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Abstract

Information spreading in a population can be modeled as atesyic. Campaignerse(. election campaign man-
agers, companies marketing products or movies) are inéet@s spreading a message by a given deadline, using
limited resources. In this paper, we formulate the abovweasitn as an optimal control problem and the solution
(using Pontryagin’s Maximum Principle) prescribes anmjliresource allocation over the time of the campaign. We
consider two dterent scenarios—in the first, the campaigner can adjuseatdiontrol (over time) which allows her
to recruit individuals from the population (at some costath as spreaders for the Susceptible-Infected-Susceptibl
(SIS) epidemic model. In the second case, we allow the cagnpaio adjust theféective spreading rate by incentiviz-
ing the infected in the Susceptible-Infected-Recover#d)Biodel, in addition to the direct recruitment. We conside
time varying information spreading rate in our formulatioormodel the changing interest level of individuals in the
campaign, as the deadline is reached. In both the cases,ometlsh existence of a solution and its uniqueness for
suficiently small campaign deadlines. For the fixed spreaditey vee show theféectiveness of the optimal control
strategy against the constant control strategy, a hexidstitrol strategy and no control. We show the sensitivity of
the optimal control to the spreading rate profile when itrisetivarying.

Keywords:
Information Epidemics, Optimal Control, Pontryagin’s Maxm principle, Social Networks,
Susceptible-Infected-Recovered (SIR), Susceptibleeliefd-Susceptible (SIS).

1. Introduction

Use of social networks by political campaigners and protharketing managers is increasing day by day. It gives
them an opportunity to influence a large population conrmeeiz the online network, as well as the human network
where two individuals interacting with each other in daifg lare connected. A piece of information, awareness of
brands, products, ideas and political ideologies of caatd&lspreads through such a network much like pathogens
in the human network, and this phenomenon is called an ‘inébion epidemics”. The goal of the campaigner is to
‘infect’ as many individuals or nodes as possible with thessage by the campaign deadline. Suchfioreincurs
advertisement cost. Some campaigns aim to create a ‘buant @bme topic by engaging people in a conversation
about some topic (a scenario encountered in political cegnpafor example). Others are more focused: for example,
advertisements to maximize the sale of a product or promati@ movie. Resource limitations (monetary, manpower
or otherwise) indicate the need to formulate optimal cagnuiag strategies which can achieve these goals at minimum
cost. Such an optimization problem can be formulated as &mapcontrol problem. An optimal control problem
aims to optimize a cost functional (a function of state anati@ variables) subject to state equation constraints tha
govern system evolution.

In this paper, we aim to address the problems described abd@eassume a homogeneously mixed population.
Individuals communicate and exchange messages with otleearom their own, giving rise to information epidemics.
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Information can be communicated to the population direaylithe campaigner (direct recruitment of individuals to
spread the message). However, recruiting individuals &edtdnformation communication comes with a cost (such
as placing advertisement in the mass media). A campaigngaisa provide incentives to individuals for spreading
the message. Such an incentive is termed as a word-of-macehtive and it rewards an individual who refers a
product or a piece of information to others.

The campaigner possesses limited resources and is unatdentounicate information to the entire population.
Not only resource allocation amondfi@dirent strategies, but also the timing of direct recruitneénihdividuals and
giving out word-of-mouth incentives are crucial for maxainig the information epidemic. We model the information
spreading process as a Susceptible-Infected-Susce(Bil8¢ and Susceptible-Infected-Recovered (SIR) epidemic
process with time varying information spreading rate, avchiulate an optimal control problem which aims to mini-
mize the campaign cost over a given period of time.

SIS and SIR epidemic processes are suitable for modeligniation epidemics due to the similarities in the
ways disease spreads in a biological network and this irdtion spreads in social networks. When susceptible and
infected individuals interact, the topic of interest mayneoup with some probability, which will lead to transfer of
information from infected to susceptible individual. Ticess is very similar to the way in which a communicable
disease spreads in a population. The SIS model is suitabtaées when we are trying to engage the population in a
conversation about some topic. Such a scenario can be elecedin political campaigns. SIS allows infected nodes
to ‘recover’ back to the susceptible state, so that it cariveca diferent message about the same topic. The SIR
model is suitable for situations where nodes participat@@ssage spreading for random amounts of time and then
recover (and stop message dissemination). Such a scerayibeencountered in viral marketing of a newly launched
product or promotion of a movie, where information aboutgheduct is transmitted by enthusiastic individuals who
gradually lose interest in promoting the product.

Related Work: Although there are a lot of studies gmeventing the spread of disease and computer viruses
in human and computer networks through optimal conﬁmdﬂ[ﬁ,@, |6/ 178,19, 10], information epidemics have
attracted less attention (see for exam|p_Lé [11]). Apart fdiffierences in epidemic models, our objective is to maximize
the spread of information while the studies discussed agionéo contain the epidemic. To be more precise, the above
studies aim to remove individuals from the infected classupgh the application of control signal(s), while our aim is
the opposite. In addition, the cost functions used])ﬂ[z,rﬁﬂ ﬁ] are linear in control, while our cost is quadratic in
control. Ei] and |E)] assumed a time-varying state variablthie cost function, while our formulation considers only
the final system statel.|[1] considered a metapopulation huddmidemics which is dferent from the models used
in this paper. The SIR model is used i [3] ahd [5], but the caat(level of vaccination and treatment) are specific
to biological epidemics and unsuitable for informationdgnics. The work in|ﬂ0] aims to prevent the epidemic
and the author uses educational campaigns as controls.dlicat®nal campaigns encourage susceptibles to protect
themselves from the disease and increase the removal ratectied individuals.

[IE] and ] analyze the so called Push, Pull and Push-fgdr&hms for rumor spreading on technological and
social networks. The connection graph of the nodes is knda.authors fix the strategy for information spreading:
nodes may either ‘Push’ the information to their neighb@tgll’ the information from them or do both. The aim is to
compute bounds on the number of communication rounds redjtordistribute the message to almost all the nodes for
the given connection graph. Similarly, the authors in [1i4} g0 compute bounds on the number of communication
rounds required for distributed computation of the aveneajae of sensor readings.§. temperature) for sensors
deployed in a field. Note that finding optimal strategies fdormation spreading is not the aim E[ 13, 14].

The study in ] defines an information or a joke spreading population as a rumor. It aims to maximize
the spread of rumor in the Daley-Kendall and Maki-Thompsadets, which are dierent from the Kermack-
McKendrick SISSIR models used in this paper. We believe that certain siwenigte political campaigns are better
modeled by Kermack-McKendrick SIS model (recovery is irgtegent of interaction between individuals) than the
Daley-KendallMaki-Thompson models (when two infected meet, one or batbver). MoreoverJES] used impulse
control, while our models assume the system can be cordrolter the whole campaign period. The Authors in
[IE] and m] devise optimal advertisement and pricingtsgyges for newly launched products. But they do not con-
sider viral message propagation, where individuals in gufation interact with one another to spread a piece of
information, as is the case in this paper.

Optimal control of spreading software security patchesdamhological networks is discussedﬂ[lS]. The system
model used b)}ﬁls] is tailored to technological networks iardifferent from the one used in our study. The study uses
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a four-compartment model (instead of the two and three cotmeat models used in our study) with an additional
compartment for representing the number of nodes destioydide malware (apart from susceptibles, infected and
recovered nodes). In addition, the controls used are tltidraof disseminators and the dissemination rate of the
security patches, which areffirent from the controls used in this paper.

Cost minimization for marketing campaigns is ex Iore(m][ﬂ'he cost functional used there is linear in control,
while our model assumes a quadratic cost. A|th0d&1 [11] @¥8sand SIR models like we do, but the objective
functional is diterent from ours. The objective functionals in our modelsveeeghted sums of the fraction of nodes
which have received the message by the campaign deadlinéhantbsts of applying controls. In contrast, the
objective functional in@l] for the SIS case is to minimibe ttampaign cost (subject to a constraint on the fraction
of infected nodes at the deadline) and for the SIR case, tjeetle is to maximize the fraction of nodes who have
received the message (subject to a budget constraint famgithe campaign). Moreover, we discuss the uniqueness
of the solutions to our models; this is not discussed@ [hd @]. Furthermore, we study th&ect of word-of-
mouth control on epidemic spreading, which is not exploretthé above studies.

A major difference between an information epidemic and a biological epidemic is that in the case of a biological
epidemic, the infection rate and recovery rate are consteatighout the season (assuming that pathogens do not
mutate within a season). On the other hand, the interesk ¢téwbe population during the campaign period (for
elections or promotions of upcoming movies) changes as wepaph the deadline (poll date or movie release date).
We have modeled this by making the effective information spreading rate a time varying quantity. Previous studies
have ignored this characteristic of information epidemics

Thefollowing are the primary contributions of this paper:

(i) Formulation of optimal control problems for maximizimgformation spread in two éfierent models. In the
first, information spreads through an SIS process and in ¢xg through an SIR process. The control signal
in the SIS model is the intensity with which direct recruitthef spreaders from the population can be done.
The SIR model has an additional control signal—the wordarofath control, which controls the spreading rate
of the information epidemic. Our formulation involves a dtatic cost function and a time dependefiieetive
information spreading rate.

(i) We show the existence of a solution in both the problems.

(iii) We establish uniqueness of the solution in both theesasrhen the campaign deadline isfmiently small.

(iv) We compare the overall costincurred by the optimal oairstrategy with the constant control strategy, a heuwristi
control strategy and no control, when the information sgiregrate is constant throughout the campaign period.

(v) When the #ective spreading rate varies over the campaign durationdewmeonstrate the sensitivity of the
optimal control with respect to fierent éfective spreading rate profiles.

The rest of the paper is organized as follows: Sectidns 2 hfwdn3ulate the optimal control problem for SIS
and SIR information epidemics, respectively. Sectidnsdifanalyze the respective problems. Results are shown in
Sectior 6 and conclusions are drawn in Sedfion 7.

2. System Model and Problem Formulation: SIS Epidemic

We consider a system &f nodes (or individuals) which is fixed throughout the campdime 0<t < T. In the
case of SIS epidemics, individuals are divided into two cartpents—susceptible (those who are yet to receive a
tagged message) and infected (those who have alreadyeddbaymessage). A susceptible node becomes infected at
a certain rate if it comes in contact with an infected indiatl The idea is to create a ‘buzz’ in the population about
some topic €.g. a political campaign). An infected node can ‘recover’ backite susceptible state which allows
it to receive a dierent message about the same topic. This makes SIS a suitalild for such scenarios. By the
campaign deadlin&, the number of infected individuals (who are engaged in ssoneof discussion about the topic)
is the quantity of interest.

Let S(t), I(t) denote the number of susceptible and infected nodes atttirhet s(t) = S(t)/N > 0 andi(t) =
[(t)/N > 0, therefores(t) + i(t) = 1. The information spreading rate at tihies denoted by’ (t), which is assumed
to be a bounded quantity. Practical considerations willdegsuch a restriction g8i(t). In a small intervaldt at
timet, a susceptible node that is in contact with a single infentetk, changes its state to “infected” with probability
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B (t)dt. We assume that each node in the population is in contactamthverage ok, others, chosen randomly,
at any time instant. Thus, any susceptible node will have an averagie ) infected neighbors and will acquire
information with probability 1- (1 - g’ (t)dt)*'® ~ g’ (t)kyi(t)dt. Since a fractiors(t) of population is susceptible, the
rate of increase of infected nodes in the population duegoeqitible-infected contact #(t)kmi(t)s(t). We define the
effective spreading rate at tinmieasg(t) = g’ (t)km. An infected node “falls back” to being susceptible with tera

In the limit of largeN, the mean field equations for the evolutionsf) andi(t) in the (uncontrolled) SIS process is
given by E@ equations adapted for time vary#(9],

) = -AOSOIO) +¥i(),
i = BOSWIE) - i)

The objective functional is chosen to Be= —i(T) + fOT bu?(t)dt. The rationale behind such a choice is as follows.
Applications like poll campaigns only care about the finahier of infected individuals on the polling dagT), and
not on the evolution history(t),0 < t < T. This is captured in the first term of the objective functibride cost of
running the campaign accrues over time and this is repreddrytthe integral. The choice of quadratic cost function
is consistent with the literaturgl [B 9.

Let u—a bounded Lebesgue integrable function—denote the tewent control applied by the campaigner, with
u(t) representing its value at timeWe defineU as follows:

Definition 1.

ueU £ ({(u:uisLebesgue integrabl® < u(t) < Umax).
Thus,umax uniformly bounds all functions itd. The control signali denotes the rate at which nodes are directly
recruited from the population to act as spreaders. Préactamastraints on executing the control will impose the
property of boundedness on the control signal. Thus thengbtontrol problem can be formulated as:

.
TE'L? J = —i(T)+f0 bu?(t)dt 1)
subjectto:s{t) = —B(t)sb)i(t) + vi(t) — u(t)s(t)
i) = BOSOI) - ¥i) +u®)st) (2)
it) > 0, s(t)=0
i) + st) =1
i(0) = g, S(0)=1-ip.

Here,ip denotes the initial fraction of infected nodes who act agiseéthe epidemic.

3. System Model and Problem Formulation: SIR Epidemics

An SIR epidemic model has an additional compartment—rea®al+e-in addition to the susceptible and infected
classes discussed before. It is suitable in modeling #tusiwhere nodes participate in message spreading for a
random amount of time and then “recover” (and stop messageidiination). Such a scenario may be encountered in
viral marketing of a newly launched product or promotion ehavie, where enthusiastic individuals gradually lose
interest in promoting the product.

Let R(t) andr(t) = R(t)/N > 0 denote the number and fraction of recovered nodes at timéhats(t) +i(t) +r(t) =
1. The dfective information spreading rate at tihes 5(t). Simultaneously, infected nodes switch to “recovered” at
a ratey, independent of others. The mean field equations goverhin&IR process in the limit of largé are @
adapted for variablg(t)]:

s = -AOLIO
ity = BOsIit) —yi(t)
) = yi(D).
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In this case we assume that the campaigner can allocatedmirees in two ways. At timg she can directly
recruit individuals from the population with ratg(t), to act as spreaders (via advertisements in mass media). In
addition, she can incentivize infected individuals to mékgher recruitmentsgg. monetary benefits, discounts or
coupons to current customers who refer their friends to leuyisegproducts from the company). Thisfectively
increases the spreading rate of the message at fiom 5(t) to (B(t) + uz(t)) whereu,(t) denotes the “word-of-mouth”
control signal which the campaigner can adjust at tinféhe controlsy; € U; andu, € U,, where the sets are defined
as follows:

Definition 2.
U, {u: uis Lebesgue integrahl® < u(t) < Uimax},

A
U, £ ({u:uisLebesgue integrabl® < u(t) < Umax).

The cost of applying the control is quadratic over the timgzom of the campaign, & t < T, and the reward is
the total fraction of population which received the messatggome point in time, i.ei(T) + r(T) = 1 - &(T). The
optimal control problem can then be stated as:

.
min J -1+ 9(T) + f (bU3(t) + cus(t))dt (3)
u1€U,upelUs, 0

subjecttos(t) = —(B(t) + ux(t))s()i(t) - us(t)s(t)
i® = B+ u(t)sOi) + uOsb) - i)

FH) = %i®

i) = 0, s(t)y=0, rt)=0

ity + st +r@) =1

i(0) = g, S(0)=1-1ip, r(0)=0.

4. Analysis of the Controlled SIS Epidemic

Substitutings(t) = 1 - i(t), problem[1) can be rewritten as,

min J = -i(T)+ fo ' bu?(t)dt (4)

subjecttoi(t) = —B)i2(t) + (B(t) —y — u(t))i(t) + u(t) (5)
0 < it)<1

i0) = o (6)

4.1. Existence of a Solution

Theorem 4.1. There exist an optimal control signal u € U and a corresponding solution i*(t) to the initial value
problem (8) and (@) such that u € argmin{J(u)} in problem ().

ueU
Proof. The theorem can be proved by application of the Cesari Tm@, pg 68]. Let the right hand side (RHS) of
(8) be denoted by (u(t), i(t)). The following requirements of the Theorem are nidti(t), i(t)) satisfies the required
bound| f (u(t), i(t))] < Co(L+]i(t)|+[u(t)]) (with Co = sugB(t) +y +u(t)|; note thap(t) is bounded and & u(t) < Umax)-
The setU and the set of solutions to initial value problem (5) aid (@) mon empty (due to Lipschitz continuity of
f(u(t),i(t)) 21, pg. 185]). The control signal takes values in a closedQ Uy]. The cost due to the terminal state
in the cost functional{4) takes values in a compact intef@al]. The functionf (u(t),i(t)) is linear inu(t). In the
cost functional[{®), the integranby?(t) > C1|u(t)|“ — Cs. Itis required thaC; > 0, C, > 1 which is satisfied if we
chooseC; =b, C, =15, C3=0. O



4.2. Solution to the SISOptimal Control Problem

We use Pontryagin’s Maximum principE[ZZ] to solve the ol control problen{{4). Through this technique, we
get a system of ordinaryfierential equations (ODES) in terms of state and adjoinabées (with initial and boundary
conditions, respectively) which are satisfied at the optimThe system of ODEs can be solved numerically using
boundary value ODE solvers. Left) denote the adjoint variable. At timiglet u*(t) denote the optimum control and,
i*(t) andA*(t) the state and adjoint variables evaluated at the optimum.

Hamiltonian: The objective function in[{4) has been multiplied by to convert the problem to a maximization
problem.

H(i(1), u(t), 400, 1) = ~bu?(t) + 2] - BOI®) + BE) - ¥ - u®)i() + u®)|.

Adjoint equation: 1*(t) is —=%=H(i(t), u(t), A(t), t) evaluated at the optimum.

6|(t)

(1)

= H(i(D), u(®), A(). 1)

" ai (t)
28I O (1) — (BO) —y —u" ()" (®). (1)

Hamiltonian Maximizing Condition: At the interior points

i(t)=i* (t) u(t) u*(t),
AM)=2"(t)

——=H(i(t), u(t), A(t), t)
i()=i* (.U =u" (), 4O=1" ()

= =2bu*(t) - " (®)i*(t) + *(t) = O

ou (t)

Hence the Hamiltonian maximizing condition leads to

0 if £OA-0) _ g
u(t) = { £0AT0) i g <2‘Q(t)(1’i*(‘))’< = U*(t) = min{max AOA-1"©) 0%, u 8
O =1"% |A*_NT_UW, M= 2b ;00 Unaxp. (8)
U if LOLEO) Sy
Transversality condition: From the transversality condition we get
A(T)=1 9

Substituting[(8) in[(b) and{7)and using the initial conditio6) and boundary condit{B}),(we get a system of
ODEs which can be solved using standard boundary valuegroBIDE solving techniques. We have implemented
the shooting methoHiZS] in MATLAB to solve the boundary vajroblem. Equation§}5) and (7) are solved using
MATLAB's initial value problem solverode45() with Equation [[¥) initialized arbitrarily. Naturally, thsolution
will not satisfy the required boundary conditidd (9); hertlee estimation of the initial condition of Equatidd (7) is
improved using the optimization routif@minunc () until the boundary conditiori19) is met with desired accyrac
Another option is to use forward-backward sweep methodagmet! in [1]3].

4.3. Uniqueness of the Solution to the SIS Optimal Control Problem

Theorem 4.2. For a sufficiently small campaign deadline, T, the state and adjoint trajectories at the optimum and
the optimal control to problem (4) are unique.

Proof. The proof technique is same aslin/[24], details afe’in Apperdi O



5. Analysis of the Controlled SIR Epidemic

After removing the redundant information, problem (3) canréwritten in terms of two state variables and two
controls as follows (setd; andU; are according to Definitionl 2):

.
ule[}],iurleuf = —1+9T)+ fo(bui(t)mug(t))dt (10)
subjecttors(t) = —(B(t) + Uz(t))s(t)(1 - S(t) — r(t)) — ur(t)s(t) (11)
rt) = y@A-st)-r() (12)

0 < st)r) <1
s(0) = 1-ig, r(0)=0. (13)

5.1. Existence of a Solution

Theorem 5.1. There exist an optimal control signalsu; € U, U, € U, and corresponding solutions s'(t), r(t) to the
initial value problem (1), (I2) and (I3) such that (u, uy)™ € argmin {J(uy, up)} in problem (I0).

ueUq,ueU,

Proof. The theorem can be proved by application of the Cesari Tm@, pg 68]. The details are omitted. [

5.2. Solution to the SR Optimal Control Problem with Direct and Word-of-mouth Control

Let A5(t) and A (t) be the adjoint variables. At time let u;(t), ui(t) denote the optimum controls angl(t), r(t
andag(t), 4;(t) the state and adjoint variables evaluated at the optimwingdJPontryagin’s Maximum Principle [22]
we get the following equations.

Hamiltonian: The objective function in[{10) has been multiplied b§ to convert the problem to maximization
problem.

H(s(t), r(t), ug(t), ua(t), A(t), A (1), t)
= — bUE(t) — cuj(t) + As(0)] — (B(L) + L2(®)S() + (BH) + U()S(V) + (B + Ua(t) SO () - La (S|
+ 2Oy - 7)) -7 ®)].

Adjoint Equations:

M) = O — 280D ) - BOAMD®) + 2OUL) + 2BU(E) - 22OUxB)S' (D)
_ —A(OUOr () + ¥4 (1) (14)
A1) = =BOAMS (1) + Oux(B)S (1) + 74 () (15)

Hamiltonian Maximizing Condition: Derivative of the Hamiltonian evaluates to zero at intepoints, hence the
Hamiltonian maximizing condition leads to

u3(t) = min {max{ /l’;(t)s*(t)’o} , Ulmax}- (16)

-2b

and,

Us(t) = min {max{

Transversality condition: A5(T) = —1 anda;(T) = 0.

Substituting the values af; (t) anduj(t) from (I8) and[(1l7) to(11)[{12). (14) arld{15) and solving slystem of
ODEs numerically using the technique described in Se€fidnwle can compute the state and adjoint variables and
hence the optimal control.

(17)

A0S OE-25 ) -r'©) 0} . }
—2c e



Section 6
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Constant R, Varying R,
(Section 6.1) (Section 6.2)
T N
Ro>1 (Fig. 2) Ro<1 (Fig. 3) B,(t) (Fig.5)  B,(t) (Fig.6)  Bs(t) (Fig. 7)

AAA

SIS SIR SIS SIR

Figure 1: Organization of plots related to the shapes of tinérol signals and state evolutions in Sectiion$ 6.1add 6.2.
In addition, plots in Section @.3 show variation of the castdtionald with respect to various parameters in the SIS
and SIR models.

5.3. Uniqueness of the Solution to the SIR Optimal Control Problem with Direct Recruitment and Word-of-mouth
Control

Theorem 5.2. For a sufficiently small campaign deadline, T, the state and adjoint trajectories at the optimum and
the solution to the optimal control problem (I0) are unique.

Proof. The proof technique is same aslinl[24], details afe’in Appemji O

6. Results

We divide this section into three parts. Secfiod 6.1 stutliescontrol signal and corresponding state evolution
for constant spreading rate and Secfiod 6.2 for variableagfing rate. The tree in Fig] 1 shows how the results are
organized in these two subsections. In Sedfich 6.3 we shelsole played by various parametessy, T, b, c) on the
cost functional for both SIS and SIR models.

SIS, R =10 and R =20 SIRR =10
K 1 2 3 4 5.06 4 1 2 3 4 5.06
“““ i(t) with control R =10 ) : N ws(t) with control |
~=--i(t) no control R =10 = 005 - i(t) with control 005
0.8 i(t) with control R =20 /~* e 0.8 s(t) no control 10-
c . IR 320 o " s == =1{5hQo control
_% K-i@noconol R=20/7 (o 0.04 = 0.04
306 N S 3
s —e—contrgl signal R =10 JghtY aX|s) ° 53 °
s ) _ 0.03 = 0.03 €
5} —a—control &jgnal R (nghtY ED(IS) s} 1] S
504 ’ ° c °
S0 S
‘g 0.02 g 0.02
0 s e 0.01 o-2f g T 001
i e :‘:: AAAAAAAAAAA e e oo .
% 1 2 3 4 g 0 1 2 3 4 g
time time
(a) SIS epidemicp = 1 (Rp = 10) andB = 2 (Ry = 20) (b) SIR epidemicB = 1 or Ry = 10 Parameter valuey. =
Parameter values: = 0.1, T = 5,b = 15 umax = 0.06,ip = 0.1, T =5b=15¢ = 1, Uimax = 0.06, Upmax = 0.3, =
0.01. 0.99,ip = 0.01.

Figure 2: Optimal control, state evolutions with controblastate evolutions without control for the SIS epidemic
(model in Sectionl?) and the SIR epidemic (model in SedflorNBje that state variables are plotted with respect to
theleft Y-axis and control signals are plotted with respect to the right Y-axis.

6.1. Constant Effective Spreading Rate Over Time

First we consider the case when thEeetive spreading rate is constant over time. TI8@,= 3, YVt € [0, T]. The
basic reproductive numbeRry, for an epidemic is defined as the expected number of secpimdactions caused by
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SIS RO:0.3
0 1 2 3 4 5

—e—control signal R0=0.3 (right Y-axis)

SIR R0=0A3
0 1 2 3 4

——i(t) with control R0=0.3
- - -i(t) no control RO:O.S

o
o

““““ s(t) with control | o,
-="i(t) with control
—s(t) no control
- - -i(t) no control

fraction of population
o
o
(=)
o
H

S
o
w
control
fraction of population

—e—direct control (right Y-axis)
0.01 .21 —=— wom control (right Y-axis)

o
N

0.005

0 1 ] 3 4 5 0 1 2 4 5
time time
(a) SIS epidemicg = .03 or Ry = 0.3 Parameter values: (b) SIR epidemicB = .03 orRy = 0.3 Parameter values:
y=0.1T =5b= 15 umx = 0.06,ip = 0.01 y = 01T = 5b = 15c¢ = 1, Uimax = 0.06,Uzpax =

0.3,5 =0.99,ipg = .01

Figure 3: Optimal control, state evolution with control astdte evolution without control for the SIS epidemic (model
in Sectior2) and the SIR epidemic (model in SecfibnN\Bjte that state variables are plotted with respect to the left
Y-axis and control signals are plotted with respect to the right Y-axis.

an infected node in the early stages of epidemic outbreakthequncontrolled) SIS and SIR epidemic considered in
this paperRy = B/7, the ratio of é&ective spreading rate to the recovery raté [19]. Give a cagnpieadlinel, basic
reproductive number, captures how viral the information epidemic is. Qualitalyy increasing or decreasing,
while holding the other constant, is expected to have samatréf Ry > 1 for the uncontrolled system, the epidemic,
on the average will become endemic andRgr< 1, the epidemic dies out with probability19]. We discussse
cases separately:

(i) with reference to Figs[_2a (for SIS) ahd| 2b (for SIR), wBs > 1, direct control signal is strong when the
targeted population (susceptibles) are in abundance @atiiag of the campaign period) and vice versa. Early
infection increases the extent of information spreadinthasystem has a tendency to sustain the population in
the infected state (because infection is faster than reghwélso, the word-of-mouth control in Fi, 2b switches
on from zero when populations of both susceptible and iefkatdividuals reach significant levels. Providing
word-of-mouth incentive isféective only when there are substantial number of infectettaas well as enough
number of susceptibles to convince.

(i) WhenRy < 1 for the uncontrolled system, the uncontrolled informagpidemic dies out. The control and state
evolutions for this case are shown in Fifis] 3a (for SIS)[an@@bSIR). We find the direct control signal to be
less variable over time. In fact, in the SIS case, it increasgi¢h time. Fast recovery (compared to infection)
of the nodes makes a strong control at the beginning stagés ejpidemic inffective. Also, notice that in the
SIR case (Fig[_3b), the optimal strategy advocates not wsard-of-mouth control throughout the campaign
duration.

(iii) We make an additional observation with reference te tontrol signals and the state evolution curves plotted
for Ry = 10 andRy = 20 in Fig. [2&4. Given a campaign deadliieasR, = 3/y increases, (a) the control
effort (measured by area under the control curve) decrease®padntrol signal has limitedfgect on system
evolution. Thus, campaigns which are less viral will bemabite from the application of optimal control than the
campaigns which are more viral. Such an observation hasdatjmins on marketing strategies for new products
launched by a reputed company compared to a newbie in thesimarlpublicity of a movie by a famous director
compared to a newcomer. Similar observations were maderxtdnd word-of-mouth controls in case of the
SIR model, but the curves correspondindp= 20 are omitted for brevity.

6.2. Variable Effective Spreading Rate Over Time
To model the varying interest of a population in spreadimgiiormation during the campaign period, we consider
three diferent functiong(t), B2(t) andBs(t). We model the cases of increasing, decreasing and fluctyiatierests

9



variable Ro

~e B0
R ---B,00
- B

1.5¢

infection rate B(t)
-

0.5r

Figure 4: Time varying ective spreading ratg; (t), 82(t) andgs(t) defined in equation§ (18], (119) arid20) respec-
tively. Parameter valuegy, = .0L,8y =2, T =51 =2,c1 =3;a2,=2,c0 = 2,cn=1,c5 = L andt € [0, 5].
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é 03l 0.02 § 0.4} - - -i(t) no control 0.02
8 0,015 3 —e—direct control (right Y-axis)
= 0.2r ' - i —axi
02l —=— wom control (right Y-axis) lo.o1
0.1 0.01
R el " i X FE T gl sssdsTent 0
% 1 2 3 4 20005 0 1 2 3 4 5
time time
(a) SIS epidemic. Parameter values:= 0.1,T = 5,b = (b) SIR epidemic. Parameter valueg:= 0.1, T = 5,b =
15, Umax = 0.06,ip = 0.01. 15,¢ = 1, Ugmax = 0.06, Upmax = 0.3, 50 = 0.99,ip = 0.01.

Figure 5: Optimal control, state evolution with control astdte evolution without control for the SIS and SIR epi-
demic, for time-varying spreading ragg(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to the right Y-axis.

as we approach the deadline through these functions. Tihidas are increasing sigmoid, decreasing sigmoid and
cosine (plotted in Fig.J4) and are defined as:

Bl = pn+ (PR, (19)
1

Bo(t) = (Bm—PBm) (1 - m) (19)

Ba() = Cm+Cacos(t/T), (20)

where the values of the parameters used gre= .0LBu =2, T =5,a1=2,c1 =3, a2 =2, =2,Cch=1,¢ca=1
andt € [0,5]. Wherevergi(t), i = 1,2,3 are used, the recovery rate is setyte= 0.1. The increasingféective
spreading ratg3;(t) may represent the increasing interest of people to talkiedlection candidates as we approach
the polling date. The decreasinfextive spreading rat@,(t) may represent gradual loss of interest of people in
talking about some newly launched produeg( a computer game) after its release. Fluctuatifigative spreading
rates(t) may represent changes in demand of a prgdantice with time €.9., movie tickets for weekend shows
may have higher demand than tickets for weekday shows). makpg on the application, other profiles §6(t) are
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(a) SIS epidemic. Parameter valueg: = 0.1, T = 5b = (b) SIR epidemic. Parameter valugs= 0.1, T =5b=15c=
15, Umax = 0.06,ip = 0.01. 1, Uimax = 0.06, ugmax = 0.3, 59 = 0.99,ip = 0.01.

Figure 6: Optimal control, state evolution with control astdte evolution without control for the SIS and SIR epi-
demics for time-varying spreading ra@g(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to the right Y-axis.

SIS variable Ry Bs(t) SIR variable R, B,(t)
2 3 2 3

08 1 4 %.06 2 1 80,06
—i{® withcontrol p | A7 ns(t) with control
0.7F b ---iynocontrol/ | |\
0.05 J— 0.05
: : i 0.8 . s(t) no contro
 06- —e—control signal (right Y-axis) - “4,,= = =i(t) no control
g 2 T, 0.04
el .
< o5t = o6l 5
g 0.4 2 —e—direct control (right Y-axis)“. 0.03 2
S ks { —=— wom control (right Y-axis) 5
5 5 o0.4f )
8 0.3r o 2
=02 =
0.2r
0.1 .
0 OMzadsanas : 0
0 0 1 2 3 4 5
time time
(a) SIS epidemic. Parameter valueg: = 0.1, T = 5b = (b) SIR epidemic. Parameter valugs= 0.1, T =5b=15c =
15, Upax = 0.06,ip = 0.01. 1, Ugmax = 0.06, Ugmax = 0.3, 50 = 0.99,ip = 0.01.

Figure 7: Optimal control, state evolution with control astdte evolution without control for the SIS and SIR epi-
demics for time-varying spreading ragg(t). Note that state variables are plotted with respect to the left Y-axis and
control signals are plotted with respect to theright Y-axis.

possible.

The controls and state evolutions for the SIS and SIR modsdsisised in this paper for the time-varyirftgetive
spreading rates defined in Equatidns (18)] (19) (20)lateg in Figs[bHE7. The shape of the optimal control may
be diterent from the case when thfextive spreading rajgis a constant over time. This shows the need to determine
the interest level of the population (and hep¢g) before deciding on the optimal control strategy. The fegualso
show the €ectiveness of the optimal control strategy over the casenwmbecontrol is used, in increasing the number
of infected nodes in the SIS model, and number of infectedrandvered nodes in the SIR model. Thus, optimal
campaigning is beneficial in real world scenarios where ffextive information spreading rate may be variable.

The recovery rate may also be a time dependent quantity invardd applications. The framework developed in
this paper can be easily modified to include both time depaig{e andy(t).
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Figure 8: Shapes of flerent control signals and the corresponding state evolsifior the SIS model. Parameter
values; =1, y =01, (Ry=10), T =5, b =15, umx = 0.06, ip = 0.1. Note: both of the Figures contribute to
the objective function which is optimized, see Figsl.[Qalb2@bjective function values for fierent strategies with
varying parameter values.
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(a) SIS epidemic. Parameter values:= 0.1,T = 5,b = (b) SIR epidemic. Parameter values:= 0.1, T = 5,b =
15,ip = 0.01, umax = 0.06. 15,¢ = 1, Ugmax = 0.06, Ugmax = 0.3, 5 = 0.99,ip = 0.01.

Figure 9: Objective functional vs spreading ratg for different control strategies.

6.3. Comparison Between Optimal, Constant and a Heuristic Control

The dfective spreading rate is again constant in this secfi@ih,= 8, ¥t € [0, T]. The aim of this section is
to quantify the &ectiveness of the optimal control strategy over simple antditive or “common sense” control
strategies which do not involve any optimization.

We first introduce a simple heuristic control strategy whietuires no knowledge of optimal control theory. Let
Se(t), inc(t) andrc(t) be the fractions of susceptible, infected and recoverdidioiuals at timet whenno control is
applied. Since the direct control targets susceptibldspth the models, itsfiectiveness depends on the proportion of
the susceptible population at the time it is applied. A reabde heuristic direct control signal could @8max - Snc(t))
whereuymax Is the maximum allowed direct control in the given model. djusts the strength of the direct control
signal according to the fraction of susceptibles in the natrad scenario at any time instant. Word-of-mouth control
requires infected individuals to convince susceptibles)de, it is &ective when the numbers of both susceptibles
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Figure 10: Objective functional vs recovery rate for different control strategies.
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Figure 11: Objective functional vs campaign deadlin€ for different control strategies.

and infected individuals are significant. A heuristic wardmouth control signal for the model in Sectign 3 could be
(Uzmax - Sne(t) - inc(t)), whereuzmax is the maximum allowed word-of-mouth control. We name thesarols ‘follow
She(t)’ for the SIS model and ‘follows,c(t), sie(t)inc(t)’ for the SIR model. Please note that these controls aredddci
and fixed at the beginning of the campaign period (open laapegies) and are obtained by referring to the quantities
for the uncontrolled system. Another simple control sggt@pplies constant control throughout the campaign period
the control signal is set to half of the maximum allowed slgi@ngth. Thus constant control has valéeﬁax in the

SIS model and Uy (direct), 2 uomax (word-of-mouth) in the SIR model.

Fig.[8 shows the shapes offi@irent control signals and the corresponding state evolsifiar the SIS model. The
cost functional involves weighted sums of the total congffdrt (area under the control curve) and the final fraction
of infected individualsi(T). Notice thati(T) is similar for the three strategies; however, the totaltrefforts are
considerably dierent. For a better idea of the performance of the optimalrobcompared to the other strategies,
we plot the cost functional with respect to one of the parametgrs, T, b or ¢ for various strategies for both SIS and
SIR models in Figd.19=12.

We make following observations from the plots in this sattio
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Figure 12: Cost functional vs weight parameter$,c)

(i) From Figs[9EIR: for some parameter vectors, the costtiomal J for the constant control strategy and ‘follow
She(t)’” (for SIS model) or ‘follow Sc(t), Swe(t)ine(t)’ (for SIR model) strategy is more thah for no control.
However,J for the optimal control strategy is always smaller tligfor no control. This shows the advantage of
optimal control over heuristic controls and illustrates thct that (for some parameter vectors), an ill-planned
campaign may prove more costly than no campaign at all.

(i) With reference to Figd.]9 ad L1 (for both the modelg)nirthe diference between the curves corresponding to
no control and optimal control cases (for large value8 ahdT respectively), one can conclude the following:
If the uncontrolled system is capable of achieving a highealf (1- S(t)) (either due to higls or highT, given
fixed values of other parameters), application of an optitoatrol strategy does not improve (decrease) costs
too much compared to no control. Note that the cost of apglgontrol is zero for ‘no control’ case antin
that case is nothing but(1 — 5(T)). In other cases, application of the optimal control dases the value af
compared to the no control strategy.

(iii) From Figs.[9 andT0: A&, = B8/y increases) corresponding to the optimal control strategy decreasesthier
words, more viral campaigns are less costly to run than lieascampaigns.

(iv) From Fig.[I2:J increases as one of the weight paramelens ¢ increases (other parameters held fixed). We
incur more costs as application of control becomes dearer.

(v) From Fig.[I2: The relative increaseJdrwith respect to increase imor c for the optimal control strategy is less
than that for the ‘followsc(t)’ or the ‘follow s(t), She(t)ine(t)’ Strategy and constant control strategy. Thus, the
optimal control strategy is less sensitive to changdsanc than other control strategies.

7. Conclusion

In this paper, we have studied optimal control strategiesufioning campaigns on a homogeneously mixed pop-
ulation when the information spreading rate is a functiotimmé. The change in the spreading rate over time reflects
the change in the interest level of the population in theesthyf the campaign. The first model assumes that infor-
mation spreads through an SIS process and the campaigndireatly recruit members of the population, at some
cost, to act as spreaders. The second model allows the ogmepad incentivize infected individuals (leading to in-
creased fective spreading rate), in addition to the direct recruiitie the SIR epidemic process. We have shown the
existence of solutions for the two models, and uniquenediseo$olutions for stliciently small campaign deadline.
For both the cases, for constant spreading rate, we haveeshibw éectiveness of the optimal control strategy over
the constant control strategy, a heuristic control stsaagd no control. We have shown the sensitivity of control
to the time varying spreading rate profile. Our study can i®useful insights to campaign managers working to
disseminate a piece of information in the most céfgaive manner. Estimating parameter values such as infama
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spreading rate and recovery rate are nontrivial for realdvcampaigns, and studying sensitivity of control stragegi
to estimation errors forms an interesting future reseai@ttion.
Appendix A. Proof for Theorem[4.2 (Uniqueness of the Solutio to the SIS Model)

For suficiently small deadlin€eT, the uniqueness of the solution to the SIS model can be edtallusing tech-
niques similar tol[24]. If the solution to the optimal coritppoblem is non-unique, consider two solutionsij and
(i, 2). The time variable is dropped for notational brevity. Without loss of gendyafior 0 <t < T, let,

i=elx, 1=¢e?y, i=¢"% and1=e?y, (A.1)
wherea is a positive real number. Note thaty, X, § are functions of, 0 < x, X< 1and 0< y, ¥ < Ypax, fOr0<t < T.

From [8),
~at _ aat
u = min{max{—e y(]z-beaX),O},Umax}7

—ato (] _ At
1] min{max{%,o},um}.

Thus we can estimate ¢ () as,
(u-0)y

(S5 mov-)

2b 4b?

(e - Ry

cat g\2
S((e = X) (y—9)2+%(X—§<)2+ o |(X—)?)(y—§/)|)

<Ai(X— R)% + Ag(y - 9)? (A-2)

—at _ o\2 —at _ ¢
(S5 592+ - 92 - 25 k- 000 9)

We have useddy — %) = (xy — &y + Xy — &) andn? + n? > 2jmn|.

Using [Ad) in [3)
% + axe® = B + (B(t) — y — ) x + L.

Writing similar equation fo% and subtracting from above we get,
& (x- %)+ ae®(x - )
= — BH)ER (P — ) + (B(t) — y)€(x - R) — €™ (ux — OR) + (u— Q).
Multiplying both sides by X — X)

e(x - R)(X - X) + ae’(x — K)?
= — BO)ER (X + K)(x — K)? + L(B(t) — y)(x — K)? — u(x — )% + (1 - LK) (u— O)(x - X)
<e®TC1(x - %)% + Col(u - O)(x - )|
<eTCy(x — %)% + Ca(u— 0)2.

C, = max(1 - €X|). Integrating both sides with respectttrtom 0 to T, we get,
1 T T
E(x— R)(T) + (a— Cze™") f (x—R)%dt < C, f (u—0)%dt (A.3)
0 0
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Substituting[[A.1) in[(¥) we get two equations for andi, A, subtracting them we get,
y-9-ay-9)
=281 (xy — %9) — (B) = V)Y~ 9) + (uy - 0F).
Multiplying both sides by — § we get,
Y-NE-$-aly-97°
=280 X(y - ) + 28" I(x = Ry = §) = (BE) = Y)Y - 9)* + y(u - O)(y - §) + Uy - 9)*.
Integrating both sides with respecttttrom 0 to T, we get,
1 N2 0 T YA
30-9°0+a [ -9
T T T T
—- [ 2p0exy- g7t~ [ 2s0e50- D -9+ [ @0 -97d- [ yu-oy-3)
0 0 0 0

)
- [ ay-sr
T T T
Loy _ N O _ Y eV
< [ BOL0- Ry - e+ Brc=) [ -Fets [ - 0y - it
Which leads to,
T T T
30570+ (a-Cse™) [ (x- 2+ a-Cot ~Co) [ (=57 <o [ (-0yat (A%

Substituting[(A.2) in[(A.B) (A.4) we get,

1 1 T T

S5+ 50 -9°0) + (- Cae™ ~Co) [ (x-%+(@-Cue™ ~Cu) [ y-97 <0 (A9
which leads to the conclusion that X andy = ¥ for,

- 1 a-Cg 1 a—-Ci
Tsmf{sgp{aloge( Ca )},Sgp{aloge( C1o )}}

Thus the solution to state and costate equations and hemogtimal control is unique for sliciently small deadline,
T. Notice thatC; > 0, i = 8, ..., 11; otherwise it can be estimated as 0 due to inequalify TH)(A.

Appendix B. Proof for Theorem[5.2 (Uniqueness of the Solutio to the SIR Model with Direct Recruitment
and Word-of-mouth Control)

For suficiently small deadlineT, the uniqueness of the solution can be shown. If the soldutidihe optimal
control problem is non-unique, consider the two solutions s, ;) and {, §, As, flr). The time variable is dropped
for notational brevity. Without loss of generality, for9t < T, let, s = eé¥x,r = ey, 1s = €®p, 1, = e¥gand
§= % F = €19, 1s = e P, 4, = e®§. The technique used is same af n Append]x A, hence only theféirm of
the estimations are shown here.

(up — 01)% < As(x = %)% + Ao(p - P)%
(U2 - 02)% < (A€ + Ag)(x— R)” + Ase™ (y — 9)% + (Ae€™ + A7)(p— P)°.
From the state equatioris {11) ahdl(12) we get,
T T
%(x - R2(T) + (a— C.€™) fo (x— )%dt + (—CzeaT)j; (y - 9)%dt
T T
< C3j(; (Ul - Gl)zdt + (C4eaT + C5)](; (Uz - Gg)zdt
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and,
T T
F0-9°M+(-Co) [ (- fdt+ -y [ y-gra<o
Costate equationg{lL4) aid{15) lead to,
T T T
3P PO+ (-Coe™) [ (- + (-Coe™) [y 5+ (@~ Cuue™ - Cu) [ (p- P
T T T
+(—Clz)j(; (q—Q)ZdtSCBL (Ul—ﬁl)zdt+(C14eaT+C15)fo‘ (up — Cp)2dlt
and,
T T T
3= 70+ (Cuse™) [ (= R+ (™) [ (- Pt + (@~ Cuse” ~Cu) [ (a- ek
T
< ") [ (-0t

Finally the estimates from state and costate equationsialedaand the estimates of (— 0;)? and (1, — 01)? are
used in the right hand side to get an inequality of the form,

:
3= T+ 50 9(T) + 5(- F(0)+ 50~ A(0)+ (- D& = Do) [ (x—R%ch
+(a- D3 —Dy) fO‘T(y— §)dt + (a— Ds€”™ — D) j(;T(p— p)2dt + (a— D;€"T — Dg) LT(q -g)%dt<o.

Notice thatD; > 0O, i = 1, ..., 8 otherwise it can be estimated to 0 due to above inequalitallly, x = X,y = 9§, p =
P, q = g for,

T <inf{su }Io a-D, su }Io a— D4 su }Io a—Ds su }Io 2~ Ds
— ap a ge D]_ > ap a ge D3 > ap a ge D5 > ap a ge D7 *

Thus the solution is unique for iciently small deadlineT.
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