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Abstract. The Hopf bifurcation in slow-fast systems with two slow variables
and one fast variable has been studied recently, mainly from a numerical point

of view. Our goal is to provide an analytic proof of the existence of the zero
Hopf bifurcation exhibited for such systems, and to characterize the stability
or instability of the periodic orbit which borns in such zero Hopf bifurcation.
Our proofs use the averaging theory.

1. Introduction and statement of the results

Hopf bifurcations have been studied intensively in two dimensional differential
systems with one slow and one fast variable, see for instance [4, 6, 7, 11, 8].

Canard explosions are associated with these singular Hopf bifurcations, mani-
fested by a very rapid growth in the amplitude of periodic orbits, see for instance
[2, 3, 5, 12].

There has been less analysis of the Hopf bifurcations in slow-fast systems with
two slow variables and one fast variable, see for instance [9, 13, 16].

In this paper we shall study this last kind of Hopf bifurcation using the averaging
theory and in particular we shall characterize the stability or instability of the
periodic orbit which bifurcates in the Hopf bifurcation. We shall follow the work
of Guckenheimer [9] who reduces the study of the mentioned Hopf bifurcation to
study the zero Hopf bifurcation of the differential system

(1) X ′ = Y − X2, Y ′ = Z − X, Z ′ = −µ − AX − BY − CZ,

where the prime denotes derivative with respect to τ . A summary of this reduction
process is done in appendix I, for more details see [9].

We note that when

(2) B ̸= 0 and (A + C)2 − 4Bµ ≥ 0,

the differential system (1) possesses exactly one equilibrium point with coordinates
(X∗, X∗2, X∗) where

X∗ = −A + C −
√

(A + C)2 − 4Bµ

2B
.

The zero Hopf bifurcation (also called saddle-node Hopf bifurcation or fold Hopf)
occurs at the equilibrium point (X∗, X∗2, X∗) when it has one zero eigenvalue and
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a pair of pure imaginary eigenvalues ±iw with w ̸= 0. The parameter values for
which system (1) has such an equilibrium are

(3) A = C(B − 1), µ = BC2/4;

the pure imaginary eigenvalues are ±iw = ±i
√

1 + B − C2 where w2 = 1+B−C2 >
0 since B and C are small as explained in Appendix I, and the equilibrium point
is (X∗, X∗2, X∗) with X∗ = −C/2.

In the next theorem we study the periodic orbit which bifurcates in the mentioned
zero Hopf bifurcation of the differential system (1). Additionally we also study the
stability or instability of this periodic orbit.

Theorem 1. Consider the differential system (1) written in the new parameters
(R, w, ε, µ) defined in (4) that substitute to the initial parameters (A,B, C, µ). As-
sume that the following conditions hold:

w > 0, C2 + w2 − 1 ̸= 0 and 2(1 − C2)R − 1 > 0.

(a) For ε ̸= 0 sufficiently small there exists one periodic solution of (1) that
shrinks to the equilibrium (X∗, X∗2, X∗) with X∗ = −C/2 when ε → 0.

(b) Such a periodic orbit is stable if either ∆ ≥ 0, Ω1 > 0 and Ω2 < 0; or
∆ < 0 and Ω4 < 0. Otherwise, it is unstable. The constants Ωk and ∆ are
defined in (12).

Theorem 1 is proved in section 2.

The main reason for introducing the parameters (R,w, ε, µ) is that then the
eigenvalues of the equilibrium point of the differential system (1) are εR and ±wi+
O(ε), and consequently for ε = 0 we have a zero Hopf point, which will be able to
exhibit a zero Hopf bifurcation.

2. Proof of Theorem 1

Now, we do the following reparametrization

(4) (µ,A, B) 7→ (R, ε, w),

defined by

µ =

7∑

i=0

Pi(C, R, w)εi

4[w2 − 1 + (C + R ε)2]2
=

1

4
C2(C2 + w2 − 1) + O(ε),

A = ε(1 − R) + C [−2 + w2 + (C + Rε)2] = C(−2 + C2 + w2) + O(ε),

B = −1 + C2 + w2 + CRε,

where

P0(C, R,w) = C2(C2 + w2 − 1)3,

P1(C, R,w) = C(C2 + w2 − 1)2(2 − 2R + 7C2R),
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P2(C, R, w) = (C2 + w2 − 1)
(
1 + R

(
21RC4 + 2C2(5 + R(2w2 − 7))

−Rw4 + R − 2
))

,

P3(C, R, w) = CR
(
R
(
35RC4 + 20C2(1 + R(w2 − 2)) + 9R

+w2(8 − 3R(w2 + 2)) − 12
)

+ 3
)
,

P4(C, R, w) = R2
(
2 + R

(
35RC4 + 5(R(w2 − 5) + 4)C2

+2(−Rw4 + w2 + R − 2)
))

,

P5(C, R, w) = CR4(10 − 8R + 21C2R − 2w2R),

P6(C, R, w) = R5(2 − R + 7C2R − w2R),

P7(C, R, w) = CR7.

We observe that when ε → 0 the conditions (3) for a zero Hopf bifurcation at
the equilibrium of (1) are satisfied because

A − C(B − 1) = O(ε), µ − BC2/4 = O(ε).

Moreover, since (A + C)2 − 4Bµ = w4R2ε2 + O(ε3) and B = −1 + C2 + w2 + O(ε),
it is clear that restrictions (2) for the existence of the equilibrium of (1) are also
satisfied when |ε| is sufficiently small if we assume

(5) −1 + C2 + w2 ̸= 0.

With the reparametrization (4) we get that the equilibrium of (1) becomes

(6) (X∗, X∗2, X∗) where X∗ = −C

2
+ O(ε),

and moreover when ε → 0 this equilibrium tends to have the eigenvalues 0 and
±iw. We shall assume in addition that

(7) w > 0.

Now first we translate the equilibrium at the origin by means of the change (X, Y, Z) 7→
(X − X∗, Y − X∗2, Z − X∗), and after we do the linear change of variables




x
y
z


 =




C2 − 1

w

C

w

1

w
C 1 0

−1 + C2 + w2 C 1







X
Y
Z


 ,

which will write the linear part at the origin in its real Jordan normal form



0 −w 0
w 0 0
0 0 0


 ,

when ε → 0. Finally we do the rescaling (x, y, z) = (εU, εV, εW ). In the new
coordinates system (1) becomes

U ′ = −wV + εf1(U, V, W ) + O(ε2),

V ′ = wU + εf2(U, V, W ) + O(ε2),(8)

W ′ = εf3(U, V, W ) + O(ε2),
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with

f1(U, V,W ) =
−1

w5(C2 + w2 − 1)

(
w4
(
CRw2V − wU + C(C2 − 1)RV + W

)

+(C2 + w2 − 1)(C2 − 1)
(
w2U2 − 2wUW + W 2

))
,

f2(U, V,W ) =
−C

w4(C2 + w2 − 1)

(
(C2 + w2 − 1)(−w2U2 + 2wUW − W 2)

−w2
(
R(C2 + w2 − 1) + 1

)
(wU − W )

)
,

f3(U, V,W ) = − (C2 + w2 − 1)(−wU + W )2

w4
+ R(−wU − CV + W ).

Now performing the change to cylindrical coordinates (U, V, W ) 7→ (θ, r, Z) with
U = r cos θ, V = r sin θ and W = Z system (8) is transformed into

r′ = εg1(θ, r, Z) + O(ε2),

θ′ = w + εg2(θ, r, Z) + O(ε2),(9)

Z ′ = εg3(θ, r, Z) + O(ε2),

where we emphasize that this system is only well defined for r > 0 due to the
expression of g2(θ, r, Z). Moreover, in this region, since for sufficiently small ε we
have θ′ > 0 in a big ball centered at the origin, we can rewrite the differential
equations of the orbits of (9) in this big ball in the form

(10)
dr

dθ
= ε

g1(θ, r, Z)

w
+ O(ε2),

dZ

dθ
= ε

g3(θ, r, Z)

w
+ O(ε2),

where

g1(θ, r, Z) = − 1

w5(1 − C2 − w2)

∑

i,j

Rij(r, Z) cosi θ sinj θ,

g3(θ, r, Z) =
1

w4
[(1 − C2 − w2)(Z − wr cos θ)2 +

R(Z − r(w cos θ + C sin θ))],

and the only non identically zero coefficients Rij(r, Z) are

R01(r, Z) = Cw3(1 − R(1 − C2 − w2))Z + Cw(1 − C2 − w2)Z2,
R10(r, Z) = −w4Z − (C2 − 1)(−1 + C2 + w2)Z2

R11(r, Z) = −Cw4(1 − 2R(−1 + C2 + w2)r + 2Cw2(−1 + C2 + w2)rZ,
R20(r, Z) = w5r + 2w(C2 − 1)(−1 + C2 + w2)rZ,
R21(r, Z) = −Cw3(−1 + C2 + w2)r2,
R30(r, Z) = −w2(C2 − 1)(−1 + C2 + w2)r2.

System (10) is 2π–periodic is the variable θ and is in the standard form for
applying the averaging theory, see Theorem 2 of the appendix II. The averaged
functions are

R(r, Z) =
1

2π

∫ 2π

0

g1(θ, r, Z)

w
dθ =

r

2w(C2 + w2 − 1)
+

(C2 − 1)rZ

w5
,

Z(r, Z) =
1

2π

∫ 2π

0

g3(θ, r, Z)

w
dθ = − (C2 + w2 − 1)(w2r2 + 2Z2)

2w5
+

RZ

w
.
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The only real zero (r∗, Z∗) with r∗ > 0 of the map (r, Z) 7→ F(r, Z) defined as
F(r, Z) = (R(r, Z), Z(r, Z)) is

(r∗, Z∗) =

(
w3
√

2(1 − C2)R − 1√
2 |(C2 − 1)(C2 + w2 − 1)|

, − w4

2(C2 − 1)(C2 + w2 − 1)

)
.

Recalling that C is small (see Appendix I) and therefore C2 −1 ̸= 0, we notice that
such a solution only exists if

(11) 2(1 − C2)R − 1 > 0 and C2 + w2 − 1 ̸= 0.

In addition the Jacobian of F at the point (r∗, Z∗) is

det(DF(r∗, Z∗)) =
2(1 − C2)R − 1

2w2(C2 − 1)(C2 + w2 − 1)
̸= 0,

from (11). Therefore (r∗, Z∗) is a simple zero of F . Hence, the averaging theory of
Theorem 2 predicts for ε ̸= 0 sufficiently small the existence of a 2π–periodic orbit
γε = {(r(θ, ε), Z(θ, ε)) : 0 ≤ θ ≤ 2π} of system (10) such that (r(0, ε), Z(0, ε)) →
(r∗, Z∗) as ε → 0.

Now going back through the changes of variables and time rescaling which keep
the stability of the periodic orbit γε. Thus we have that system (8) for ε ̸= 0
sufficiently small has one periodic orbit γε such that γε → {W = Z∗} ∩ {U2 +
V 2 = r∗2} as ε → 0, the intersection of the plane P = {W = Z∗} and the
cylinder C = {U2 + V 2 = r∗2}. Undoing the remaining changes of variable to
reach the coordinates of system (1) we get that the former plane and cylinder are
transformed into Pε = {(−1+C2+w2)(X−X∗)+C(Y −X∗2)+Z−X∗ = εZ∗} and
Cε = {w2[C(X−X∗)+(Y −X∗2)]2+[(C2−1)(X−X∗)+C(Y −X∗2)+(Z−X∗)]2 =
ε2w2r∗2}. We note that the radius of the cylinder Cε goes to zero as ε → 0 and
therefore C0 is a straight line. Finally, system (1) has one periodic orbit γε such
that γε → P0 ∩ C0 as ε → 0 where P0 ∩ C0 = (X∗, X∗2, X∗) is just the equilibrium
of (1). This proves statement (a).

Define now the following functions

(12)

Ω1(C, R,w) =
2(1 − C2)R − 1

2w2(C2 − 1)(C2 + w2 − 1)
,

Ω2(C, R,w) =
1 + R(C2 − 1)

w(C2 − 1)
,

∆(C, R,w) = (C2 + w2 − 1)Ω3(C, R, w),

Ω3(C, R,w) = −3 + 3C2 + w2 + 2(C2 − 1)(−3 + 3C2 + w2)R
+(C2 − 1)2(C2 + w2 − 1)R2,

Ω4(C, R,w) =
1 + R(C2 − 1)

2w(C2 − 1)
.

Denoting by λ1 and λ2 the eigenvalues of DF(r∗, Z∗), we obtain that

λ1λ2 = det(DF(r∗, z∗)) = Ω1(C,R, w) ̸= 0, λ1 + λ2 = Ω2(C,R, w).

More detailed we have

λ1,2 =
1 + R(C2 − 1)

2w(C2 − 1)
±

√
∆.
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Therefore two cases arise depending on the nature of the eigenvalues:

(i) Assume that the eigenvalues are real, that is, ∆ ≥ 0. Then both eigenvalues
are negative if and only if λ1λ2 > 0 and λ1 + λ2 < 0.

(ii) Assume that the eigenvalues are not real, that is, ∆ < 0. Then its real part
is

Re(λ1) = Re(λ2) = Ω4(C, R, w).

In summary, from Theorem 2 the periodic orbit γε is stable if either ∆ ≥ 0, λ1λ2 > 0
and λ1 + λ2 < 0; or ∆ < 0 and Re(λi) < 0. Otherwise, it is unstable. Hence
statement (b) is proved.

Appendix I: Hopf bifurcations in slow-fast systems

Consider a slow–fast vector field of the form

(13) εẋ = f(x, y, z, ε), ẏ = g(x, y, z, ε), ż = h(x, y, z, ε),

with one fast variable x ∈ R and two slow variables (y, z) ∈ R2. Here ε is a small
parameter that represents the ratio of time scales and the overdot denotes as usual
derivative with respect to the time t. The set of points satisfying f = 0 is the
critical manifold of system (13) and the slow motion of the trajectories of (13) can
occur only near the critical manifold. Points on the critical manifold where ∂f/∂x
vanishes are called fold points.

In [9] the author explores the dynamics of a singular Hopf bifurcation of systems
(13) via analysis of normal forms. In order to derive a normal form for a singular
Hopf bifurcation in a generic system (13), in [9] it is assumed that an equilibrium
point crosses a simple fold transversally. In [1] it is shown that the fast equation
near a simple fold can be reduced to εẋ = y −x2, perhaps using a rescaling of time.
Next the system is approximated truncating nonlinear terms in the Taylor series of
g and h. The truncated component ẏ = α + βx + γy + δz is further reduced via
the affine change z 7→ α + γy + δz obtaining ẏ = βx + z while the other component
ż is still an affine function. Hopf bifurcation occurs when β < 0. The rescaling
(x, y, z, t) 7→ (|β|1/2x, |β|y, |β|3/2z, |β|−1/2t) reduces the study to the case β = −1.
In short, after all these transformations the truncated normal form becomes the
differential system

(14) εẋ = y − x2, ẏ = z − x, ż = −µ − ax − by − cz.

The final rescaling (x, y, z, t) = (ε1/2X, εY, ε1/2Z, ε1/2τ) and (A,B, C) = (ε1/2a,
εb, ε1/2c) eliminates ε from system (14) and yields the differential system (1). Note
that (A,B, C) → (0, 0, 0) as ε goes to zero and that B tends to zero faster that A
and C. Moreover, as µ varies near zero, the equilibrium point of system (14) crosses
the fold curve of the critical manifold at the origin. The origin is always a folded
singularity (recall that folded singularities are regular points of (13) when ε > 0)
that is a saddle when µ < 0, a node when 0 < µ < 1/8 and a focus when 1/8 < µ.
Hopf bifurcations of systems (14) and (1) typically occur at nonzero values of µ.
See [9] for more details on the deduction of the differential system (1).
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The equilibria of (1) occur at points (Xµ, X2
µ, Xµ) where Xµ is a solution of

µ = −AXµ − BX2
µ − CXµ. The linearization of (1) at this equilibrium is




−2Xµ 1 0
−1 0 1
−A −B −C


 ,

whose characteristic polynomial is

P (λ) = λ3 + (C + 2Xµ)λ2 + (B + 2XµC + 1)λ + (A + 2XµB + C).

Hence a Hopf bifurcation occurs when B + 2XµC + 1 > 0 (note that this condition
is always satisfied when B and C are small) and

(C + 2Xµ)(B + 2XµC + 1) = A + 2XµB + C.

Under these assumptions the real eigenvalue is −(C +2Xµ) and the pure imaginary

eigenvalues are ±i
√

B + 2XµC + 1.

We emphasize that zero eigenvalues occur near the origin only if a + c is small
in system (14) because B is O(ε) while A and C are O(ε1/2). A subtle aspect
of the normal form is that terms of higher order contribute to the first Lyapunov
coefficient in an essential way.

Appendix II: Averaging Theory of First Order

Now we shall present the basic results from averaging theory that we need for
proving the results of this paper.

The next theorem provides a first order approximation for the periodic solutions
of a periodic differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst
[15].

Consider the differential equation in the standard form

(15) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Moreover we assume that both
F1(t,x) and F2(t,x, ε) are T−periodic in t. We also consider in D the averaged
differential equation

(16) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1

T

∫ T

0

F1(t,y) dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out
to correspond with T−periodic solutions of equation (15).

Theorem 2. Consider the two initial value problems (15) and (16). Suppose:

(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x2, F2 and its Jacobian ∂F2/∂x
are defined, continuous and bounded by a constant independent of ε in
[0, ∞) × D and ε ∈ (0, ε0].

(ii) F1 and F2 are T−periodic in t (T independent of ε).

Then the following statements hold.
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(a) If p is an equilibrium point of the averaged equation (16) and

det

(
∂f1

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T−periodic solution φ(t, ε) of equation (15) such that
φ(0, ε) → p as ε → 0.

(b) If the eigenvalues of the equilibrium point p all have negative real part, the
corresponding periodic orbit φ(t, ε) is asymptotically stable for ε sufficiently
small. If one of the eigenvalues has positive real part, then φ(t, ε) is unsta-
ble.
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