)

subject to ˙s(t) = −
(

β(t) + u2(t)
)

s(t)i(t) − u1(t)s(t)

i̇(t) =
(

β(t) + u2(t)
)

s(t)i(t) + u1(t)s(t) − γi(t)

ṙ(t) = γi(t)

i(t) ≥ 0, s(t) ≥ 0, r(t) ≥ 0

i(t) + s(t) + r(t) = 1

i(0) = i0, s(0) = 1− i0, r(0) = 0.

4. Analysis of the Controlled SIS Epidemic

Substitutings(t) = 1− i(t), problem (1) can be rewritten as,

min
u∈U

J = −i(T ) +
∫ T

0
bu2(t)dt (4)

subject to i̇(t) = −β(t)i2(t) +
(

β(t) − γ − u(t)
)

i(t) + u(t) (5)

0 ≤ i(t) ≤ 1

i(0) = i0. (6)

4.1. Existence of a Solution

Theorem 4.1. There exist an optimal control signal u ∈ U and a corresponding solution i∗(t) to the initial value
problem (5) and (6) such that u ∈ argmin

u∈U
{J(u)} in problem (4).

Proof. The theorem can be proved by application of the Cesari Theorem [20, pg 68]. Let the right hand side (RHS) of
(5) be denoted byf (u(t), i(t)). The following requirements of the Theorem are met:f (u(t), i(t)) satisfies the required
bound| f (u(t), i(t))| ≤ C0(1+ |i(t)|+ |u(t)|) (with C0 = sup|β(t)+γ+u(t)|; note thatβ(t) is bounded and 0≤ u(t) ≤ umax).
The setU and the set of solutions to initial value problem (5) and (6) are non empty (due to Lipschitz continuity of
f (u(t), i(t)) [21, pg. 185]). The control signal takes values in a closedset [0, umax]. The cost due to the terminal state
in the cost functional (4) takes values in a compact interval[0, 1]. The functionf (u(t), i(t)) is linear inu(t). In the
cost functional (4), the integrand,bu2(t) ≥ C1|u(t)|C2 − C3. It is required thatC1 > 0, C2 > 1 which is satisfied if we
chooseC1 = b, C2 = 1.5, C3 = 0.
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4.2. Solution to the SIS Optimal Control Problem

We use Pontryagin’s Maximum principle [22] to solve the optimal control problem (4). Through this technique, we
get a system of ordinary differential equations (ODEs) in terms of state and adjoint variables (with initial and boundary
conditions, respectively) which are satisfied at the optimum. The system of ODEs can be solved numerically using
boundary value ODE solvers. Letλ(t) denote the adjoint variable. At timet, let u∗(t) denote the optimum control and,
i∗(t) andλ∗(t) the state and adjoint variables evaluated at the optimum.
Hamiltonian: The objective function in (4) has been multiplied by−1 to convert the problem to a maximization
problem.

H(i(t), u(t), λ(t), t) = −bu2(t) + λ(t)
[

− β(t)i2(t) + (β(t) − γ − u(t))i(t) + u(t)
]

.

Adjoint equation: λ̇∗(t) is − ∂
∂i(t) H(i(t), u(t), λ(t), t) evaluated at the optimum.

λ̇∗(t) = −
∂

∂i(t)
H(i(t), u(t), λ(t), t)

∣

∣

∣

∣

∣ i(t)=i∗(t),u(t)=u∗(t),
λ(t)=λ∗(t)

= 2β(t)i∗(t)λ∗(t) −
(

β(t) − γ − u∗(t)
)

λ∗(t). (7)

Hamiltonian Maximizing Condition: At the interior points

∂

∂u(t)
H(i(t), u(t), λ(t), t)

∣

∣

∣

∣

∣

i(t)=i∗(t),u(t)=u∗(t),λ(t)=λ∗(t)

= −2bu∗(t) − λ∗(t)i∗(t) + λ∗(t) = 0.

Hence the Hamiltonian maximizing condition leads to

u∗(t) =



























0 if λ
∗(t)(1−i∗(t))

2b < 0,
λ∗(t)(1−i∗(t))

2b if 0 ≤ λ
∗(t)(1−i∗(t))

2b ≤ umax,

umax if λ
∗(t)(1−i∗(t))

2b > umax,

⇒ u∗(t) = min

{

max

{

λ∗(t)(1− i∗(t))
2b

, 0

}

, umax

}

. (8)

Transversality condition: From the transversality condition we get

λ∗(T ) = 1. (9)

Substituting (8) in (5) and (7)
(

and using the initial condition (6) and boundary condition (9)
)

, we get a system of
ODEs which can be solved using standard boundary value problem ODE solving techniques. We have implemented
the shooting method [23] in MATLAB to solve the boundary value problem. Equations (5) and (7) are solved using
MATLAB’s initial value problem solverode45() with Equation (7) initialized arbitrarily. Naturally, thesolution
will not satisfy the required boundary condition (9); hencethe estimation of the initial condition of Equation (7) is
improved using the optimization routinefminunc() until the boundary condition (9) is met with desired accuracy.
Another option is to use forward-backward sweep method explained in [1, 3].

4.3. Uniqueness of the Solution to the SIS Optimal Control Problem

Theorem 4.2. For a sufficiently small campaign deadline, T , the state and adjoint trajectories at the optimum and
the optimal control to problem (4) are unique.

Proof. The proof technique is same as in [24], details are in Appendix A.

6



5. Analysis of the Controlled SIR Epidemic

After removing the redundant information, problem (3) can be rewritten in terms of two state variables and two
controls as follows (setsU1 andU2 are according to Definition 2):

min
u1∈U1,u2∈U2

J = −1+ s(T ) +
∫ T

0

(

bu2
1(t) + cu2

2(t)
)

dt (10)

subject to: ˙s(t) = −
(

β(t) + u2(t)
)

s(t)
(

1− s(t) − r(t)
)

− u1(t)s(t) (11)

ṙ(t) = γ
(

1− s(t) − r(t)
)

(12)

0 ≤ s(t), r(t) ≤ 1

s(0) = 1− i0, r(0) = 0. (13)

5.1. Existence of a Solution

Theorem 5.1. There exist an optimal control signals u1 ∈ U1, u2 ∈ U2 and corresponding solutions s∗(t), r∗(t) to the
initial value problem (11), (12) and (13) such that (u1, u2)T ∈ argmin

u1∈U1,u2∈U2

{J(u1, u2)} in problem (10).

Proof. The theorem can be proved by application of the Cesari Theorem [20, pg 68]. The details are omitted.

5.2. Solution to the SIR Optimal Control Problem with Direct and Word-of-mouth Control

Let λs(t) andλr(t) be the adjoint variables. At timet, let u∗1(t), u∗2(t) denote the optimum controls and,s∗(t), r∗(t)
andλ∗s(t), λ

∗
r (t) the state and adjoint variables evaluated at the optimum. Using Pontryagin’s Maximum Principle [22]

we get the following equations.
Hamiltonian: The objective function in (10) has been multiplied by−1 to convert the problem to maximization
problem.

H(s(t), r(t), u1(t), u2(t), λs(t), λr(t), t)

= − bu2
1(t) − cu2

2(t) + λs(t)
[

−
(

β(t) + u2(t)
)

s(t) +
(

β(t) + u2(t)
)

s2(t) +
(

β(t) + u2(t)
)

s(t)r(t) − u1(t)s(t)
]

+ λr(t)
[

γ − γs(t) − γr(t)
]

.

Adjoint Equations:

λ̇∗s(t) = β(t)λ∗s(t) − 2β(t)λ∗s(t)s∗(t) − β(t)λ∗s(t)r
∗(t) + λ∗s(t)u

∗
1(t) + λ∗s(t)u

∗
2(t) − 2λ∗s(t)u

∗
2(t)s∗(t)

−λ∗s(t)u
∗
2(t)r

∗(t) + γλ∗r (t) (14)

λ̇∗r (t) = −β(t)λ∗s(t)s∗(t) + λ∗s(t)u
∗
2(t)s∗(t) + γλ∗r (t) (15)

Hamiltonian Maximizing Condition: Derivative of the Hamiltonian evaluates to zero at interiorpoints, hence the
Hamiltonian maximizing condition leads to

u∗1(t) = min

{

max

{

λ∗s(t)s∗(t)

−2b
, 0

}

, u1max

}

. (16)

and,

u∗2(t) = min

{

max

{

λ∗s(t)s∗(t)
(

1− 2s∗(t) − r∗(t)
)

−2c
, 0

}

, u2max

}

. (17)

Transversality condition: λ∗s(T ) = −1 andλ∗r (T ) = 0.
Substituting the values ofu∗1(t) andu∗2(t) from (16) and (17) to (11), (12), (14) and (15) and solving the system of

ODEs numerically using the technique described in Section 4.2, we can compute the state and adjoint variables and
hence the optimal control.
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Figure 1: Organization of plots related to the shapes of the control signals and state evolutions in Sections 6.1 and 6.2.
In addition, plots in Section 6.3 show variation of the cost functionalJ with respect to various parameters in the SIS
and SIR models.

5.3. Uniqueness of the Solution to the SIR Optimal Control Problem with Direct Recruitment and Word-of-mouth
Control

Theorem 5.2. For a sufficiently small campaign deadline, T , the state and adjoint trajectories at the optimum and
the solution to the optimal control problem (10) are unique.

Proof. The proof technique is same as in [24], details are in Appendix B.

6. Results

We divide this section into three parts. Section 6.1 studiesthe control signal and corresponding state evolution
for constant spreading rate and Section 6.2 for variable spreading rate. The tree in Fig. 1 shows how the results are
organized in these two subsections. In Section 6.3 we study the role played by various parameters (β, γ, T, b, c) on the
cost functionalJ for both SIS and SIR models.
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Figure 2: Optimal control, state evolutions with control and state evolutions without control for the SIS epidemic
(model in Section 2) and the SIR epidemic (model in Section 3). Note that state variables are plotted with respect to
the left Y-axis and control signals are plotted with respect to the right Y-axis.

6.1. Constant Effective Spreading Rate Over Time

First we consider the case when the effective spreading rate is constant over time. Thus,β(t) = β, ∀t ∈ [0, T ]. The
basic reproductive number,R0, for an epidemic is defined as the expected number of secondary infections caused by
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Figure 3: Optimal control, state evolution with control andstate evolution without control for the SIS epidemic (model
in Section 2) and the SIR epidemic (model in Section 3).Note that state variables are plotted with respect to the left
Y-axis and control signals are plotted with respect to the right Y-axis.

an infected node in the early stages of epidemic outbreak. For the (uncontrolled) SIS and SIR epidemic considered in
this paper,R0 = β/γ, the ratio of effective spreading rate to the recovery rate [19]. Give a campaign deadlineT , basic
reproductive numberR0 captures how viral the information epidemic is. Qualitatively, increasingβ or decreasingγ,
while holding the other constant, is expected to have same result. If R0 > 1 for the uncontrolled system, the epidemic,
on the average will become endemic and forR0 < 1, the epidemic dies out with probability 1 [19]. We discuss these
cases separately:

(i) With reference to Figs. 2a (for SIS) and 2b (for SIR), where R0 > 1, direct control signal is strong when the
targeted population (susceptibles) are in abundance (at beginning of the campaign period) and vice versa. Early
infection increases the extent of information spreading asthe system has a tendency to sustain the population in
the infected state (because infection is faster than recovery). Also, the word-of-mouth control in Fig. 2b switches
on from zero when populations of both susceptible and infected individuals reach significant levels. Providing
word-of-mouth incentive is effective only when there are substantial number of infected nodes as well as enough
number of susceptibles to convince.

(ii) WhenR0 < 1 for the uncontrolled system, the uncontrolled information epidemic dies out. The control and state
evolutions for this case are shown in Figs. 3a (for SIS) and 3b(for SIR). We find the direct control signal to be
less variable over time. In fact, in the SIS case, it increases with time. Fast recovery (compared to infection)
of the nodes makes a strong control at the beginning stages ofthe epidemic ineffective. Also, notice that in the
SIR case (Fig. 3b), the optimal strategy advocates not usingword-of-mouth control throughout the campaign
duration.

(iii) We make an additional observation with reference to the control signals and the state evolution curves plotted
for R0 = 10 andR0 = 20 in Fig. 2a. Given a campaign deadlineT , asR0 = β/γ increases, (a) the control
effort (measured by area under the control curve) decreases and(b) control signal has limited effect on system
evolution. Thus, campaigns which are less viral will benefitmore from the application of optimal control than the
campaigns which are more viral. Such an observation has implications on marketing strategies for new products
launched by a reputed company compared to a newbie in the market, or publicity of a movie by a famous director
compared to a newcomer. Similar observations were made for direct and word-of-mouth controls in case of the
SIR model, but the curves corresponding toR0 = 20 are omitted for brevity.

6.2. Variable Effective Spreading Rate Over Time
To model the varying interest of a population in spreading the information during the campaign period, we consider

three different functionsβ1(t), β2(t) andβ3(t). We model the cases of increasing, decreasing and fluctuating interests
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Figure 5: Optimal control, state evolution with control andstate evolution without control for the SIS and SIR epi-
demic, for time-varying spreading rateβ1(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to the right Y-axis.

as we approach the deadline through these functions. The functions are increasing sigmoid, decreasing sigmoid and
cosine (plotted in Fig. 4) and are defined as:

β1(t) = βm +

(

βM − βm

1+ e−a1(t−c1)

)

, (18)

β2(t) = (βM − βm)

(

1−
1

1+ e−a2(t−c2)

)

, (19)

β3(t) = cm + ca cos(2πt/T ), (20)

where the values of the parameters used are:βm = .01, βM = 2, T = 5, a1 = 2, c1 = 3, a2 = 2, c2 = 2, cm = 1, ca = 1
and t ∈ [0, 5]. Whereverβi(t), i = 1, 2, 3 are used, the recovery rate is set toγ = 0.1. The increasing effective
spreading rate,β1(t) may represent the increasing interest of people to talk about election candidates as we approach
the polling date. The decreasing effective spreading rate,β2(t) may represent gradual loss of interest of people in
talking about some newly launched product (e.g. a computer game) after its release. Fluctuating effective spreading
rateβ3(t) may represent changes in demand of a product/service with time (e.g., movie tickets for weekend shows
may have higher demand than tickets for weekday shows). Depending on the application, other profiles forβ(t) are
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Figure 6: Optimal control, state evolution with control andstate evolution without control for the SIS and SIR epi-
demics for time-varying spreading rateβ2(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to the right Y-axis.
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(b) SIR epidemic. Parameter values:γ = 0.1, T = 5, b = 15, c =
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Figure 7: Optimal control, state evolution with control andstate evolution without control for the SIS and SIR epi-
demics for time-varying spreading rateβ3(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to the right Y-axis.

possible.
The controls and state evolutions for the SIS and SIR models discussed in this paper for the time-varying effective

spreading rates defined in Equations (18), (19) and (20) are plotted in Figs. 5–7. The shape of the optimal control may
be different from the case when the effective spreading rateβ is a constant over time. This shows the need to determine
the interest level of the population (and henceβ(t)) before deciding on the optimal control strategy. The figures also
show the effectiveness of the optimal control strategy over the case when no control is used, in increasing the number
of infected nodes in the SIS model, and number of infected andrecovered nodes in the SIR model. Thus, optimal
campaigning is beneficial in real world scenarios where the effective information spreading rate may be variable.

The recovery rate may also be a time dependent quantity in real world applications. The framework developed in
this paper can be easily modified to include both time dependent β(t) andγ(t).
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Figure 8: Shapes of different control signals and the corresponding state evolutions for the SIS model. Parameter
values:β = 1, γ = 0.1, (R0 = 10), T = 5, b = 15, umax = 0.06, i0 = 0.1. Note: both of the Figures contribute to
the objective function which is optimized, see Figs. 9a–12afor objective function values for different strategies with
varying parameter values.
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Figure 9: Objective functionalJ vs spreading rateβ for different control strategies.

6.3. Comparison Between Optimal, Constant and a Heuristic Control

The effective spreading rate is again constant in this section,β(t) = β, ∀t ∈ [0, T ]. The aim of this section is
to quantify the effectiveness of the optimal control strategy over simple and intuitive or “common sense” control
strategies which do not involve any optimization.

We first introduce a simple heuristic control strategy whichrequires no knowledge of optimal control theory. Let
snc(t), inc(t) andrnc(t) be the fractions of susceptible, infected and recovered individuals at timet whenno control is
applied. Since the direct control targets susceptibles, inboth the models, its effectiveness depends on the proportion of
the susceptible population at the time it is applied. A reasonable heuristic direct control signal could be

(

u1max · snc(t)
)

whereu1max is the maximum allowed direct control in the given model. It adjusts the strength of the direct control
signal according to the fraction of susceptibles in the no control scenario at any time instant. Word-of-mouth control
requires infected individuals to convince susceptibles; hence, it is effective when the numbers of both susceptibles
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Figure 10: Objective functionalJ vs recovery rateγ for different control strategies.
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Figure 11: Objective functionalJ vs campaign deadlineT for different control strategies.

and infected individuals are significant. A heuristic word-of-mouth control signal for the model in Section 3 could be
(

u2max · snc(t) · inc(t)
)

, whereu2max is the maximum allowed word-of-mouth control. We name thesecontrols ‘follow
snc(t)’ for the SIS model and ‘followsnc(t), snc(t)inc(t)’ for the SIR model. Please note that these controls are decided
and fixed at the beginning of the campaign period (open loop strategies) and are obtained by referring to the quantities
for the uncontrolled system. Another simple control strategy applies constant control throughout the campaign period;
the control signal is set to half of the maximum allowed signal strength. Thus constant control has values1

2umax in the
SIS model and12u1max (direct), 1

2u2max (word-of-mouth) in the SIR model.
Fig. 8 shows the shapes of different control signals and the corresponding state evolutions for the SIS model. The

cost functional involves weighted sums of the total controleffort (area under the control curve) and the final fraction
of infected individuals,i(T ). Notice thati(T ) is similar for the three strategies; however, the total control efforts are
considerably different. For a better idea of the performance of the optimal control compared to the other strategies,
we plot the cost functionalJ with respect to one of the parametersβ, γ, T, b or c for various strategies for both SIS and
SIR models in Figs. 9–12.

We make following observations from the plots in this section:
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Figure 12: Cost functionalJ vs weight parameters (b, c)

(i) From Figs. 9–12: for some parameter vectors, the cost functionalJ for the constant control strategy and ‘follow
snc(t)’ (for SIS model) or ‘follow snc(t), snc(t)inc(t)’ (for SIR model) strategy is more thanJ for no control.
However,J for the optimal control strategy is always smaller thanJ for no control. This shows the advantage of
optimal control over heuristic controls and illustrates the fact that (for some parameter vectors), an ill-planned
campaign may prove more costly than no campaign at all.

(ii) With reference to Figs. 9 and 11 (for both the models), from the difference between the curves corresponding to
no control and optimal control cases (for large values ofβ andT respectively), one can conclude the following:
If the uncontrolled system is capable of achieving a high value of (1− s(t)) (either due to highβ or highT , given
fixed values of other parameters), application of an optimalcontrol strategy does not improve (decrease) costs
too much compared to no control. Note that the cost of applying control is zero for ‘no control’ case andJ in
that case is nothing but−(1− s(T )). In other cases, application of the optimal control decreases the value ofJ
compared to the no control strategy.

(iii) From Figs. 9 and 10: AsR0 = β/γ increases,J corresponding to the optimal control strategy decreases. In other
words, more viral campaigns are less costly to run than less viral campaigns.

(iv) From Fig. 12: J increases as one of the weight parametersb or c increases (other parameters held fixed). We
incur more costs as application of control becomes dearer.

(v) From Fig. 12: The relative increase inJ with respect to increase inb or c for the optimal control strategy is less
than that for the ‘followsnc(t)’ or the ‘follow snc(t), snc(t)inc(t)’ strategy and constant control strategy. Thus, the
optimal control strategy is less sensitive to changes inb or c than other control strategies.

7. Conclusion

In this paper, we have studied optimal control strategies for running campaigns on a homogeneously mixed pop-
ulation when the information spreading rate is a function oftime. The change in the spreading rate over time reflects
the change in the interest level of the population in the subject of the campaign. The first model assumes that infor-
mation spreads through an SIS process and the campaigner candirectly recruit members of the population, at some
cost, to act as spreaders. The second model allows the campaigner to incentivize infected individuals (leading to in-
creased effective spreading rate), in addition to the direct recruitment in the SIR epidemic process. We have shown the
existence of solutions for the two models, and uniqueness ofthe solutions for sufficiently small campaign deadline.
For both the cases, for constant spreading rate, we have showed the effectiveness of the optimal control strategy over
the constant control strategy, a heuristic control strategy and no control. We have shown the sensitivity of control
to the time varying spreading rate profile. Our study can provide useful insights to campaign managers working to
disseminate a piece of information in the most cost effective manner. Estimating parameter values such as information
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spreading rate and recovery rate are nontrivial for real world campaigns, and studying sensitivity of control strategies
to estimation errors forms an interesting future research direction.

Appendix A. Proof for Theorem 4.2 (Uniqueness of the Solution to the SIS Model)

For sufficiently small deadline,T , the uniqueness of the solution to the SIS model can be established using tech-
niques similar to [24]. If the solution to the optimal control problem is non-unique, consider two solutions (i, λ) and
(î, λ̂). The time variablet is dropped for notational brevity. Without loss of generality, for 0 ≤ t ≤ T , let,

i = eat x, λ = e−aty, î = eat x̂ and λ̂ = e−atŷ, (A.1)

wherea is a positive real number. Note thatx, y, x̂, ŷ are functions oft, 0≤ x, x̂ ≤ 1 and 0≤ y, ŷ ≤ ymax, for 0 ≤ t ≤ T .
From (8),

u = min

{

max

{

e−aty(1− eat x)
2b

, 0

}

, umax

}

,

û = min

{

max

{

e−atŷ(1− eat x̂)
2b

, 0

}

, umax

}

.

Thus we can estimate (u − û)2 as,

(u − û)2

≤

(

e−at

2b
(y − ŷ) −

1
2b

(xy − x̂ŷ)

)2

=

( (

e−at − x̂
2b

)2

(y − ŷ)2 +
y
2b

(x − x̂)2 − 2
(e−at − x̂)y

4b2
(x − x̂)(y − ŷ)

)

≤

( (

e−at − x̂
2b

)2

(y − ŷ)2 +
y
2b

(x − x̂)2 +

∣

∣

∣

∣

∣

∣

(e−at − x̂)y
2b2

∣

∣

∣

∣

∣

∣

|(x − x̂)(y − ŷ)|

)

≤A1(x − x̂)2 + A2(y − ŷ)2 (A.2)

We have used (xy − x̂ŷ) = (xy − x̂y + x̂y − x̂ŷ) andm2 + n2 ≥ 2|mn|.
Using (A.1) in (5)

eat ẋ + axeat = −β(t)e2at x2 +
(

β(t) − γ − u
)

eat x + u.

Writing similar equation fordî
dt and subtracting from above we get,

eat
(

ẋ − ˙̂x
)

+ aeat(x − x̂)

= − β(t)e2at(x2 − x̂2) +
(

β(t) − γ
)

eat(x − x̂) − eat(ux − ûx̂) + (u − û).

Multiplying both sides by (x − x̂)

eat(x − x̂)(ẋ − ˙̂x) + aeat(x − x̂)2

= − β(t)e2at(x + x̂)(x − x̂)2 + eat(β(t) − γ
)

(x − x̂)2 − eatu(x − x̂)2 + (1− eat x̂)(u − û)(x − x̂)

≤eaTC1(x − x̂)2 +C2|(u − û)(x − x̂)|

≤eaTC3(x − x̂)2 +C4(u − û)2.

C2 = max(|1− eat x̂|). Integrating both sides with respect tot from 0 toT , we get,

1
2

(x − x̂)2(T ) + (a −C3eaT )
∫ T

0
(x − x̂)2dt ≤ C4

∫ T

0
(u − û)2dt (A.3)
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Substituting (A.1) in (7) we get two equations fori, λ andî, λ̂, subtracting them we get,

(ẏ − ˙̂y) − a(y − ŷ)

=2β(t)eat(xy − x̂ŷ) − (β(t) − γ)(y − ŷ) + (uy − ûŷ).

Multiplying both sides byy − ŷ we get,

(y − ŷ)(ẏ − ˙̂y) − a(y − ŷ)2

=2β(t)eat x(y − ŷ)2 + 2β(t)eatŷ(x − x̂)(y − ŷ) − (β(t) − γ)(y − ŷ)2 + y(u − û)(y − ŷ) + û(y − ŷ)2.

Integrating both sides with respect tot from 0 toT , we get,

1
2

(y − ŷ)2(0)+ a
∫ T

0
(y − ŷ)2

= −

∫ T

0
2β(t)eat x(y − ŷ)2dt −

∫ T

0
2β(t)eat ŷ(x − x̂)(y − ŷ)dt +

∫ T

0
(β(t) − γ)(y − ŷ)2dt −

∫ T

0
y(u − û)(y − ŷ)

−

∫ T

0
û(y − ŷ)2

≤

∫ T

0
|2β(t)eat ŷ||(x − x̂)(y − ŷ)|dt + (βmax − γ)

∫ T

0
(y − ŷ)2dt +

∫ T

0
|y||(u − û)(y − ŷ)|dt.

Which leads to,

1
2

(y − ŷ)2(0)+ (a −C5eaT )
∫ T

0
(x − x̂)2 + (a −C6eaT −C7)

∫ T

0
(y − ŷ)2 ≤ C8

∫ T

0
(u − û)2dt. (A.4)

Substituting (A.2) in (A.3)+(A.4) we get,

1
2

(y − ŷ)2(T ) +
1
2

(y − ŷ)2(0)+ (a − C8eaT −C9)
∫ T

0
(x − x̂)2 + (a −C10eaT − C11)

∫ T

0
(y − ŷ)2 ≤ 0, (A.5)

which leads to the conclusion thatx = x̂ andy = ŷ for,

T ≤ inf

{

sup
a

{

1
a

loge

(

a −C9

C8

)}

, sup
a

{

1
a

loge

(

a −C11

C10

)}}

Thus the solution to state and costate equations and hence the optimal control is unique for sufficiently small deadline,
T . Notice thatCi > 0, i = 8, ..., 11; otherwise it can be estimated as 0 due to inequality in (A.5).

Appendix B. Proof for Theorem 5.2 (Uniqueness of the Solution to the SIR Model with Direct Recruitment
and Word-of-mouth Control)

For sufficiently small deadline,T , the uniqueness of the solution can be shown. If the solutionto the optimal
control problem is non-unique, consider the two solutions (r, s, λs, λr) and (r̂, ŝ, λ̂s, λ̂r). The time variablet is dropped
for notational brevity. Without loss of generality, for 0≤ t ≤ T , let, s = eat x, r = eaty, λs = e−at p, λr = e−atq and
ŝ = eat x̂, r̂ = eatŷ, λ̂s = e−at p̂, λ̂r = e−atq̂. The technique used is same as in Appendix A, hence only the final form of
the estimations are shown here.

(u1 − û1)2 ≤ A1(x − x̂)2 + A2(p − p̂)2,

(u2 − û2)2 ≤ (A3eaT + A4)(x − x̂)2 + A5eaT (y − ŷ)2 + (A6eaT + A7)(p − p̂)2.

From the state equations (11) and (12) we get,

1
2

(x − x̂)2(T ) + (a −C1eaT )
∫ T

0
(x − x̂)2dt + (−C2eaT )

∫ T

0
(y − ŷ)2dt

≤ C3

∫ T

0
(u1 − û1)2dt + (C4eaT +C5)

∫ T

0
(u2 − û2)2dt
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and,

1
2

(y − ŷ)2(T ) + (−C6)
∫ T

0
(x − x̂)2dt + (a −C7)

∫ T

0
(y − ŷ)2dt ≤ 0.

Costate equations (14) and (15) lead to,

1
2

(p − p̂)2(0)+ (−C8eaT )
∫ T

0
(x − x̂)2dt + (−C9eaT )

∫ T

0
(y − ŷ)2dt + (a −C10e

aT −C11)
∫ T

0
(p − p̂)2dt

+(−C12)
∫ T

0
(q − q̂)2dt ≤ C13

∫ T

0
(u1 − û1)

2dt + (C14e
aT +C15)

∫ T

0
(u2 − û2)2dt

and,

1
2

(q − q̂)2(0)+ (−C16e
aT )

∫ T

0
(x − x̂)2dt + (−C17e

aT )
∫ T

0
(p − p̂)2dt + (a − C18e

aT −C19)
∫ T

0
(q − q̂)2dt

≤ (C20eaT )
∫ T

0
(u2 − û2)2dt

Finally the estimates from state and costate equations are added and the estimates of (u1 − û1)2 and (u1 − û1)2 are
used in the right hand side to get an inequality of the form,

1
2

(x − x̂)2(T ) +
1
2

(y − ŷ)2(T ) +
1
2

(p − p̂)2(0)+
1
2

(q − q̂)2(0)+ (a − D1eaT − D2)
∫ T

0
(x − x̂)2dt

+ (a − D3eaT − D4)
∫ T

0
(y − ŷ)2dt + (a − D5eaT − D6)

∫ T

0
(p − p̂)2dt + (a − D7eaT − D8)

∫ T

0
(q − q̂)2dt ≤ 0.

Notice thatDi > 0, i = 1, ..., 8 otherwise it can be estimated to 0 due to above inequality. Finally, x = x̂, y = ŷ, p =
p̂, q = q̂ for,

T ≤ inf

{

sup
a

{

1
a

loge

(

a − D2

D1

)}

, sup
a

{

1
a

loge

(

a − D4

D3

)}

, sup
a

{

1
a

loge

(

a − D6

D5

)}

, sup
a

{

1
a

loge

(

a − D8

D7

)} }

.

Thus the solution is unique for sufficiently small deadline,T .
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