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Abstract

In this work we develop an alternative numerical technique which allows to construct a numeri-
cal solution in closed form of variable coefficient linear second-order elliptic problems with Dirichlet
boundary conditions. The elliptic partial differential equation is approximated by a consistent explicit
difference scheme and using a discrete separation of the variables method we determine a closed form
solution of the two resulting discrete boundary value problems with the separated variables, avoiding
to have to solve large algebraic systems. One of these boundary value problems is a discrete Sturm-
Liouville problem which guarantees the qualitative properties of the exact solution of elliptic problem.
A constructive procedure for the computation of the numerical solution is given and an illustrative
example is included.

Keywords. Variable coefficient linear elliptic problems, Closed form numerical solutions, Explicit
difference scheme, Discrete variable separated method, Discrete Sturm-Liouville problems, Consistency.

1 Introduction

Elliptic partial differential equations arise usually from equilibrium or steady-state fluid flow and heat
problems and their solutions, in relation to the calculus of variations, frequently maximize or minimize
an integral representing the energy of the system. Exact solutions only exits for a few special cases with
simple geometries and boundary conditions, or for simplified constants coefficients equations, in which
some of the more complicated physical phenomena are neglected. Fortunately, numerical analysis in these
equations can offer reliable solutions.

Apart from some techniques such as meshless methods [1, 2] and those based on particular transforma-
tions used to solve special problems [3, 4], the most used are related mesh methods as the finite difference
method [5, 6, 7], the finite-volume method [8, 9] and the finite element method [10, 11].

In this paper we consider an explicit finite difference scheme for the following linear second-order
homogeneous elliptic problem with Dirichlet boundary conditions

r(x)uyy(x, y) + [p(x)ux(x, y)]x − q(x)u(x, y) = 0 , a < x < b, c < y < d , (1)

u(a, y) = f1(y) , y ∈ [c, d] , (2)

u(b, y) = g1(y) , y ∈ [c, d] , (3)

u(x, c) = f2(x) , x ∈ [a, b] , (4)

u(x, d) = g2(x) , x ∈ [a, b] , (5)
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where r(x), p(x), q(x), f1(y), f2(x), g1(y), g2(x) are continuous real functions and

r(x) > 0, p(x) > 0, q(x) > 0, x ∈ [a, b]
p(x) is differentiable

}
. (6)

Discretization of the partial differential equation (pde) together with the boundary conditions give
rise to an algebraic discretized problem where the unknowns are the numerical values of the solution at
the mesh points. This algebraic problem can be compactly written as a linear system Au = b, where
the entries of the matrix A and the vector b involve the structure of the pde and the boundary value
conditions. A detailed study of this algebraic treatment may be found in [12, Chapter 5], [13, Chapter 5].

An alternative approach to solve the discretized problem as a mere algebraic system, that at the same
time tries to preserve the properties of the continuous eigenfunction method for the continuous problem
[14], is based on the construction of a discrete separation of the variables method for the resulting dis-
cretized problem. This method has been successfully used in [15]–[17] for solving parabolic and hyperbolic
problems, and it is considered here for the solution of the elliptic problem (1)–(5) providing a closed form
numerical solution.

For the study of the elliptic problem (1)–(5) we decompose the boundary conditions (2)–(5) in the four
following cases:

I)

u(a, y) = 0 , y ∈ [c, d]
u(b, y) = 0 , y ∈ [c, d]
u(x, c) = f2(x) , x ∈ [a, b]
u(x, d) = 0 , x ∈ [a, b]

 , II)

u(a, y) = 0 , y ∈ [c, d]
u(b, y) = 0 , y ∈ [c, d]
u(x, c) = 0 , x ∈ [a, b]
u(x, d) = g2(x) , x ∈ [a, b]



III)

u(a, y) = f1(y) , y ∈ [c, d]
u(b, y) = 0 , y ∈ [c, d]
u(x, c) = 0 , x ∈ [a, b]
u(x, d) = 0 , x ∈ [a, b]

 , IV)

u(a, y) = 0 , y ∈ [c, d]
u(b, y) = g1(y) , y ∈ [c, d]
u(x, c) = 0 , x ∈ [a, b]
u(x, d) = 0 , x ∈ [a, b]


Potential advantages of the proposed method are that being explicit and based on a discrete eigenfunc-

tion method, the properties of the exact theoretical solution are preserved by the numerical approximation
allowing that with just a few nodes the approximation is very good together with a low computational
cost.

This paper is organized as follow. Section 2 deals with the discretization of Eq. (1) and the study of the
consistency of the constructed numerical scheme. In section 3 we construct numerical solutions considering
cases I and II by means of a discrete separation of variables method. The similarity of the first two
homogeneous boundary conditions allows to use the same discrete Sturm-Liouville problem in both cases
whose eigenfunctions are determined throughout the eigenpairs of an algebraic eigenvalue problem. Cases
III and IV are treated in section 4 because both problems have the same last two homogeneous boundary
conditions and the underlying discrete Sturm-Liouville problem. In these cases the eigenfunctions are
analytically determined. Section 5 includes a constructive numerical algorithm of the original problem.
We also include an illustrative numerical example. Section 6 summarizes the main conclusions of the
paper.

2 Discretization and consistency

Let us begin this section by subdividing the plane domain [a, b] × [c, d] into a rectangular mesh of equal
rectangles of sides ∆x = h, ∆y = k. Let N and M be natural numbers and let α be positive real number
such that

h =
b− a

N + 1
, k =

d− c

M + 1
, α =

k

h
. (7)
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Then a typical mesh point (xi, yj) verifies

xi = a+ ih , 0 ≤ i ≤ N + 1 ,

yj = c+ jk , 0 ≤ j ≤ M + 1 .

Let us denote u(xi, yj), r(xi), p(xi), q(xi), f1(yj), f2(xi), g1(yj) and g2(xi), by U(i, j), r(i), p(i), q(i),
f1(j), f2(i), g1(j) and g2(i) respectively.

We approximate the derivatives of elliptic Eq. (1) by the following finite differences of second-order

uyy(xi, yj) ≈
U(i, j + 1)− 2U(i, j) + U(i, j − 1)

k2
, (8)

[p(xi)ux(xi, yj)]x ≈ p(i) [U(i+ 1, j)− U(i, j)]− p(i− 1) [U(i, j)− U(i− 1, j)]

h2
, (9)

obtaining the explicit difference scheme

r(i) [U(i, j + 1)− 2U(i, j) + U(i, j − 1)]

+ α2
[
p(i)U(i+ 1, j)−

(
p(i) + p(i− 1) + h2q(i)

)
U(i, j) + p(i− 1)U(i− 1, j)

]
= 0

1 ≤ i ≤ N, 1 ≤ j ≤ M , (10)

where the parameter α was defined in (7).

Now we are going to study the consistency of constructed scheme (10) with Eq. (1), see [18], that
is, guarantee that an exact solution of (1) is a good approximation of the numerical scheme (10) as the
step-sizes h and k are sufficiently small. Under hypotheses given by (6), let us introduce the operators

Λ[u] = r(xi)uyy(xi, yj) + [p(xi)ux(xi, yj)]x − q(xi)u(xi, yj) , (11)

and

Λh,k[U ] = r(i)
U(i, j + 1)− 2U(i, j) + U(i, j − 1)

k2

+
p(i) [U(i+ 1, j)− U(i, j)]− p(i− 1) [U(i, j)− U(i− 1, j)]

h2
− q(i)U(i, j).

(12)

Let ϕ(x, y) be a twice differentiable solution of Eq. (1) and let us denote Φ(i, j) = ϕ(xi, yj). The explicit
scheme (10) is consistent with Eq. (1) if

lim
h→0,k→0

(Λ[ϕ]− Λh,k[ϕ]) = 0 . (13)

By (12) and considering the Taylor expansion of ϕ(·, ·) about the point (xi, yj) it follows that

Λh,k[ϕ] = r(i)
(
Φyy(i, j) +O(k2)

)
+

1

2

{
p(i)

(
2

h
Φx(i, j) + Φxx(i, j) +O(h2)

)
−p(i− 1)

(
2

h
Φx(i, j)− Φxx(i, j) +O(h2)

)}
− q(i)Φ(i, j) . (14)

Note that by (11) one gets

Λ[ϕ] = r(i)Φyy(i, j) + [p(i)Φx(i, j)]x − q(i)Φ(i, j)

= r(i)Φyy(i, j) + p′(i)Φx(i, j) + p(i)Φxx(i, j)− q(i)Φ(i, j) (15)
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Taking into account the Taylor expansion of p(x) about xi one gets

p(i− 1) = p(i)− hp′(i) +O(h2) , (16)

and from (15)–(16) it follows that

Λ[ϕ]− Λh,k[ϕ] = r(i)Φyy(i, j) + p′(i)Φx(i, j) + p(i)Φxx(i, j)− q(i)Φ(i, j)

−r(i)Φyy(i, j)− p(i)Φxx(i, j)− p′(i)Φx(i, j) +
h

2
p′(i)Φxx(i, j)

+q(i)Φ(i, j) +O(h2 + k2)

=
h

2
p′(i)Φxx(i, j) +O(h2 + k2) .

(17)

From (17) one gets (13) and thus the scheme (10) is consistent with Eq. (1), being the truncation
error of order O(h+ k2).

3 Closed form numerical solution: Cases I-II

Let us begin with the construction of the numerical solution for case I.

Solution for Case I.
The separation of discrete variables i and j allows to obtain solutions of the explicit scheme (10) of
the form

U I(i, j) = H(i) G(j) , 1 ≤ i ≤ N, 1 ≤ j ≤ M, (18)

where H and G are discrete functions to be determined. Substituting (18) into (10) one gets

r(i) [G(j + 1)− 2G(j) +G(j − 1)]H(i)

+ α2
[
p(i)H(i+ 1)−

(
p(i) + p(i− 1) + h2q(i)

)
H(i) + p(i− 1)H(i− 1)

]
G(j) = 0. (19)

By adding to both sides of (19) the term α2 λ r(i)H(i)G(j) being λ a real number, it follows that

r(i)
[
G(j + 1)− (α2λ+ 2)G(j) +G(j − 1)

]
H(i)

+ α2
[
p(i)H(i+ 1)−

(
p(i) + p(i− 1) + h2q(i)− λ r(i)

)
H(i) + p(i− 1)H(i− 1)

]
G(j) = 0. (20)

Note that (20) holds true if

− p(i)H(i+ 1) +
(
p(i) + p(i− 1) + h2q(i)

)
H(i)− p(i− 1)H(i− 1) = λ r(i)H(i), 1 ≤ i ≤ N ,

(21)

and
G(j + 1)− (α2λ+ 2) G(j) + G(j − 1) = 0 , 1 ≤ j ≤ M . (22)

Under hypothesis (18), the boundary conditions from this case can be transformed in

U I(0, j) = 0; H(0)G(j) = 0 , 0 ≤ j ≤ M + 1 , (23)

U I(N + 1, j) = 0; H(N + 1)G(j) = 0 , 0 ≤ j ≤ M + 1 , (24)

U I(i, 0) = f2(i); H(i)G(0) = f2(i) , 0 ≤ i ≤ N + 1 , (25)

U I(i,M + 1) = 0; H(i)G(M + 1) = 0 , 0 ≤ i ≤ N + 1 . (26)

Note by using (18), the boundary conditions (23)-(24) for U I(i, j) is granted if

H(0) = 0 , (27)

H(N + 1) = 0 . (28)
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Discrete Eq. (21) together with boundary conditions (27)–(28) define a discrete Sturm-Liouville

problem having N eigenpairs (λn, {Hn(i) : 1 ≤ i ≤ N})Nn=1 where the eigenfunctions {Hn(·)}Nn=1

are taken orthonormal with respect to the weight function r(i), see [19, Chapter 11]. The eigenpairs
of the Sturm-Liouville (21), (23)–(24) satisfy the matrix eigenvalue problem

AHn = λn RHn , (29)

where A is the N ×N tridiagonal and symmetric matrix

A =



s(1) −p(1) 0 · · · · · · 0

−p(1) s(2) −p(2)
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . s(N − 1) −p(N − 1)
0 · · · · · · 0 −p(N − 1) s(N)


, (30)

with
s(i) = p(i) + p(i− 1) + h2q(i) , 1 ≤ i ≤ N , (31)

and R is the N ×N diagonal matrix

R = diag(r(1), r(2), . . . , r(N)) . (32)

Taking into account that by definition, the elliptic Eq. (1) verifies

sig(p(x)) = sig(r(x)) , x ∈ [a, b] , (33)

and imposing

p(i) > 0, r(i) > 0, 0 ≤ i ≤ N + 1 , (34)

q(i) > 0, 0 ≤ i ≤ N + 1 , (35)

we show that real symmetric matrix A defined by (30) is positive definite, i.e. the quadratic form
defined by A verifies

XTAX > 0 , ∀X ∈ RN non zero. (36)

In fact, developing the expression of (36) and taking into account (34)-(35), we obtain

XTAX = [p(1) + p(0) + h2q(1)]X2(1) + [p(N) + p(N − 1) + h2q(N)]X2(N)

+
N−1∑
ℓ=2

[p(ℓ) + p(ℓ− 1) + h2q(ℓ)]X2(ℓ)− 2
N−1∑
ℓ=1

p(ℓ)X(ℓ)X(ℓ+ 1)

= p(0)X2(1) + p(N)X2(N) +
N∑
ℓ=1

h2q(ℓ)X2(ℓ) +
N−1∑
ℓ=1

p(ℓ) [X(ℓ)−X(ℓ− 1)]
2
> 0. (37)

Then one gets that
λn > 0 , ∀n = 1, . . . , N , (38)

being {λn}Nn=1 the eigenvalues of matrix eigenvalue problem (29).

Note that by (32) and (34) matrix R is invertible, and from (29) the eigenpairs (λn,Hn(·))Nn=1 can
be obtained as the eigenpairs of the following algebraic eigenvalue problem

R−1 AHn = λn Hn , 1 ≤ n ≤ N . (39)
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By Amir-Moez inequality, see [20, p. 246], the eigenvalues {λn}Nn=1 of R−1A are all positive. In the
practise, the eigenpairs of (39) can be computed, for example, using the MATLAB software .

Once the N eigenvalues {λn} of (39) have been determined we are going to solve the N problems
obtained from (22), (25)-(26):

Gn(j + 1)−
(
α2λn + 2

)
Gn(j) +Gn(j − 1) = 0 , 1 ≤ j ≤ M , (40)

N∑
n=1

Hn(i)Gn(0) = f2(i) , j = 0 , (41)

N∑
n=1

Hn(i)Gn(M + 1) = 0 , j = M + 1 . (42)

Given a fixed value n, the characteristic equation associated to (40) is

z2n −
(
α2λn + 2

)
zn + 1 = 0 , (43)

which has two simple real roots

z1,n =
α2 λn + 2 +

√
(α2λn + 2)

2 − 4

2
, z2,n =

α2 λn + 2−
√
(α2λn + 2)

2 − 4

2
(44)

because of the discriminant of (44) takes the value ∆ =
(
α2λn + 2

)2 − 4 > 0 since λn > 0. Using
the Cardano–Vieta relationship, m1 ·m2 = c/a, for a second-order equations ax2 + bx+ c = 0 being
m1 and m2 two simple reals roots, we obtain z1,n · z2,n = 1 or equivalently

z2,n =
1

z1,n
or z1,n =

1

z2,n
. (45)

Furthermore, it is easy prove
z1,n > 1 , z2,n > 0 , (46)

then from (45)-(46) one gets
0 < z2,n < 1 . (47)

As Eq. (40) is linear in Gn its general solution, given a fixed value n, 1 ≤ n ≤ N , is

Gn(j) = cIn · zj1,n + dIn · zj2,n , 1 ≤ j ≤ M , (48)

being cIn and dIn real constants to be determined. From linearity, by superposition of the N solutions
of (10) of the form (18) yields

UI(i, j) =
N∑

n=1

U I
n(i, j) =

N∑
n=1

Hn(i) Gn(j) , 1 ≤ i ≤ N, 1 ≤ j ≤ M . (49)

In order to determine the constants cIn and dIn in (48) we impose the boundary conditions (41) and
(42). Using (49), the boundary condition (26) for UI(i, j) is granted if

Gn(M + 1) = 0 , 1 ≤ n ≤ N . (50)

Taking j = M + 1 in (48), and using (50) and property (45) one gets

0 = Gn(M + 1) = cIn zM+1
1,n + dIn zM+1

2,n ;

dIn = −cIn

(
z1,n
z2,n

)M+1

= −cIn

(
z1,n
1/z1,n

)M+1

= −cIn z2M+2
1,n . (51)
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In view of (51), expression (48) can be rewritten in the form

Gn(j) = cIn

(
zj1,n − z2M+2

1,n zj2,n

)
. (52)

Substituting (52) in (49) one gets

UI(i, j) =

N∑
n=1

Hn(i) c
I
n

(
zj1,n − z2M+2

1,n zj2,n

)
1 ≤ i ≤ N, 1 ≤ j ≤ M . (53)

Finally, in order to determine constants cIn in (53), we use the boundary condition (25) for j = 0
obtaining from (53)

f2(i) = UI(i, 0) =

N∑
n=1

Hn(i) Gn(0) =

N∑
n=1

Hn(i) c
I
n

(
1− z2M+2

1,n

)
. (54)

Constants cIn, 1 ≤ n ≤ N , can be determined from (54) premultiplying in both sides by r(i)Hℓ(i),
1 ≤ ℓ ≤ N ; adding the obtained result from i = 1 up to i = N ; and using the orthonormality of
eigenfunctions {Hn(i)}Nn=1 with respect to the weight function r(i). Hence one gets

N∑
i=1

r(i)Hℓ(i) f2(i) =
N∑

n=1

cIn
(
1− z2M+2

1,n

)( N∑
i=1

r(i)Hℓ(i)Hn(i)

)
(n=ℓ)
= cIℓ

(
1− z2M+2

1,ℓ

) N∑
i=1

r(i)H2
ℓ (i) = cIℓ

(
1− z2M+2

1,ℓ

)
. (55)

From (55), constants cIn, 1 ≤ n ≤ N , take the form

cIn =
1

1− z2M+2
1,n

N∑
σ=1

r(σ)Hn(σ) f2(σ) , 1 ≤ n ≤ N . (56)

Then we have constructed a closed form numerical solution of (1) with the boundary conditions of
type I, given by (39), (44), (53) and (56).

Solution for Case II.
For the sake of brevity in the presentation and from the similarity of the first two boundary conditions
of cases I and II, and taking into account the developments made in case I, we seek solutions of the
form

UII(i, j) =

N∑
n=1

Hn(i) G
II
n (j) , 1 ≤ i ≤ N, 1 ≤ j ≤ M , (57)

being {Hn(·)}Nn=1 the orthonormal eigenfunctions computed for the problem (39) as in case I, because
we have in this case the same boundary conditions on the left and right sides: u(a, y) = u(b, y) = 0.
Furthermore, functions GII

n (j) are the same type as in case I:

GII
n (j) = cIIn · zj1,n + dIIn · zj2,n , 1 ≤ n ≤ N , (58)

being cIIn and dIIn real constants to be determined, and z1,n and z2,n the roots computed in case
I given by (44). In order to determinate the constants cIIn and dIIn , we need to use the boundary
conditions u(x, c) = 0 and u(x, d) = g2(x), which by (57) take the form

0 = UII(i, 0) =

N∑
n=1

Hn(i) G
II
n (0) , 0 ≤ i ≤ N + 1 , (59)

g2(i) = UII(i,M + 1) =

N∑
n=1

Hn(i) G
II
n (M + 1) , 0 ≤ i ≤ N + 1 . (60)
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Note that under condition
GII

n (0) = 0 , 1 ≤ n ≤ N , (61)

UII(i, j) satisfies UII(i, 0) = 0. Taking j = 0 in (58) and using (61) one gets

0 = GII
n (0) = cIIn + dIIn ; dIIn = −cIIn . (62)

Substituting (62) in (58) we obtain

GII
n (j) = cIIn

(
zj1,n − zj2,n

)
, 1 ≤ j ≤ M , (63)

and using (63) in (57) one gets

UII(i, j) =

N∑
n=1

Hn(i) c
II
n

(
zj1,n − zj2,n

)
1 ≤ i ≤ N, 1 ≤ j ≤ M . (64)

Finally, in order to determine constants cIIn in (64), we use the boundary condition (60) for j = M+1
which by (63) is transformed in

g2(i) =
N∑

n=1

Hn(i) c
II
n

(
zM+1
1,n − zM+1

2,n

)
. (65)

Operating as in previous case I (see (55)), constants cIIn take the form

cIIn =
1

zM+1
1,n − zM+1

2,n

N∑
σ=1

r(σ)Hn(σ) g2(σ) , 1 ≤ n ≤ N . (66)

Thus we have constructed a closed form numerical solution of (1) with the boundary conditions of
type II, given by (39), (44), (64) and (66).

Solution for Cases I and II.
By the linearity of Eq. (1) and the superposition principle, the constructed closed form numerical
solution for both cases I-II is

UI(i, j) +UII(i, j) =
N∑

n=1

Hn(i)
[
cIn

(
zj1,n − z2M+2

1,n zj2,n

)
+ cIIn

(
zj1,n − zj2,n

)]
, (67)

1 ≤ i ≤ N, 1 ≤ j ≤ M ,

being {Hn(·)}Nn=1 the orthonormal eigenfunctions of problem (39) and the real constants z1,n, z2,n,
cIn and cIIn defined by (44), (56) and (66), respectively.

4 Closed form numerical solution: Cases III-IV

Solution for Case III.
By separation of discrete variables i and j, now let us seek solutions of the explicit scheme (10) of
the form

U III(i, j) = H III(j) GIII(i) , 1 ≤ i ≤ N, 1 ≤ j ≤ M . (68)

Under hypothesis (68) the boundary conditions of this case can be transformed in

U III(0, j) = H III(j)GIII(0) = f1(j) , 0 ≤ j ≤ M + 1 , (69)

U III(N + 1, j) = H III(j)GIII(N + 1) = 0 , 0 ≤ j ≤ M + 1 , (70)

U III(i, 0) = H III(0)GIII(i) = 0 , 0 ≤ i ≤ N + 1 , (71)

U III(i,M + 1) = H III(M + 1)GIII(i) = 0 , 0 ≤ i ≤ N + 1 . (72)
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By imposing to U III(i, j), given by (68), that satisfies (10) and by adding to both sides of (10) the

term α2 λ̂ r(i)H III(j)GIII(i) where λ̂ is a real number to be determined and the real number α was
defined in (7), one gets

r(i)
[
H III(j + 1)− (α2λ̂+ 2)H III(j) +H III(j − 1)

]
GIII(i)

+α2
[
p(i)GIII(i+ 1)−

(
p(i) + p(i− 1) + h2q(i)− λ̂ r(i)

)
GIII(i) + p(i− 1)GIII(i− 1)

]
H III(j) = 0 .

(73)

Note that (73) holds true if

H III(j + 1)− (α2λ̂+ 2) H III(j) + H III(j − 1) = 0 , 1 ≤ j ≤ M , (74)

and

p(i)GIII(i+1)−
(
p(i) + p(i− 1) + h2q(i)− λ̂ r(i)

)
GIII(i)+p(i−1)GIII(i−1) = 0, 1 ≤ i ≤ N .

(75)

By using (68), the boundary conditions (71)-(72) for U III(i, j) are granted if

H III(0) = 0 , (76)

H III(M + 1) = 0 . (77)

Discrete Eq. (74) together with boundary conditions (76)–(77) define a discrete Sturm-Liouville

problem having M eigenpairs
(
λ̂m, {H III

m (j) : 1 ≤ j ≤ M}
)M
m=1

to be determined and which satisfies

the algebraic eigenvalue problem:
1

α2
ÃH III

m = λ̂m H III

m , (78)

where the real number α was defined in (7) and Ã is the M ×M symmetric tridiagonal matrix with
its constant entries:

Ã =



−2 1 0 · · · · · · 0

1 −2 1
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . −2 1
0 · · · · · · 0 1 −2


. (79)

We show now that the symmetric matrix
1

α2
Ã is negative definite, i.e.

1

α2

(
XT ÃX

)
< 0 , ∀X ∈ RM non zero. (80)

In fact, developing the expression (80) and taking into account that the parameter α is positive, we
obtain

1

α2

(
XT ÃX

)
=

1

α2

(
−2X2(1)− 2X2(M)− 2

M−1∑
ℓ=2

X2(ℓ)−
M−1∑
ℓ=1

[X(ℓ)−X(ℓ+ 1)]
2

+X2(1) +X2(M) + 2

M−1∑
ℓ=2

X2(ℓ)

)

= − 1

α2

(
X2(1) +X2(M) +

M−1∑
ℓ=1

[X(ℓ)−X(ℓ+ 1)]
2

)
< 0. (81)
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Thus, from (81) one gets that

λ̂m < 0 , ∀m = 1, . . . ,M , (82)

being λ̃m the eigenvalues of algebraic eigenvalue problem (78). This previous study, about the sign of
eigenvalues of problem (78), is necessary in order to determine what kind of solutions can be obtained
for Eq. (74). Thus, given a fixed value m, we consider the characteristic equation associated to (74):

ẑ2m −
(
α2λ̂m + 2

)
ẑm + 1 = 0 , (83)

whose discriminant takes the value

∆ = λ̂m α2

(
λ̂m α2

4
+ 1

)
. (84)

From (82) and under condition

α2 <
4

|λ̂m|
, ∀m = 1, . . . ,M , (85)

one gets ∆ > 0. Condition (85) is satisfied taking α = k/h small enough, so that

α <
2√

|λ̂max|
, λ̂max = max

{
λ̂1, λ̂2, . . . , λ̂M

}
. (86)

By (84), Eq. (83) has two conjugate complex roots:

ẑ1,m = 1 +
λ̂m α2

2
+ î

√√√√1−

(
1 +

λ̂m α2

2

)2

= |ẑ1,m| exp(̂i θm) = exp(̂iθm) , (87)

ẑ2,m = 1 +
λ̂m α2

2
− î

√√√√1−

(
1 +

λ̂m α2

2

)2

= |ẑ2,m| exp(−î θm) = exp(−îθm) , (88)

with

0 < θm < π , cos(θm) = 1 +
λ̂m α2

2
, î =

√
(−1) . (89)

Note that from (87)-(88) we obtain

(ẑ1,m)j = cos (j θm) + î sin (j θm) , (ẑ2,m)j = cos (j θm)− î sin (j θm) , 1 ≤ j ≤ M . (90)

In view of (90), the general solutions of Eq. (74) can be written in the form

H III

m (j) = C̃m (ẑ1,m)j + D̃m (ẑ2,m)j = Cm cos (j θm) +Dm sin (j θm) , (91)

1 ≤ j ≤ M, Cm, Dm ∈ R .

In order to determine the real constants Cm, Dm and the angles θm, we use the boundary conditions
(76)-(77). Thus, substituting the boundary condition (76) in (91) for j = 0 we obtain Cm = 0 and
from (91) one gets the expression

H III

m (j) = Dm sin (j θm) , 1 ≤ j ≤ M . (92)

Substituting the boundary condition (77) in (92) for j = M + 1 and avoiding non trivial solutions
one gets 0 = Dm sin ((M + 1) θm), or equivalently

θm =

(
π

M + 1

)
m, m = 1, . . . ,M . (93)

10



Taking Dm = 1, ∀m, by (92)-(93) we have determined the M eigenfunctions of Sturm-Liouville
problem (74), (76)-(77) given by

H III

m (j) = sin

(
j m

M + 1
π

)
, 1 ≤ j ≤ M , m = 1, . . . ,M , (94)

which are orthogonal (with respect to the weight constant function 1). Furthermore, by (82), (89)
and (93) the M eigenvalues of Sturm-Liouville problem (74), (76)-(77) take the negative values

λ̂m =
2

α2

(
cos

(
m

M + 1
π

)
− 1

)
, m = 1, . . . ,M . (95)

Note that in view of (95), the condition (86) for the parameter α always is verified. From linearity,
by superposition of the M solutions of (10) of the form (68) it yields

UIII(i, j) =
M∑

m=1

U III

m (i, j) =
M∑

m=1

H III

m (j) GIII

m(i) =
M∑

m=1

sin

(
j m

M + 1
π

)
GIII

m (i) , (96)

1 ≤ i ≤ N, 1 ≤ j ≤ M .

The M obtained eigenvalues {λ̂m}, given by (95), generate the following M problems obtained from
(75), (69)-(70):

p(i)GIII

m(i+ 1)−
(
p(i) + p(i− 1) + h2q(i)− λ̂mr(i)

)
GIII

m (i) + p(i− 1)GIII

m(i− 1) = 0 , 1 ≤ i ≤ N ,

(97)

M∑
m=1

H III

m (j)GIII

m(0) = f1(j) , i = 0 , (98)

M∑
m=1

H III

m (j)GIII

m(N + 1) = 0 , i = N + 1 .

(99)

The boundary condition (98) can be transformed in the following boundary condition by using:
expression (96), the orthogonality of the eigenfunctions {H III

m (·)} given by (94), and the argument
described in case I (see (55)):

GIII

m (0) =

∑M
σ=1 H

III
m (σ)f1(σ)∑M

σ=1 (H
III
m (σ))

2
, 1 ≤ m ≤ M . (100)

If the eigenfunctions {H III
m (j)} are taken orthonormal, then the boundary conditions (100) are rewrit-

ten in the form

GIII

m (0) =
M∑
σ=1

H̃ III

m (σ)f1(σ) := ãm , 1 ≤ m ≤ M . (101)

On the other hand, using (96), the boundary condition (99) for UIII(i, j) is granted if

GIII

m (N + 1) = 0 . (102)

Taking into account hypothesis (34), we can rewrite the discrete variable coefficient linear second-
order Eq. (97) as follow:

GIII

m(i+ 1) = −a1,m(i)

a2(i)
GIII

m(i)− a0(i)

a2(i)
GIII

m(i− 1) , 1 ≤ i ≤ N, 1 ≤ m ≤ M , (103)
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with the notation

a0(i) := p(i− 1)

a1,m(i) := −p(i)− p(i− 1)− h2q(i) + λ̂m r(i)
a2(i) := p(i)

 , (104)

where a1,m(·) denotes that the coefficient a1 varies for each m, 1 ≤ m ≤ M . Thus, we are going to
resolve theM boundary problems (103)-(104) with the transformed boundary conditions (101)-(102).
Taking the following variable changes

L1,m(i− 1) := GIII

m (i− 1) , L2,m(i− 1) := GIII

m(i) , (105)

the M linear second-order boundary problems (103)-(104), (101)-(102) can be rewritten as the M
linear first-order systems

L1,m(i) = L2,m(i− 1)

L2,m(i) = −a1,m(i)

a2(i)
L2,m(i− 1)− a0(i)

a2(i)
L1,m(i− 1)

 , 1 ≤ m ≤ M , (106)

with the boundary conditions

L1,m(0) = ãm , (107)

L1,m(N + 1) = 0 , (108)

being ãm defined by (101). The system (106) can be rewritten in a matrix form, for each m, as
follow −→

Lm(i) = Ãm(i)
−→
Lm(i− 1) , 1 ≤ i ≤ N, 1 ≤ m ≤ M , (109)

denoting by
−→
Lm(·) the 2× 1 vectors

−→
Lm(·) =

[
L1,m(·)
L2,m(·)

]
, 1 ≤ m ≤ M , (110)

and Ãm(·) the 2× 2 matrices

Ãm(·) =

 0 1

−a0(·)
a2(·)

−a1,m(·)
a2(·)

 , 1 ≤ m ≤ M , (111)

see [19, Chapter 1]. Note that, under condition (34), the matrix Ãm(·), defined by (111), satisfies
for each m:

Ãm(·) is an invertible matrix , 1 ≤ m ≤ M , (112)

because of

det
(
Ãm(i)

)
=

a0(i)

a2(i)
=

p(i− 1)

p(i)
̸= 0 , ∀ i , 0 ≤ i ≤ N + 1 . (113)

For the sake of convenience, problem (109) with boundary condition (108), is solved by backward
recurrence from i = N up to i = 1. For this goal, we consider the following equivalent expression to
(109) which is obtained from (109) and (112):

−→
Lm(i) = Ã−1

m (i+ 1)
−→
Lm(i+ 1) , 1 ≤ i ≤ N, (114)

being

Ã−1
m (·) =

 −a1,m(·)
a0(·)

−a2(·)
a0(·)

1 0

 . (115)
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By (114) for i = N up to i = 1, we obtain

−→
Lm(N) = Ã−1

m (N+1)
−→
Lm(N+1) ,

−→
Lm(N−1) = Ã−1

m (N)
−→
Lm(N) = Ã−1

m (N) Ã−1
m (N+1)

−→
Lm(N+1) =

N+1∏
ℓ=N

Ã−1
m (ℓ)

−→
Lm(N+1) ,

−→
Lm(N−2) = Ã−1

m (N−1)
−→
Lm(N−1) =

N+1∏
ℓ=N−1

Ã−1
m (ℓ)

−→
Lm(N+1) ,

−→
Lm(N−3) = Ã−1

m (N−2)
−→
Lm(N−2) =

N+1∏
ℓ=N−2

Ã−1
m (ℓ)

−→
Lm(N+1) ,

· · ·
−→
Lm(1) = Ã−1

m (2)
−→
Lm(2) =

N+1∏
ℓ=2

Ã−1
m (ℓ)

−→
Lm(N+1) ,

that is, the solution of Eq. (114), for each m, 1 ≤ m ≤ M , takes the form

−→
Lm(i) =

N+1∏
ℓ=i+1

Ã−1
m (ℓ)

−→
Lm(N+1) =

N+1∏
ℓ=i+1

Ã−1
m (ℓ)

[
0

L2,m(N+1)

]
, 1 ≤ i ≤ N , (116)

where w = L2,m(N+1) is a free component. Our task is to choose this free component properly to
generate a solution of problem (106)–(108). Let us take w = 1 and

−→
Ym(i) =

N+1∏
ℓ=i+1

Ã−1
m (ℓ)

[
0
1

]
, 0 ≤ i ≤ N . (117)

Note that by construction its first component [1, 0]
−→
Ym(i) satisfies (108). Following the shooting

method ideas, and taking into account that from (112) one gets

−→vm :=
−→
Ym(0) ̸= 0 , (118)

and provided that [1, 0]−→vm ̸= 0, then

L1,m(i) =
ãm

[1, 0]−→vm
[1, 0]

−→
Ym(i) , 0 ≤ i ≤ N + 1 , (119)

satisfies (107)–(109), for eachm, 1 ≤ m ≤ M . Finally, undoing the variable change L1,m(i) := GIII
m(i)

and by (96) we have constructed a solution for the case III:

UIII(i, j) =
M∑

m=1

H̃ III

m (j) L1,m(i), 1 ≤ i ≤ N, 1 ≤ j ≤ M , (120)

where {H̃ III
m (·)}Mm=1 are the orthonormal eigenfunctions obtained from the eigenfunctions {H III

m (·)}Mm=1

given by (94), and {L1,m(·)}Mm=1 are obtained from (117)-(119).

Solution for Case IV.
From the similarity of the boundary conditions of cases III and IV on up and down sides: u(x, c) =
u(x, d) = 0, and taking into account the developments made in case III, we seek solutions of the
form

UIV(i, j) =

M∑
m=1

H̃ III

m (j) GIV

m(i) , 1 ≤ i ≤ N, 1 ≤ j ≤ M , (121)
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being the eigenfunctions
{
H̃ III

m (·)
}M

m=1
those obtained from orthonormalizing the eigenfunctions

{H III
m (·)}Mm=1 of case III given by (94) and computed for the problem (74), (76) and (77). Fur-

thermore, as in case III, the functions GIV
m(i) are the solutions of the following M boundary value

problems:

GIV

m(i+ 1) = −a1,m(i)

a2(i)
GIV

m(i)− a0(i)

a2(i)
GIV

m(i− 1) , 1 ≤ i ≤ N, 1 ≤ m ≤ M , (122)

GIV

m(0) = 0 , (123)

GIV

m(N + 1) =
M∑
σ=1

H̃ III

m (σ)g1(σ) := b̃m , (124)

where the constants a0(i), a1,m(i) and a2(i) where defined in (104).

In a similar way as in case III (see from (105)-(111)), we consider the discrete variable changes

T1,m(i− 1) := GIV

m(i− 1) , T2,m(i− 1) := GIV

m(i) , (125)

Let us denote by
−→
Tm(·) the 2× 1 vectors

−→
Tm(·) =

[
T1,m(·)
T2,m(·)

]
, 1 ≤ m ≤ M , (126)

then from (122)-(124) we obtain the following M linear first-order systems in a matrix form with
the boundary conditions

−→
Tm(i) = Ãm(i)

−→
Tm(i− 1) , 1 ≤ i ≤ N, 1 ≤ m ≤ M , (127)

T1,m(0) = 0 , (128)

T1,m(N + 1) = b̃m , (129)

where the matrices Ãm(·) and the vectors b̃m were defined in (111) and (124), respectively.

For the sake of convenience, problem (127) with boundary condition (128), is solved by forward
recurrence from i = 1 up to i = N :

−→
Tm(i) = Ãm(i)

−→
Tm(i−1) = Ãm(i) Ãm(i−1)

−→
Tm(i−2)

= Ãm(i) Ãm(i−1) Ãm(i−2)
−→
Tm(i−3)

= · · ·
= Ãm(i) Ãm(i−1) Ãm(i−2) · · · Ãm(i−(i−2)) Ãm(i−(i−1))

−→
Tm(0)

=
i−1∏
ℓ=0

Ãm(i−ℓ)

[
0

T2,m(0)

]
, 1 ≤ i ≤ N + 1 . (130)

For the free component T2,m(0) in (130), let us take the value T2,m(0) = 1 and

−→
Ŷm(i) =

i−1∏
ℓ=0

Ãm(i− ℓ)

[
0
1

]
, 1 ≤ i ≤ N + 1 . (131)

Note that by construction its first component [1, 0]
−→
Ŷm(i) satisfies (128). Following the shooting

method ideas, and taking into account that from (112) one gets

−→
v̂m :=

−→
Ŷm(0) ̸= 0 , (132)
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and provided that [1, 0]
−→
v̂m ̸= 0, then

T1,m(i) =
b̃m

[1, 0]
−→
v̂m

[1, 0]
−→
Ŷm(i) , 0 ≤ i ≤ N + 1 , (133)

satisfies (127)–(129), for each m, 1 ≤ m ≤ M . Finally, undoing the variable change T1,m(i) := GIV
m(i)

and by (96) we have constructed a solution for the case IV:

UIV(i, j) =
M∑

m=1

H̃ III

m (j) T1,m(i) , 1 ≤ i ≤ N, 1 ≤ j ≤ M , (134)

where {T1,m(·)}Mm=1 are obtained from (131)-(133).

Solution for Cases III and IV.
By the linearity of Eq. (1) and the superposition principle, the constructed closed form numerical
solution for both cases III-IV is

UIII(i, j) +UIV(i, j) =
M∑

m=1

H̃ III

m (j) (L1,m(i) + T1,m(i)) , 1 ≤ i ≤ N, 1 ≤ j ≤ M , (135)

being the eigenfunctions
{
H̃ III

m (·)
}M

m=1
those obtained from orthonormalizing the eigenfunctions

{H III
m (·)}Mm=1 given by (94), and {L1,m(·)}Mm=1 and {T1,m(·)}Mm=1 the expressions which are obtained

from (117)-(119) and (131)-(133), respectively.

5 Constructive numerical algorithm and validation

By sections 3 and 4 (see (67) and (135)), the linearity of Eq. (1) and the superposition principle, we have
constructed a closed form numerical solution for the elliptic problem (1)-(6):

U(i, j) =
N∑

n=1

Hn(i)
[
cIn

(
zj1,n − z2M+2

1,n zj2,n

)
+ cIIn

(
zj1,n − zj2,n

)]
+

M∑
m=1

H̃ III

m (j) (L1,m(i) + T1,m(i)) , 1 ≤ i ≤ N, 1 ≤ j ≤ M , (136)

which elements were defined in sections 3 and 4.

5.1 Constructive algorithm

Step 1. Discretization computation.

� Choose the number of internal mesh points N and M for both axis x and y, and compute their
respective step-sizes h = b−a

N+1 and k = d−c
M+1 .

� Generate the mesh points xi = a + ih and yj = c + jk for 1 ≤ i ≤ N and 1 ≤ i ≤ M ,
respectively.

� Compute α = k
h , r(i), p(i) and q(i) for 0 ≤ i ≤ N .

Step 2. Computation of the solution for the boundary conditions of cases I-II.

� Compute the eigenpairs (λn, Hn(i))
N
n=1 for 1 ≤ i ≤ N of the algebraic eigenvalue problem

(39).
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� Orthonormalize the computed eigenfunctions {Hn(·)}.
� Compute the two simple real roots z1,n and z2,n, for each computed eigenvalue {λn}Nn=1, using
(44).

� Compute the functions involved in boundary conditions f2(i) and g2(i) for 0 ≤ i ≤ N + 1.

� Compute the coefficients cIn and cIIn , for each n, 1 ≤ n ≤ N , using (56) and (66), respectively.

� Compute the solution UI(i, j) +UII(i, j) for 1 ≤ i ≤ N , 1 ≤ j ≤ M , using (67).

Step 3. Computation of the solution for the boundary conditions of cases III-IV.

� Compute the eigenpairs
(
λ̂m, H III

m (j)
)M
m=1

for 1 ≤ j ≤ M , using (94)-(95).

� Orthonormalize the computed eigenfunctions {H III
m (·)}, denoting them as {H̃ III

m (·)}.
� Compute the functions involved in boundary conditions f1(j) and g1(j) for 0 ≤ j ≤ M + 1.

� Compute the coefficients ãm and b̃m, for 1 ≤ m ≤ M , using (101) and (124), respectively.

� Compute the values a0(i) and a2(i) for 1 ≤ i ≤ N using (104). Compute, for each m, with
1 ≤ m ≤ M , the values a1,m(i) for 1 ≤ i ≤ N using (104).

� Compute, for each m, 1 ≤ m ≤ M , the values L1,m(i) for 0 ≤ i ≤ N using (117)-(119).

� Compute, for each m, 1 ≤ m ≤ M , the values T1,m(i) for 1 ≤ i ≤ N + 1 using (131)-(133).

� Compute the solution UIII(i, j) +UIV(i, j) for 1 ≤ i ≤ N , 1 ≤ j ≤ M , using (135).

Step 4. Compute the numerical solution U(i, j) of the elliptic problem (1)-(6) by adding the com-
puted solutions in steps 2-3: U(i, j) = UI(i, j) +UII(i, j) +UIII(i, j) +UIV(i, j), for 1 ≤ i ≤ N and
1 ≤ j ≤ M using (136). Compute U(i, j) for i = 0, i = N + 1, j = 0 and j = M + 1 using the
functions involved in boundary conditions.

Taking into account [21] and the previous algorithm, it is easy to show that the computational com-
plexity of the closed form numerical solution (136) is O(N3+M2), being N and M the number of internal
mesh points on axis x and y, respectively.

5.2 Numerical example

Consider the elliptic problem

uyy(x, y) + [(1 + x)ux(x, y)]x − (3 + x)u(x, y) = 0 , 0 < x < 1, 0 < y < 1
u(a, y) = exp(y) , y ∈ [0, 1] ,
u(b, y) = exp(1 + y) , y ∈ [0, 1] ,
u(x, c) = exp(x) , x ∈ [0, 1] ,
u(x, d) = exp(1 + x) , x ∈ [0, 1] ,

 , (137)

satisfying hypotheses given by (6). The exact solution of this problem is

u(x, t) = exp (x+ y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . (138)

In figure 1 we can see that the numerical solution U(i, j) given by expression (136) reproduces very well
the behavior of the exact solution u(xi, yj) given by (138), taking only M = 3 internal mesh points on axis
y. For this simulation, the absolute error in each mesh point (i, j) is shown in figure 2. Furthermore, as
M ≪ N the computational complexity (see section 5.1) is O(N3) which is related to the task of computing

the eigenpairs (λn,Hn(i))
N
n=1 of Sturm-Liouville problem (39) in cases I-II.

In order to quantify the order of the errors made respect to the exact solution (138), we consider the
maximum absolute error over all mesh points, that is:

∥E∥∞ = max
i,j

(u(xi, yj)−U(i, j)) , 1 ≤ i ≤ N , 1 ≤ j ≤ M.
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In table 1 we can see that the numerical results improve when the step-size h decreases (fixed step-size
k), that is, when the number of internal mesh points N increases (fixed M), taking just a few internal
mesh points M , such as M = 3. This fact checks the consistency of explicit difference scheme (10). Note
that due to the truncation error is of order O(h + k2) we have refined in axis x. Furthermore, in order
to obtain better approximations, it is only necessary to consider a few mesh points N and M because of
the discrete Sturm-Liouville problems, which arise in cases I-II and in cases III-IV, retain the qualitative
properties of the analytic (exact) solution (138).
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Figure 1: Comparison of the exact solution u(xi, yj) (on the left) vs the numerical solution U(i, j) (on the
right) obtained using (136), for the internal mesh points N = 99 and M = 3.

N M h = b−a
N+1 k = d−c

M+1 ∥E∥∞
3 3 0.25 0.25 1.4374× 10−2

9 3 0.1 0.25 5.8715× 10−3

19 3 0.05 0.25 2.6553× 10−3

39 3 0.025 0.25 9.8568× 10−4

99 3 0.01 0.25 3.4458× 10−5

Table 1: The maximum absolute error for several values of N and M .

6 Concluding remarks

This article provides an important innovation: the construction of a numerical solution in closed form,
given by (136), for variable coefficient linear second-order elliptic problems of the type (1)-(6). A summary
of the calculation process of the numerical solution (136) is detailed in section 5.1. The technique used
is based on discretizing the elliptic equation (1) by an explicit finite difference and applying a discrete
separation of variables method to the resulting explicit scheme which has O(h+k2) local truncation error.
Due to the accuracy of the constructed scheme (10) is O(h) for variable x and O(k2) for variable y, more
refinement in variable x than in y is required in order to obtain better approximations. The numerical
results illustrate this fact. Furthermore, the underlying discrete Sturm-Liouville problems, in cases I-II
and cases III-IV for the boundary conditions, preserve the qualitative properties of the analytic (exact)
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Figure 2: Graph of the absolute error: |u(xi, yi)− U(i, j)|, in each mesh point (xi, yj) for N = 99 and
M = 3.

solution. Thus, it is only necessary to take a few internal mesh points N and M for having good results, as
it is shown in the numerical example. Comparing with results of [7] the local truncation error is of the same
order in variable x and higher accurate in variable y. Because of qualitative properties of the numerical
solution (136) with just a few nodes the quality of the approximation is better, saving computational cost.
The numerical technique developed can be extended to non-homogeneous elliptic problems.
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