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Abstract

We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and
atoms in very strong magnetic fields. We apply the Padé-Hankel method, numerical
integration, power series with Padé and Hermite-Padé approximants and Chebyshev
polynomials. Both the slope at origin and the location of the right boundary in the
magnetic-field case are given with unprecedented accuracy.

1 Introduction

The Thomas-Fermi model is one of the simplest approaches to the study of
the potential and charge densities in a variety of systems, like, for example,
atoms [1–6], molecules [4, 7], atoms in strong magnetic fields [6, 8–11], met-
als and crystals [12, 13] and dense plasmas [14]. For this reason there has
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been great interest in the accurate calculation of the solution to the Thomas-
Fermi equation [1, 3, 5, 15–24]. In particular the accurate results obtained by
Kobayashi et al [3] by numerical integration are commonly chosen as bench-
mark data for testing other approaches. The even more accurate results of
Rijnierse do not appear to be so well known, probably because they do not
appear to have been published and are only quoted in the book by Torrens [5].

The behaviour of the solution to the nonlinear Thomas-Fermi equation de-
pends on the slope at the origin. The critical slope at the origin suitable for
neutral atoms is of particular interest and has been estimated by many au-
thors (see, for example, Kobayashi et al [3]). Particularly accurate results for
this critical slope were obtained by Amore and Fernández [19,20] and later by
Fernández [21, 22] using the Padé-Hankel method (PHM). Abbasbandy and
Bervillier [23] considerably improved this estimate by means of a judicious
analytic continuation of the expansion of the solution about the origin and
Boyd [24] reported an even more accurate result obtained by means of a ratio-
nal Chebyshev series. Other authors have also resorted to Padé approximants
in order to approximate the solution to the Thomas-Fermi equation [25, 26].
It has been shown that a method due to Majorama is suitable for obtaining a
semi-analytical series solution to the Thomas-Fermi equation in terms of only
one quadrature [27].

The analytic properties of the solution of the Thomas-Fermi equation under
different boundary conditions (in addition to the physically relevant ones)
are also of great interest and have been studied by several authors (see, for
example, Hille [28, 29] and the references therein).

The purpose of this paper is twofold. First, we want to stress the different
behaviour of the solution of the Thomas-Fermi equation for atoms and atoms
in strong magnetic fields that was overlooked in a recent application of the
PHM [22]. More precisely, in his application of the PHM Fernández [22] as-
sumed the incorrect asymptotic behaviour at infinity suggested by Banerjee et
al [8]. However, since the PHM does not take into account the second (outer)
boundary condition explicitly Fernández obtained an accurate slope at the
origin. The PHM is based on the Riccati-Padé method that was developed to
obtain bound states and resonances of separable quantum-mechanical prob-
lems [31–39].

Our second goal is to show that the available computer-algebra software en-
able one to solve the Thomas-Fermi equations (and, certainly, other nonlinear
equations as well) with great accuracy. We want to provide sufficiently accu-
rate solutions that may be used as benchmark data for testing future analytical
or numerical methods.

Boyd [24] obtained the most accurate critical slope at the origin of the solution
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to the Thomas-Fermi equation for neutral atoms by means of rational Cheby-
shev series. In this paper we try the Chebyshev polynomials on the equation
for neutral atoms in very strong magnetic fields.

In Section 2 we outline the expansions of the solution to the Thomas-Fermi
equation about origin, at infinity, about poles and zeroes/branch points. Such
expansions have already been discussed by other authors and also used as aids
for obtaining approximate analytical solutions as well as accurate numerical
results [1–3, 5–7, 16–18, 23, 25, 28, 29]. The main purpose of this section is to
stress the difference between the Thomas-Fermi equations for isolated atoms
and atoms in strong magnetic fields. In section 3 we describe the accurate
results obtained by means of the PHM and from straightforward integration
of the differential equations. In Sec. 4 we discuss the application of two power
series and their Padé and Hermite-Padé approximants to the Thomas-Fermi
equation for a neutral atom in a magnetic field. In Sec. 5 we apply Chebyshev
polynomials to the same problem and in Sec. 5.2 we consider analytical results
based such polynomials of small degree. Finally, in Sec. 6 we draw conclusions.

2 Expansions for the solutions to the Thomas-Fermi equations

In order to facilitate the discussion and to make this paper clearer in this sec-
tion we summarize the well known expansions of the Thomas-Fermi equations
about some characteristic points. As indicated above, such expansions are
well known and have been widely used by other authors for several different
purposes [1–3, 5–7, 16–18, 23, 25, 28, 29].

In this paper we restrict ourselves to the simplest cases. The first one is the
Thomas-Fermi equation for an atom

u′′(x) =
u(x)3/2

x1/2

u(0)= 1 (1)

It can be expanded about origin as

u = 1 + ax+
4x3/2

3
+

2ax5/2

5
+

x3

3
+ . . . (2)

where a = u′(0) < 0 is the unknown slope at the origin.

There is a critical slope u′
0 and the behaviour of the solution depends on the

relation between u′(0) and u′
0. If u

′(0) < u′
0 the solution vanishes at a movable
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branch point [29] x = xq around which it behaves as

u = bs+ b3/2x3/2
q

(

4s7/2

35
+

2s9/2

63
+

s11/2

66
+ . . .

)

(3)

where s = (xq − x)/xq and b is a constant.

If u′(0) > u′
0 the solution decreases and reaches a minimum at x = xm about

which it behaves as

u = a0 + (a0xm)
3/2





s2

2
+

s3

12
+

(

2
√
a0x

3/2
m + 1

)

s4

32
+

(

8
√
a0x

3/2
m + 5

)

s5

320
+ . . .



 (4)

where s = (xm − x)/xm and a0 is a positive constant.

After this minimum the solution increases and tends to infinity because of a
movable singularity at x = xs about which it behaves as

u =
1

x3
s

(

400

s4
− 2000

9s3
− 2000

81s2
− 10000

729s
− 3189895

177147
+ . . .

)

(5)

where s = (xs − x)/xs. Abbasbandy and Bervillier [23] derived an alternative
and more detailed expansion in terms of the variable z = x1/2 for the function

g(z) =
√

u(z2).

It is also well known that xq → ∞ as u′(0) → u′
0 from the left and xm, xs → ∞

as u′(0) → u′
0 from the right. At this limit the solution tends monotonically

to zero according to

u =
144

x3
+ d x(1−

√
73)/2 +

7
√
73 + 67

29184
d2x4−

√
73 + . . . (6)

where d is a constant. There have been reasonably successful attempts at
matching the expansions (2) and (6) by means of appropriate nonlinear trans-
formations of the independent variable [17, 18].

From a physical point of view the zero at x = xq (see the expansion (3)) is
the radio of an atom if

− xqu
′(xq) = 1− N

Z
= q (7)

where N is the number of electrons, Z is the atomic number and q is the degree
of ionization (note that N < Z). For a neutral atom (q = 0) the boundary

4



condition u(x0) = u′(x0) = 0 takes place at x0 = ∞ as indicated above for the
case u′(0) = u′

0.

Abbasbandy and Bervillier [23] argued that the PHM applies successfully to
this problem because the Hankel condition sends the movable singularity at
x = xs to infinity.

The Thomas-Fermi equation for an atom in a strong magnetic field is (Tomishina
and Yonei [9] proposed a somewhat more realistic model that we do not discuss
here)

u′′(x) =
√

xu(x)

u(0)= 1 (8)

In this case the expansion about the origin is given by

u = 1 + ax+
4x5/2

15
+

2ax7/2

35
+ . . . (9)

where a = u′(0). As in the preceding case the behaviour of the solution depends
on this slope at the origin that also exhibits a critical value u′

0.

If u′(0) < u′
0 the solution vanishes at a movable branch point x = xq according

to

u = bs+
4
√

b x5
1s

5/2

15
−

2
√

b x5
1s

7/2

35
+ . . . (10)

where s = (xq − x)/xq and b is a constant.

If u′(0) > u′
0 the solution exhibits a minimum at x = xm around which it

behaves as

u = a0 +

√

a0x5
m

2
s2 −

√

a0x5
m

12
s3 +

2x5
m −

√

a0x5
m

96
s4 −

3
√

a0x5
m + 8x5

m

960
s5 + . . . (11)

where s = (xm − x)/xm and a0 is a constant.

The main difference between this equation and the preceding one is that in
this case the pole is located at infinity. For large values of the coordinate the
solution behaves as

u =
x5

400
+ c0x

(
√
41+1)/2 + c20

(

25
√
41

2
+

425

6

)

x
√
41−4 + . . . (12)

5



where c0 is a constant.

When u′(0) = u′
0 the solution and its first derivative vanishes at x = x0

according to the expansion

u = x5
0s

4

(

1

144
− s

336
− s2

7056
− s3

16464
. . .

)

(13)

where s = (x0 − x)/x0. The location of the minimum xm approaches x0 from
below as u′(0) approaches u′

0 from above. The zero/branch point xq also ap-
proaches x0 from below as u′(0) approaches u′

0 from below. However, the func-
tion is analytic at x = x0 when u′(0) = u′

0 as shown in Eq. (13). The solution
with the critical slope at the origin also tends to infinity as x → ∞ according
to equation (12). According to Banerjee et al [8] the universal solution cor-
responding to neutral atoms (N = Z) satisfies u(x0) = 0 and u′(x0) = 0 at
x0 = ∞. Based on this conjecture Fernández [22] applied the PHM and ob-
tained a somewhat more accurate value of u′

0. However Hill et al [11] showed
that x0 is finite and can be related to xq by means of a perturbation expansion
of the form.

xq = x0 − (24q/x2
0)

1/3 + . . . (14)

which clearly shows that xq approaches x0 from below as q → 0 (and u′(0) →
u′
0 from below). They confirmed this result by numerical integration of Eq. (8).

In the two cases discussed above the PHM yields the correct critical slope at
the origin disregarding the second boundary condition. In the first example
both u(x) and u′(x) vanish as x → ∞, while in the second example they vanish
at a finite value x0 of the independent variable. Abbasbandy and Bervillier [23]
suggested that the success of the PHM is based on “forcing the localization at
infinity of a movable singularity (when it exists)”. They also stated that “if the
second boundary is located at infinity, the PHM has a particular significance”.
The success of the PHM for the Thomas-Fermi equation (8) shows that the
approach is also suitable when the second boundary condition takes place at
a finite point. In this case the movable singularity pushed to infinity may
be the zero/branch point xq discussed above (Eq. (10)). It was shown that xq

approaches x0 as u
′(0) approaches the critical slope but it may jump to infinity

when u′(0) = u′
0 leaving the solution analytic at x0 as discussed above. We

cannot prove this conjecture rigorously but we believe that it sounds plausible.
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3 PHM and numerical integration

We first review the main points of the PHM. Following Amore and Fernández

[19–22] we choose the new variables x = t2 and v(t) =
√

u(t2). The function

v(t) can be expanded in a Taylor series

v(t) =
∞
∑

j=0

vjt
j (15)

where the coefficients vj, j ≥ 4 depend on v2 = u′
0/2.

We construct the Hankel determinantsHd
D = |vi+j+d+1|i,j=0,1,...D−1 that depend

on the unknown slope at the origin u′
0 and obtain sequences of roots u′‘

0[D, d]
of Hd

D = 0, D = 2, 3, . . ., (d = 0, 1, . . . fixed) that converge towards the critical
slope.

We carried out PHM calculations for values ofD greater than those used before
[22] and also numerical integration based commands built in Mathematica
together with the bisection method. We describe the results in what follows.

There are far too many results for the critical slope of the solution to the
Thomas-Fermi equation for neutral atoms. Table 1 just shows the most accu-
rate ones. Present PHM result was estimated from sequences of roots of the
Hankel determinants with D ≤ 60 and d = 3.

The Thomas-Fermi equation for a neutral atom in a strong magnetic field
has not been so widely studied. Table 2 shows the available critical slopes at
origin. Present PHM result was estimated by comparing results with D ≤ 60
and d = 1, 3. The PHM exhibits a much greater rate of convergence for this
problem.

In order to provide benchmark data for testing other approaches in the future
we have calculated u(x) and u′(x) for Eq. (1) and u(x) for Eq. (8) as accurately
as possible using straightforward numerical integration. In principle, we can
resort to the analytical behaviour of the solutions described in section 2 in
order to bracket the slope at origin u′

0 with any desired accuracy. However, in
the present case we have remarkably accurate values of the critical slope at
origin obtained by other methods and, therefore, we proceeded in a different
way that we describe in what follows.

A sufficiently accurate value of the slope at origin for the Thomas-Fermi equa-
tion obtained in this paper is u′(0) = −1.588071022611375312718684508. We
calculated the values of u(x) and u′(x) by means of the command NSDolve
built in Mathematica with different accuracy choices to test the precision of
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the numerical results. We tried three sets of parameters:

• Case I: WorkingPrecision=300; PrecisionGoal=20;AccuracyGoal=20;
• Case II: WorkingPrecision=1000; PrecisionGoal=50;AccuracyGoal=50;
• Case III: WorkingPrecision=1000; PrecisionGoal=60;AccuracyGoal=60;

and carried out the numerical integration through the interval (0, 1000).

In addition to the straightforward comparison of the results for those three sets
it is also necessary to determine the effect of the error due to the approximate
choice of u′

0. With this purpose in mind we also carried out the calculations
with slightly modified critical slopes:

• u′
L(0) = −1.588071022611375312718684509

• u′
R(0) = −1.588071022611375312718684507

The maximum difference between the values of u(x) obtained with sets I and
III at all the chosen points was found to be of order 10−14, while such difference
for sets II and III was 2 × 10−20. On the other hand, even considering less
accurate set I, we found that the maximum difference between values of u(x)
calculated with u′

L(0) and u′
R(0) was of the order of 10−17. Thus we conclude

that set I yields sufficiently accurate results with the critical slope at origin
shown above.

A sample of the results is shown in tables 3, 4 and 5, and a considerably
wider range of values is available elsewhere [30]. From the numerical analysis
outlined above we are confident that all the digits in those tables are exact.

4 Power-series approaches

4.1 Power-series for the original equation

When u′(0) = u′
0 the function is analytic at x = x0 and numerical experimen-

tation suggests that the Taylor series (13) converges over the whole domain
of interest, even at the left endpoint x = 0. It is convenient to rescale the
coordinate by defining s = (x0 − x)/x0 so that x = 0 corresponds to s = −1.
Therefore we may try to calculate the parameters u′

0 and x0 by means of the
sequences of partial sums

uM(x) = x5
0s

4
M
∑

j=0

cjs
j, s =

x0 − x

x0
(16)
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and the conditions uM(0) = 1, u′
M(0) = u′

0. Since the singularity at s = −1
(x = 0) is proportional to x5/2 (see Eq. (9)) the coefficients cj decrease as
O(j−7/2) and the error of the M−th partial sum falls proportionally to M−5/2.
For example, in this way we obtain x0 ≈ 3.06882 that is correct for five digits
versus the actual value x0 ≈ 3.068857. It is remarkable that a power series
is able to yield any accuracy at all for a nonlinear, singular boundary value
problem.

4.2 Quadratic Padé approximants

Accelerating the convergence by applying ordinary Padé approximations pro-
duced no improvement because the function u has a branch point at the left
boundary, precisely where we are summing the series to approximate u′(0).
However, the so-called “Hermite-Padé” or “Shafer” approximation is much
more successful.

The quadratic Shafer approximant u[K/L/M ](s) is defined to be the solution
of the quadratic equation [49–52]

P (s) (u[K/L/M ])2 +Q(s) u[K/L/M ] + R(s) = 0 (17)

where the polynomials P , Q and R are of degrees K, L and M , respec-
tively. These polynomials are chosen so that the power series expansion of
u[K/L/M ](s) agrees with that of u(s) through the first N = K + L+M + 1
terms. The constant terms in P and Q can be set arbitrarily to one without
loss of generality since these choices do not alter the roots of the equation, so
the total number of degrees of freedom is N = K + L + M + 1. As true for
ordinary Padé approximants, the coefficients of the polynomials can be com-
puted by solving a matrix equation and the most accurate approximations are
obtained by choosing the polynomials to be of equal degree, so-called “diago-
nal” approximants. Because the power series begins with s4, the method was
applied to ũ ≡ u(x[s])/(x5

0s
4 in the coordinate s; the eigenparameter is then

estimated from

x0 ≈ ũ(s = −1)−1/5 (18)

The quadratic equation actually yields two approximations:

u±[K/L/M ](s) =
−Q(s) ±

√

Q(s)2 − 4P (s)R(s)

2P (s)
(19)

as illustrated for K = L = M = 16 in Fig. 1; the root obtained from applying
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the minus sign in front of the radical is spuriously negative on much of the
interval s ∈ [−1, 0]. Substituting u = x5

0s
4u±[K/L/M ] into the differential

equation yields the “residual function, ρ± = uss/x
2
0 −

√

x0(s+ 1)u. Plotting
the residual functions as in Fig. 2 shows that the “physical” root is the plus
sign in (19); the residual function is tiny for the plus root but O(1) for the
negative root. One warning is that, like ordinary Padé approximants, Hermite-
Padé computations are rather ill-conditioned. We therefore employed Maple
so that much of the work was done in exact rational arithmetic, and floating
points portions were calculated using 60 decimal digits of precision; we did
not investigate ill-conditioning.

The first surprise is that both solution branches of the Hermite-Padé converge

to almost the same values as s ↔ −1. We therefore list the errors of the
diagonal Shafer approximants for x0 from both solutions in Table 6. The table
also gives the error of the power series up to order N from whence the Hermite-
Padé approximations were obtained. We noticed that the errors of the two
branches are roughly equal and opposite; we therefore also list the error in
theaverage of the two roots of the quadratic. Each of the roots of the quadratic
is a much better approximation than the power series.

In other applications of Hermite-Padé approximations, the roots converge to
separate modes, such as one root to the ground state eigenvalue and the other
to the first excited state. Here, however, both roots converge to the unique
eigenparameter and their average is extraordinarily accurate. We are unaware
of another profitable use of averaging in Hermite-Padé approximations.

The second surprise is that when K ≥ 17, the diagonal approximant develops
a spurious singularity in the middle of the spatial interval for both branches as
illustrated in Fig. 3. Except in a narrow neighborhood of the singularity, the
residual function for one branch is very tiny as illustrated in Fig. 4. It has long
been known that ordinary Padé approximants may develop similar spurious
singularities even at high order and even in spatial regions where the approxi-
mants have started to converge; the difficulty is not due to roundoff error, but
rather to a near-coincidence of zeros in the numerator and denominator of the
rational function which is the Padé approximant [43, 44]. Similarly, the three
coefficients of the Hermite-Padé quadratic and also the discriminant, which is
the argument of the square root in the approximations, all have nearly coin-
cident zeros as illustrated in Fig. 5. The branches also switch identities at the
singularities so that the physical solution is given by the “plus” branch on one
side of the singularity and by the “minus” branch on the other side.

This difficulty is not as serious as it seems. Both branches and their average
continue to give superb approximations to the eigenparameter x0. The ordi-
nary power series converges exponentially fast in the middle of the spatial
interval where the Hermite-Padé fails.
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The third surprise is that when the order of the approximant is thirty or
larger, both roots predict complex-valued x0. When K = L = M = 30, for
example, the two branches of the quadratic give errors in x0 of 0.199×10−23+
i0.166× 10−15. The imaginary parts cancel when the average is taken, leaving
the extraordinarily small and real valued average error of about 0.2 × 10−23!
Thus, in spite of the three surprises, which are also complications, and need
for high precision arithmetic at high order, the Hermité-Padé acceleration of
the right endpoint Taylor series is very successful.

4.3 Power-series for a modified equation

We can improve the results by removing the singularity through a conve-
nient transformation of the differential equation (8). Instead of the variables
discussed above it is more convenient for our aims to choose x = x0z

2 and

v(z) =
√

u(x0z2) so that the differential equation becomes

zv(z)v′′(z) + zv′(z)2 − v(z)v′(z)− 2x
5/2
0 z4v(z) = 0 (20)

In this way the domain size x0 appears as a sort of eigenparameter x0. Fig 6
compares the two functions u(x) and v(z).

We can thus obtain x0 and u′
0 from the partial sums

vM(z) =x
5/2
0 t2

M
∑

j=0

c̃jt
j

=x
5/2
0 t2

(

1

3
+

10

21
t +

149

588
t2 + . . .

)

, t = z − 1 (21)

and the equations vM (0) = 1 and u′
0 = v′′M(0)/x0. Results can be considerably

improved by means of Padé approximants [J,K](t). Here we choose diagonal
[M/2,M/2] and near-diagonal [(M−1)/2, (M+1)/2] ones because experience
and theory suggest that they are usually the most accurate [43–45]. Tables 7
and 8 show the parameters u′

0 and x0 calculated by means of the partial sums
(21) and their Padé approximants. The rate of convergence is remarkable for
a power-series approach to a nonlinear problem.

5 Chebyshev Pseudospectral Method

We have also written a program that solves the Thomas-Fermi equation using
the Chebyshev pseudospectral method and Newton iteration. Because it is so
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similar to an earlier for the Lane-Emden equation, we omit the details [48].

5.1 Calculations of large order

The solution is approximated in the form

v(z) =
∞
∑

n=0

anTn(2z − 1) (22)

The Chebyshev polynomials can be conveniently evaluated by Tn(z) = cos(n arccos(z))
or by the usual three term recurrence relation [47].

Newton’s iteration, which was used to solve the system of quadratic equations
for the unknowns (x0, a0, a1, . . . aN), requires and initialization or “first guess”.
We found that a first guess for x0 ∈ [2, 6] combined with the lowest term in

the power series, v ≈ x
5/2
0 (z− 1)2/3, suffice to give rapid convergence without

underrelaxation.

The Chebyshev coefficients converge geometrically as illustrated in Fig. 7 with
an ∝ exp(−nµ) where µ is between 1.4 and 1.42. All the Chebyshev coefficients
larger than 10−15 listed in Table 9. The Chebyshev series converges much more
rapidly than the power series about the right endpoint as illustrated in Fig. 8.

Based on the trends in the Chebyshev calculations, we believe the following
results are accurate to all 50 decimal places shown.

x0 = 3.06885718281479942624073100623167158584582595057745 (23)

u′
0 = −0.93896688764395889305505340187460180383289370739437 (24)

5.2 Semi-Analytical Solutions: Chebyshev Polynomial Methods for Small N

The most efficient spectral representation is one that incorporates all three
boundary conditions into the approximation in a form independent of the
spectral coefficients dn:

v = (z − 1)2 {1 + d1[T1(2z − 1) + T0] + d2[T2(2z − 1) + T1(2z − 1) + . . .} (25)

where we have used the identity sign(Tn(−1)) = −sign(Tn+1(−1)) for all n.
It is convenient, to eliminate fractional powers in the unknowns, to define the
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new unknown

λ ≡ 2x
5/2
0 (26)

The pseudospectral method with collocation at the interior points xj = (1 +
cos(πj/(N + 2)), j = 1, . . . (N + 1) yields a system of coupled polynomial
equations, quadratic in the unknowns (λ, d1, d2, . . . dN).

For N = 1, for example, substitution of v = (z − 1)2 (1 + 2d1z) into the
differential equation yields the residual function

resid(z;λ, d1) = z v v′′ + z(v′)2 − v v′ − λ z4 v

=2− 2 λ z7a0 + 4 λ z6a0 − 2 λ z5a0 − 6 z2 − 64 z3a0 + 36 a0z
2

− 120 z4a20 + 96 z3a20 − 24 a20z
2 + 30 z4a0 + 48 z5a20 − λ z6 + 2 λ z5

−λ z4 + 4 z3 − 2 a0
(27)

The coupled system of two equations in two unknowns is the pair of equations
resid(1/4;λ, d1) = 0 and resid(3/4;λ, d1) = 0:

27

16
− 81

128
d1 −

27

64
d1

2 − 9

4096
λ− 9

8192
λ d1 = 0

5

16
+

95

128
d1 +

27

64
d1

2 − 81

4096
λ− 243

8192
λ d1=0 (28)

The resultant of the two equations with elimination of d1 is

2705319

4194304
+

1643895

268435456
λ− 51182361

68719476736
λ2 +

1240029

2199023255552
λ3 = 0 (29)

This, with substitution of each λ root in turn back into one of the residual
conditions to determine d1, yields the three solutions:

{λ = 34.33616, d1 = 1.31544}; {λ = 1311.8, d1 = −.66653} (30)

{λ = −25.3931, d1 = −2.8724}

The first solution is graphed in figure 9; the other two are spurious.

For small N , the Maple “solve” command will find all the finite solutions
to the system, here 2N+1 − 1 in number. In this work, the physical solution
was identified as that solution with the eigenparameter λ closest to known
values found by other means. When no such a priori information is available, a
tedious but reliable procedure is to substitute each solution into the differential
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equation to calculate the residual, and accept the solution with the smallest
residual norm. If multiple solutions are suspected, a good strategy is to use
each small-Nsolution as a first guess for the Newton pseudospectral code at
higher-resolution.

Maple’s system solver is very slow and failed for N = 5; in contrast, the
Newton/collocation program needed only 60 seconds to calculate for N = 100
in 100 decimal place arithmetic. However, the Maple code that exploits the
”solve” command is much shorter and is given in its entirety in Table 10.

The numerical results, including coefficients up to and including dN , are in
Table 11 and Fig. 9. Note that only the N = 1 approximation, obtained by
solving a pair of equations for (λ, d1), is graphically distinguishable from the
exact v(z). The success of such low truncations emphasizes the smoothness of
the Thomas-Fermi solution in the transformed coordinate z and unknown u.
it also illustrates that spectral methods can often be used in a semi-analytical
mode as described further in [46] and Chapter 20 of [47].

6 Conclusions

We have shown that the PHM converges for two Thomas-Fermi equations that
exhibit quite different boundary conditions. In the case of neutral isolated
atoms we have u(x → ∞) = 0 and u′(x → ∞) = 0 while, on the other
hand, u(x0) = 0 and u′(x0) = 0 apply to the neutral atoms in very strong
magnetic fields. If the success of the PHM depends on the existence of a
movable singularity that the approach can push to infinity in the form of a
zero of the denominator of the Padé approximant [23], then it seems that
two different kinds of singularities are involved in the problems just outlined.
According to Abbasbandy and Bervillier [23], in the former case such singular
point is precisely the pole xs (see Eq. (5)). However, in the latter case the only
candidate appears to be the zero/branch-point xq (see Eq. (10)). Besides, in
this case the rate of convergence of the PHM is remarkably larger.

Present PHM calculations of the critical slope at the origin are quite accurate
but the generation of analytic Hankel determinants of dimension as large as
D = 60 is time consuming. However, the rate of convergence is commonly so
great that one can obtain reasonably accurate results from determinants of
relatively small dimension. This feature of the PHM was already exploited by
Abbasbandy and Bervillier [23] to estimate the parameters of the conformal
mapping used in the analytical continuation of the power series.

We have also shown that nowadays available computer algebra software like
Mathematica enable us to obtain the solution to a nonlinear differential equa-
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tion quite efficiently and accurately by means of suitable built in commands.
Such results are shown in tables 4, 4 and 5. However, we found the PHM more
convenient for the accurate calculation of the slope at the origin as shown in
tables 1 and 2.

In the case of the Thomas-Fermi equation for a neutral atom in a very strong
magnetic field we have shown that the power-series expansion about the zero
of multiplicity two at x0 is a suitable way of obtaining reasonably accurate
approximants to the solution over the entire physical interval 0 < x < x0.
The results can be slightly improved by means of Padé approximants and
considerably improved by means of Hermite-Padé approximations, even when
the latter exhibit a singular point or yield complex results at large orders
of approximation. If we remove the singularity at origin by means of a suit-
able transformation both the power series and its Padé approximants lead to
remarkably more accurate results.

Finally, we have proved once more that the Chebyshev polynomials are by far
the most accurate and efficient way of solving this type of equations. In this
application we resorted to another computer-algebra software, Maple.
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Table 1
Critical slope at origin for the Thomas-Fermi equation for neutral atoms

Source u′0

Ref. [3] -1.588071

Ref. [5] -1.5880710

Ref. [22] -1.588071022611375313

Ref. [23] -1.5880710226113753127189±7 × 10−22

Ref. [24] -1.5880710226113753127186845

Present (integration) -1.588071022611375312718684

Present (PHM) -1.588071022611375312718684508

Table 2
Critical slope at origin for the Thomas-Fermi equation for neutral atoms in strong
magnetic fields

Source u′0

Ref. [8] -0.93896594

Ref. [11] -0.938966887644

Ref. [22] -0.93896688764395889306

Present (PHM) -0.9389668876439588930550534018746018038328937073944
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Table 3
Solution to the Thomas-Fermi equation for neutral atoms

x u(x)

0 1.

10 0.024314292988681

20 0.0057849411915669

30 0.0022558366162029

40 0.0011136356388334

50 0.0006322547829849

60 0.00039391136668542

70 0.00026226529981201

80 0.00018354575974071

90 0.00013354582895373

100 0.00010024256813941

110 0.000077192183914122

120 0.000060724454048042

130 0.000048642170611589

140 0.000039574139448193

150 0.000032633964446257

160 0.000027231036946158

170 0.000022961351007399

180 0.000019542101672266

190 0.000016771248041131

200 0.000014501803496946

210 0.00001262507868731

220 0.000011059514500269

230 9.7430900509356e-6

240 8.6280669794388e-6

250 7.6772907646176e-6

260 6.8615483807441e-6

270 6.1576544141983e-6

280 5.5470471166532e-6

290 5.0147463894448e-6

300 4.548571953617e-6

310 4.1385507917383e-6

320 3.7764638007387e-6

330 3.4554958931053e-6

340 3.1699637128939e-6

350 2.9151021105849e-6

360 2.6868954790918e-6

370 2.4819436135582e-6

380 2.2973543393218e-6

390 2.1306570419327e-6

400 1.9797326281136e-6

410 1.842756484985e-6

420 1.7181517839461e-6

430 1.6045510644226e-6

440 1.5007644808624e-6

450 1.4057534397658e-6

460 1.3186086183364e-6

470 1.2385315617813e-6

480 1.1648192165876e-6

490 1.0968508828835e-6

500 1.034077168203e-6

510 9.7601060362214e-7

520 9.2221764589762e-7

530 8.7231183937678e-7

540 8.2594795176694e-7

550 7.828169303947e-7

560 7.4264155197267e-7

570 7.0517266036529e-7

580 6.7018590439059e-7

590 6.3747890208209e-7

600 6.0686876967458e-7

610 5.7818996335412e-7

620 5.5129238991189e-7

630 5.2603974917333e-7

640 5.0230807668597e-7

650 4.7998445984162e-7
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Table 4
First derivative of the Solution to the Thomas-Fermi equation for neutral atoms

x u
′(x)

0 -1.5880710226114

10 -0.0046028818712693

20 -0.00064725433277769

30 -0.00018067000647699

40 -0.000069668028540326

50 -0.000032498902048259

60 -0.0000171977000831

70 -9.9565333930524e-6

80 -6.1661955287641e-6

90 -4.0244737037667e-6

100 -2.7393510686783e-6

110 -1.9299022690995e-6

120 -1.3992583170223e-6

130 -1.0395157118193e-6

140 -7.8856447021428e-7

150 -6.0913994786089e-7

160 -4.7807415548727e-7

170 -3.8051134288369e-7

180 -3.0666432312939e-7

190 -2.4992901331678e-7

200 -2.0575323164753e-7

210 -1.7093867858999e-7

220 -1.4319925950792e-7

230 -1.2087522043829e-7

240 -1.0274430764511e-7

250 -8.7894679831444e-8

260 -7.5637914908074e-8

270 -6.544852781645e-8

280 -5.6921313455898e-8

290 -4.9740860705699e-8

300 -4.3659496185299e-8

310 -3.8481144114006e-8

320 -3.4049389482697e-8

330 -3.0238562022714e-8

340 -2.6947014494947e-8

350 -2.4092011004349e-8

360 -2.1605807799308e-8

370 -1.9432625152504e-8

380 -1.7526290677749e-8

390 -1.5848392577797e-8

400 -1.4366823059949e-8

410 -1.3054622396184e-8

420 -1.1889056199565e-8

430 -1.0850874763838e-8

440 -9.9237153936954e-9

450 -9.0936176860656e-9

460 -8.3486285238475e-9

470 -7.6784786982998e-9

480 -7.0743170080134e-9

490 -6.5284906994362e-9

500 -6.0343634424472e-9

510 -5.5861638415855e-9

520 -5.1788588934186e-9

530 -4.8080479060999e-9

540 -4.4698732683358e-9

550 -4.160945144665e-9

560 -3.878277722421e-9

570 -3.6192350738087e-9

580 -3.3814850478544e-9

590 -3.1629598899054e-9

600 -2.9618225150474e-9

610 -2.7764375473743e-9

620 -2.6053463881518e-9

630 -2.4472456993964e-9

640 -2.3009687906329e-9

650 -2.1654694798767e-9
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Table 5
Solution to the Thomas-Fermi equation for neutral atoms in strong magnetic fields

x u(x)

0. 1.

0.1 0.7170931035374508

0.2 0.6124516884444692

0.3 0.5381961080581211

0.4 0.479844885457407

0.5 0.4317097837447453

0.6 0.3908409649565394

0.7 0.3554696879373627

0.8 0.3244342852150042

0.9 0.2969222776883283

1. 0.2723385646065789

1.1 0.2502315742397729

1.2 0.2302489290264509

1.3 0.2121093520054812

1.4 0.1955840735228681

1.5 0.1804840769457186

1.6 0.1666510831170969

1.7 0.1539510127378397

1.8 0.1422691401494945

1.9 0.1315064314341758

2. 0.1215767304319089

2.1 0.1124045638520199

2.2 0.1039234063491158

2.3 0.09607429270074567

2.4 0.08880469561358382

2.5 0.0820676094016386

2.6 0.07582079507183087

2.7 0.07002615329387998

2.8 0.06464919967550395

2.9 0.05965862260930963

3. 0.05502590831205111

3.1 0.05072502095749841

3.2 0.04673212830182475

3.3 0.04302536512062993

3.4 0.0395846282664133

3.5 0.03639139832082583

3.6 0.03342858373515079

3.7 0.0306803840826662

3.8 0.02813216963071108

3.9 0.02577037491068775

4. 0.02358240434538228

4.1 0.02155654830361774

4.2 0.01968190820681658

4.3 0.01794832952175207

4.4 0.0163463416473783

4.5 0.01486710384803269

4.6 0.01350235650595824

4.7 0.0122443770673297

4.8 0.01108594014126138

4.9 0.01002028128341276

5. 0.00904106405704823

5.1 0.008142350016579636

5.2 0.007318571303218951

5.3 0.006564505580616747

5.4 0.005875253071267334

5.5 0.005246215482854354

5.6 0.004673076638280921

5.7 0.004151784644449602

5.8 0.003678535453408486

5.9 0.003249757685661876

6. 0.002862098599594876
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Table 6
Errors in Eigenlength x0 for the magnetic case, obtained from right endpoint power
series and Hermite-Padé approximation for u(x)

K (= L = M) N Taylor series first root second root average of roots

2 7 0.0039 0.0023 0.044 0.023

5 16 0.00076 0.00093 0.000052 0.00043

10 31 0.174 × 10−3 0.265 × 10−6 0.32× 10−6 0.31 × 10−7

15 46 0.69 × 10−4 0.11 × 10−8 0.11× 10−8 0.32 × 10−11

20 61 0.35 × 10−4 0.15 × 10−11 0.15× 10−11 0.45 × 10−15

25 76 0.21 × 10−4 0.11 × 10−12 0.11× 10−12 0.39 × 10−18

Table 7
v-power series approximation of initial slope u′0; correct digits in boldface

M Method u′0 Number of correct digits

10 power series -0.9364 2

Padé -0.9327 2

20 power series -0.93879 3

Padé -0.9389645 5

40 power series -0.938966834 7

Padé -0.93896688760 9

60 power series -0.938966887635 10

Padé -0.9389668876439554 14

80 power series -0.9389668876439574 14

Padé -0.9389668876439588927 17

— PHM [22] -0.93896688764395889306 20
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Table 8
Eigenparameter x0 approximations from the v-power series

M Method x0

10 power series 3.068806

Padé 3.06877

20 power series 3.0688560

Padé 3.068857176

40 power series 3.06885718271

Padé 3.068857182814799451

60 power series 3.0688571828147917

Padé 3.06885718281479942624073139

80 power series 3.0688571828147994255

Padé 3.068857182814799426240731006231672626130
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Table 9
Chebyshev coefficients of the solution to the magnetic case of the Thomas-Fermi
equation

degree n an

0 5.48135788388634344 × 10−01

1 −5.58881613523477153 × 10−01

2 −6.42705283349619230 × 10−02

3 5.70880541499120995 × 10−02

4 1.61861107728602653 × 10−02

5 1.78344934649533460 × 10−03

6 −4.97638953814069498 × 10−05

7 9.88568187276911699 × 10−06

8 −1.57314041941070364 × 10−06

9 2.17031601079801803 × 10−07

10 −3.17277060187282838 × 10−08

11 6.73733273124207577 × 10−09

12 −1.91849909540107163 × 10−09

13 5.43530178894964329 × 10−10

14 −1.37539658139417754 × 10−10

15 3.12411846416475022 × 10−11

16 −6.65185565734159168 × 10−12

17 1.41167490452475800 × 10−12

18 −3.15485896233555226 × 10−13

19 7.52433060541288362 × 10−14

20 −1.85848288796828985 × 10−14

21 4.57976772880843444 × 10−15

22 −1.10484891112084068 × 10−15
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Table 10
Maple Code to Compute a Chebyshev Pseudospectral Approximation for Small N

restart; with(orthopoly); N:=4; # Define approximation in next 2 lines;

vv:=1; for n from 1 to N do vv:=vv + d[n]*(T(n,2*x-1)+T(n-1,2*x-1)); od:

v:= (x-1)*(x-1)*vv; # derivatives of v; vx:=diff(v,x); vxx:=diff(v,x,x);

resid:= x*v*vxx + x*vx*vx -v*vx - lambda* x**4 *v; # ODE residual;

ta[0]:=evalf( Pi*(0+1)/(N+2) ); xa[0]:=evalf((cos(ta[0])+1)/2); # Chebyshev grid points ”xa”;

resida[0]:= evalf(subs(x=xa[0],resid));

varset:= lambda; eqset:= resida[0]; # initialize set of unknowns & the set of pointwise residuals;

for j from 1 to N do ta[j]:= evalf( Pi*(j+1)/(N+2) );

xa[j]:= evalf( (cos(ta[j] ) + 1)/2 ); resida[j]:= evalf(subs(x=xa[j],resid)); # array of ODE residuals ;

varset:= varset union d[j]; eqset:= eqset union resida[j]; # update variable & equation sets; od:

solutionvector:=solve(eqset,varset); assign(solutionvector[1]); # solve the polynomial system;

# {resida[j]=0, j=0, ..., N} in unknowns {λ, d1, . . . dN} ;

xi:= evalf( (lambda/2)**(2/5) ); sigma:= evalf( subs(x=0,diff(v,x,x)/xi) );

Table 11
Results and Errors from Low Order Collocation

Name N = 1 N = 2 N = 3 N = 4 Exact

x0 3.11809 3.07417 3.0687055 3.068876456 3.0688571

x0 error 0.049 0.0053 -0.00015 0.19274 × 10−4 —

u′0 -2.73 -.281 -.89047 -.9237607 -0.9389669

u′0 error -1.79 0.66 0.048 0.015 —

d1 1.315 1.8211 1.8837159 1.882043824 1.8825071389

d2 .29256 .34172159 .3402298497 .34061038

d3 0.027764 0.0266875 .0269894965

d4 -0.000662 -.0004613479537
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Fig. 1. The K = L = M = 16 Hermite-Padé approximations to u in the coordinate
s = x/x0 − 1.
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Fig. 2. The K = L = M = 16 Hermite-Padé ODE residuals, that is, the result of
substituting the approximation into the Thomas-Fermi differential equation.

27



–1

–0.5

0

0.5

1

–1 –0.8 –0.6 –0.4 –0.2

K=L=M=20  Hermite-Pade: both branches

s

u

Fig. 3. The K = L = M = 20 Hermite-Padé approximations to u in the coordinate
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Fig. 7. Chebyshev coefficients an of v(z).
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