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Abstract. In this paper, for an λ-strict pseudocontraction T , we
prove strong convergence of the modified Mann’s iteration defined
by

xn+1 = βnu+ γnxn + (1− βn − γn)[αnTxn + (1− αn)xn],

where {αn}, {βn} and {γn} in (0, 1) satisfy:
(i) 0 ≤ αn ≤ λ

K2 with lim inf
n→∞

αn(λ−K2αn) > 0;

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞;

(iii) lim sup
n→∞

γn < 1.

Our results unify and improve some existing results.
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1. Introduction

Throughout this paper, let E be a Banach space with the norm ‖ · ‖ and the
dual space E∗ and 〈y, x∗〉 denote the value of x∗ ∈ E∗ at y ∈ E. The normalized
duality mapping J from E into 2E

∗

is defined by the following equation:

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}.

Let F (T ) = {x ∈ E : Tx = x}, the set of all fixed point of a mapping T .
Recall that a mapping T with domain D(T ) and range R(T ) in Banach space E

is called Lipschitzian if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖ for all x, y ∈ D(T ).
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T is said to be nonexpansive if L = 1 in the above inequality. T is called λ-strictly
pseudocontractive if there exists λ ∈ (0, 1) and j(x− y) ∈ J(x− y) such that

〈Tx−Ty, j(x− y)〉 ≤ ||x− y||2−λ||x− y− (Tx−Ty)||2 for all x, y ∈ D(T ). (1.1)

T is called pseudocontractive if λ ≡ 0 in (1.1). Obviously, each λ-strictly pseudocon-
tractive mapping is a Lipschitzian and pseudocontractive mapping with L = λ+1

λ
.

In particular, a nonexpansive mapping is λ-strictly pseudocontractive mapping in
a Hilbert space, but the conversion may be false.

For finding a fixed point of λ-strictly pseudocontractive mapping T , a strong
convergence theorem was obtained by Zhou [22] in a 2-uniformly smooth Banach
space.

Theorem Z. (Zhou [22, Theorem 2.3]) Let C be a closed convex subset of a real
2-uniformly smooth Banach space E and let T : C → C be a λ-strict pseudo-
contraction with F (T ) 6= ∅. Given u, x0 ∈ C, a sequence {xn} is generated by

xn+1 = βnu+ γnxn + (1− βn − γn)[αnTxn + (1− αn)xn], (1.2)

where {αn}, {βn} and {γn} in (0, 1) satisfy:
(i) αn ∈ [a, µ], µ = min{1, λ

K2 } for some constant a ∈ (0, µ);

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞;

(iii) lim
n→∞

|αn+1 − αn| = 0;

(iv) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Then the sequence {xn} converges strongly to a fixed point z of T .

Recently, Zhang and Su [23] extended Zhou’s results to q-uniformly smooth
Banach space. We also note that the above results excluded γn ≡ 0 and γn = 1

n+1 .

Very recently, Chai and Song [1] studied the strong convergence of the modified
Mann’s iteration (1.2) with γn ≡ 0.

Theorem CS. (Chai and Song [1, Theorem 3.1]) Let C be a closed convex subset
of a real 2-uniformly smooth Banach space E and let T : C → C be a λ-strict
pseudo-contraction with F (T ) 6= ∅. Given u, x0 ∈ C, a sequence {xn} is generated
by

xn+1 = βnu+ (1 − βn)[αnTxn + (1− αn)xn], (1.3)

where {αn} and {βn} in (0, 1) satisfy the following control conditions:
(i) αn ∈ [a, µ], µ = min{1, λ

K2 } for some constant a ∈ (0, µ);

(ii)
∞
∑

n=1
|αn+1 − αn| < ∞;

(iii) lim
n→∞

βn = 0,
∞
∑

n=1
βn = ∞ and

∞
∑

n=1
|βn+1 − βn| < ∞.

Then, the sequence {xn} converges strongly to a fixed point z of T .

In this paper, we will deal with strong convergence of the modified Mann’s
iteration (1.2) under more relaxed conditions on the sequences {αn}, {βn} and
{γn} in (0, 1),

(i) αn ∈ [0, µ], µ = min{1, λ
K2 } with lim inf

n→∞
αn(λ −K2αn) > 0;

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞;
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(iii) lim sup
n→∞

γn < 1.

Our results obviously develop and complement the corresponding ones of Zhou [22],
Song and Chai [19], Chai and Song [1], Zhang and Su [23] and others. Moreover,
our conditions are simpler, which contain γn ≡ 0 and γn = 1

n+1 as special cases.
Our conclusions may be regarded as a unification of the some existing results.

2. Preliminaries and basic results

For achieving our purposes, the following facts and results are needed. Let
ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup

{

1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}

.

Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a fixed

constant c > 0 such that ρE(t) ≤ ctq and uniformly smooth if limt→0
ρE(t)

t
= 0.

Clearly, a q-uniformly smooth space must be uniformly smooth. Typical example
of uniformly smooth Banach spaces is Lp (p > 1). More precisely, Lp is min{p, 2}-
uniformly smooth for every p > 1.

Lemma 2.1. (Zhou [22, Lemma 1.2]) Let C be a nonempty subset of a real 2-
uniformly smooth Banach space E with the best smooth constant K, and let T :
C → C be a λ-strict pseudocontraction. For any α ∈ (0, 1), we define Tα =
(1− α)x+ αTx. Then,

‖Tαx−Tαy‖
2 ≤ ‖x−y‖2−2α(λ−K2α)‖Tx−Ty−(x−y)‖2 for all x, y ∈ C. (2.1)

In particular, as α ∈ (0, λ
K2 ], Tα : C → C is nonexpansive such that F (Tα) = F (T ).

Lemma 2.2 was shown and used by several authors. For detail proofs, see Liu
[12] and Xu [20, 21]. Furthermore, a variant of Lemma 2.1 has already been used
by Reich in [16, Theorem 1].

Lemma 2.2. Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− tn)an + tncn, ∀ n ≥ 0.

Assume that {tn} ⊂ [0, 1] and {cn} ⊂ (0,+∞) satisfy the restrictions:
∞
∑

n=0

tn = ∞ and lim sup
n→∞

cn ≤ 0.

Then as n → ∞, {an} converges to zero.

Morales and Jung [13], in 2000, proved the following behavior for pseudocontrac-
tive mappings. Also see Song and Chen [17, 18] for more details. The same result
of nonexpansive mapping was shown by Reich [15] in 1980.

Lemma 2.3. ([13, 17, 18]) Let C be a nonempty, closed and convex subset of a
uniformly smooth Banach space E, and let T : C → C be a continuous pseudocon-
tractive mapping with F (T ) 6= ∅. Suppose that for t ∈ (0, 1) and u ∈ C, xt defined
by

xt = tu+ (1− t)Txt. (2.2)

Then, as t → 0, xt converges strongly to a fixed point of T .
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This following results play a key role in proving our main results, which was
proved by Song and Chen [17].

Lemma 2.4. (Song and Chen [17, Theorm 2.3]) Let C be a nonempty, closed and
convex subset of a uniformly smooth Banach space E, and let T : C → C be a
continuous pseudocontractive mapping with a fixed point. Assume that there exists
a bounded sequence {xn} such that limn→∞ ‖xn − Txn‖ = 0 and z = limt→0 zt
exists, where {zt} is defined by (2.2). Then

lim sup
n→∞

〈u− z, J(xn − z)〉 ≤ 0.

We also need the following results that showed by Mainge in 2008.

Lemma 2.5. (Mainge [14, Lemma 3.1]) Let {Γn} be a sequence of real numbers
that does not decrease at infinity, in the sense that there exists a subsequence {Γnk

}
of {Γn} such that

Γnk
< Γnk+1 for all k ≥ 0.

Also consider the sequence of integers {τ(n)}n≥n0
defined by

τ(n) = max{k ≤ n; Γk < Γk+1}.

Then τ(n) is a nondecreasing sequence verifying

lim
n→∞

τ(n) = +∞,

and, for all n ≥ n0, the following two estimates hold:

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

3. Main results

In this section, we will present our main results of this paper.

Theorem 3.1. Let C be a closed convex subset of a real 2-uniformly smooth Banach
space E and let T : C → C be a λ-strict pseudo-contraction with F (T ) 6= ∅. Given
u, x0 ∈ C, a sequence {xn} is generated by the modified Mann’s iteration (1.2),
where {αn}, {βn} and {γn} in (0, 1) satisfy:

(i) αn ∈ [0, µ], µ = min{1, λ
K2 } with lim inf

n→∞
αn(λ−K2αn) > 0;

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞;

(iii) lim sup
n→∞

γn < 1.

Then the sequence {xn} converges strongly to a fixed point z of T .

Proof. Let yn = Tαn
xn = αnTxn+(1−αn)xn. Then for each n, Tαn

is nonexpansive
and F (T ) = F (Tαn

) by Lemma 2.1. So, the sequence {xn} is bounded since for
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given p ∈ F (T ) = F (Tαn
),

‖xn+1 − p‖ = ‖βn(u− p) + γn(xn − p) + (1− βn − γn)(Tαn
xn − p)‖

≤ βn‖u− p‖+ γn‖xn − p‖+ (1− βn − γn)‖Tαn
xn − Tαn

p‖

≤ βn‖u− p‖+ γn‖xn − p‖+ (1− βn − γn)‖xn − p‖

≤ βn‖u− p‖+ (1− βn)‖xn − p‖

≤ max{‖xn − p‖, ‖u− p‖}

...

≤ max{‖x0 − p‖, ‖u− p‖}.

Now we show lim
n→∞

‖xn − Txn‖ = 0. It follows from Lemma 2.1 that

‖yn − p‖ = ‖Tαn
xn − p‖2 ≤ ‖xn − p‖2 − 2αn(λ−K2αn)‖xn − Txn‖

2. (3.1)

Furthermore, we also have

‖xn+1 − p‖2 = ‖βn(u− p) + γn(xn − p) + (1− βn − γn)(yn − p)‖2

≤βn‖u− p‖2 + γn‖xn − p‖2

+ (1 − βn − γn)(‖xn − p‖2 − 2αn(λ−K2αn)‖xn − Txn‖
2)

≤βn‖u− p‖2 + (1− βn)‖xn − p‖2

− 2αn(1 − βn − γn)(λ −K2αn)‖xn − Txn‖
2

≤‖xn − p‖2 − (2αn(1− βn − γn)(λ−K2αn)‖xn − Txn‖
2 − βn‖u− p‖2).

Then we obtain

2αn(1− βn − γn)(λ−K2αn)‖xn −Txn‖
2 ≤ ‖xn − p‖2 −‖xn+1 − p‖2 + βn‖u− p‖2.

It follows from Lemma 2.3 that there exist z ∈ F (T ) and xt = tu + (1 − t)Txt

such that lim
t→0

xt = z. Then we also have

2αn(1−βn−γn)(λ−K2αn)‖xn−Txn‖
2 ≤ ‖xn−z‖2−‖xn+1−z‖2+βn‖u−z‖2. (3.2)

Following the proof technique in Mainge [14, Lemma 3.2, Theorem 3.1], the proof
may be divided two cases.

Case 1. If there exists N0 such that the sequence {‖xn − z‖2} is nonincreasing
for n ≥ N0, then the limit lim

n→∞
‖xn − z‖2 exists, and hence lim

n→∞
(‖xn − z‖2 −

‖xn+1− z‖2) = 0. So by the condition (ii) and the inquality (3.2), it is obvious that

lim sup
n→∞

αn(1− βn − γn)(λ −K2αn)‖xn − Txn‖
2 = 0.

It follows from the conditions (i), (ii) and (iii) that

lim
n→∞

‖xn − Txn‖ = 0. (3.3)

Then by Lemma 2.4, we obtain

lim sup
n→∞

〈u − z, J(xn+1 − z)〉 ≤ 0. (3.4)
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Finally, we show that xn → z. Indeed, since

‖xn+1 − z‖2 =〈(βnu+ γnxn + (1− βn − γn)Tαn
xn)− z, J(xn+1 − z)〉

≤βn〈u− z, J(xn+1 − z)〉+ γn‖xn − z‖‖J(xn+1 − z)‖

+ (1− βn − γn)‖Tαn
xn − z‖‖J(xn+1 − z)‖

≤βn〈u− z, J(xn+1 − z)〉+ (1− βn)‖xn − z‖‖xn+1 − z‖

≤βn〈u− z, J(xn+1 − z)〉+ (1− βn)
‖xn − z‖2 + ‖xn+1 − z‖2

2
,

then, we have

‖xn+1 − z‖2 ≤ (1− βn)‖xn − z‖2 + 2βn〈u− z, J(xn+1 − z)〉. (3.5)

So, an application of Lemma 2.2 onto (3.5) yields that lim
n→∞

‖xn − z‖ = 0.

Case 2. Assume that there exists a subsequence {‖xnk
− z‖2} of {‖xn − z‖2}

such that ‖xnk
− z‖2 < ‖xnk+1 − z‖2 for for all k ≥ 0. Let

Γn = ‖xn − z‖2 and τ(n) = max{k ≤ n; Γk < Γk+1}.

It follows from Lemma 2.5 that τ(n) is a nondecreasing sequence verifying

lim
n→∞

τ(n) = +∞

and for n large enough,

Γτ(n) ≤ Γτ(n)+1, Γn = ‖xn − z‖2 ≤ Γτ(n)+1. (3.6)

In light of Eq. (3.2), we have

2ατ(n)(1− βτ(n) − γτ(n))(λ −K2ατ(n))‖xτ(n) − Txτ(n)‖
2 ≤ βτ(n)‖u− z‖2,

and so by the condition (i),(ii) and (iii), we have

lim
n→∞

‖xτ(n) − Txτ(n)‖ = 0.

Then as n → ∞,

‖xτ(n)+1 − Txτ(n)‖ ≤βτ(n)‖u− Txτ(n)‖+ γτ(n)‖xτ(n) − Txτ(n)‖

+ (1− βτ(n) − γτ(n))(1− ατ(n))‖xτ(n) − Txτ(n)‖ → 0.

Since

‖xτ(n)+1 − Txτ(n)+1‖ ≤ ‖xτ(n)+1 − Txτ(n)‖+ ‖Txτ(n) − Txτ(n)+1‖

≤ ‖xτ(n)+1 − Txτ(n)‖+ ‖xτ(n) − xτ(n)+1‖

≤ 2‖xτ(n)+1 − Txτ(n)‖+ ‖xτ(n) − Txτ(n)‖,

we have
lim

n→∞
‖xτ(n)+1 − Txτ(n)+1‖ = 0. (3.7)

Then by Lemma 2.4, we obtain

lim sup
n→∞

〈u− z, J(xτ(n)+1 − z)〉 ≤ 0. (3.8)

Using the similar proof techniques of Case 1, the only modification is that n is
replaced by τ(n), we have

‖xτ(n)+1 − z‖2 ≤ (1 − βτ(n))‖xτ(n) − z‖2 + 2βτ(n)〈u− z, J(xτ(n)+1 − z)〉. (3.9)

Together with (3.6), we have

Γτ(n) ≤ Γτ(n)+1 ≤ (1− βτ(n))Γτ(n) + 2βτ(n)〈u− z, J(xτ(n)+1 − z)〉,
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and so,

Γτ(n) = ‖xτ(n) − z‖2 ≤ 2〈u− z, J(xτ(n)+1 − z)〉.

Along with (3.8), we have

lim
n→∞

Γτ(n) = lim
n→∞

‖xτ(n) − z‖ = 0.

It follows from (3.9), (3.8) and the condition (ii) that

lim
n→∞

Γτ(n)+1 = lim
n→∞

‖xτ(n)+1 − z‖ = 0.

Now it follows from (3.6) that

lim
n→∞

Γn = lim
n→∞

‖xn − z‖ = 0.

The proof is completed. �

Clearly, Theorem 3.1 contains γn ≡ 0 and γn = 1
n+1 as special cases. So the

following result is obtained easily.

Corollary 3.2. Let C be a closed convex subset of a real 2-uniformly smooth Ba-
nach space E and let T : C → C be a λ-strict pseudo-contraction with F (T ) 6= ∅.
Given u, x0 ∈ C, a sequence {xn} is generated by the modified Mann’s iteration
(1.3), where {αn} and {βn} in (0, 1) satisfy:

(i) αn ∈ [0, µ], µ = min{1, λ
K2 } with lim inf

n→∞
αn(λ−K2αn) > 0;

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞.

Then the sequence {xn} converges strongly to a fixed point z of T .

Using the same proof techniques as Theorem 3.1, we easily obtain the following
result. Since the only difference is that αn(λ−K2αn) is replaced by αn(qλ−Cqα

q−1
n )

in its proof (Lemma 2.1 is replaced by Lemma 2.2 of Zhang and Su [23]), so we
omit its proof.

Theorem 3.3. Let C be a closed convex subset of a real q−uniformly smooth
Banach space E (q > 1) and let T : C → C be a λ-strict pseudo-contraction with
F (T ) 6= ∅. Given u, x0 ∈ C, a sequence {xn} is generated by the modified Mann’s
iteration (1.2) or (1.3), where {αn}, {βn} and {γn} in (0, 1) satisfy:

(i) αn ∈ [0, µ], µ = min{1, { qλ
Cq

}
1

q−1 } with lim inf
n→∞

αn(qλ − Cqα
q−1
n ) > 0;

(ii) lim
n→∞

βn = 0 and
∞
∑

n=1
βn = ∞;

(iii) lim sup
n→∞

γn < 1.

Then the sequence {xn} converges strongly to a fixed point z of T .

Remark 1. If E is q−uniformly smooth, then 1 < q ≤ 2 and E is uniformly
smooth[11], and hence Theorem 3.1 may be regarded as a special case of Theorem
3.3.

Remark 2. In Theorem 3.1 and Corollary 3.3, the sequence {γn} only need
satisfy lim sup

n→∞

γn < 1. Then Theorem 3.1 may properly contain Theorem 2.3 of

Zhou [22] and Theorem 3.1 of Chai and Song [1] as a special case, and Theorem
4.1 of Zhang and Su [23] may be obtained from Corollary 3.3. So our conclusions
may be regarded as a unification of the some existing results.
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Remark 3. Our main results are obtained in the frame of q−uniformly smooth
Banach space, then in the future work, we may consider the results of this paper
in n−Banach space. For more details on n−Banach space, see Dutta [2, 3, 4, 5, 6,
7, 8, 9, 10].
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