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A COTANGENT SUM RELATED TO ZEROS OF THE

ESTERMANN ZETA FUNCTION

MICHAEL TH. RASSIAS

Abstract. We consider a cotangent sum related to Estermann’s Zeta func-
tion. We provide an elementary and self-contained improvement of the error
term in an asymptotic formula proved by V. I. Vasyunin.

Key words: Cotangent sums, asymptotic approximation, Taylor expansion,
Estermann zeta function, Riemann hypothesis, fractional part.

1. Introduction

The problem of the computation of zeros of the Estermann zeta function at s = 0
reduces to the calculation of a specific cotangent sum. However, before we proceed
with the presentation of our result related to that cotangent sum, we will exhibit a
general framework which motivated the research in this area and explain how this
problem is related to fundamental open problems, such as the Riemann Hypothesis.
The Estermann zeta function E

(

s, h
k , α

)

is defined by the Dirichlet series

E

(

s,
h

k
, α

)

=
∑

n≥1

σα(n) exp (2πihn/k)

ns
,

where h, k are positive integers, (h, k) = 1, Re s > max (1, 1 +Re α), k ≥ 1 and

σα(n) =
∑

d|n

dα .

It is a known fact (see [4], [7]) that the Estermann zeta function can be continued
analytically to a meromorphic function, on the whole complex plane up to two
simple poles s = 1 and s = 1+ α if α 6= 0 or a double pole at s = 1 if α = 0.
In 1995, Ishibashi (see [6]) presented a nice result concerning the value of E

(

s, h
k , α

)

at s = 0.

Theorem 1.1. (Ishibashi) Let k ≥ 2, 1 ≤ h < k, (h, k) = 1, α ∈ N ∪ {0}. Then
(1) For even α, it holds

E

(

0,
h

k
, α

)

=

(

−
i

2

)α+1 k−1
∑

m=1

m

k
cot(α)

(

πmh

k

)

+
1

4
δα,0 ,

where δα,0 is the Kronecker delta function.
(2) For odd α, it holds

E

(

0,
h

k
, α

)

=
Bα+1

2(α+ 1)
.
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In the case when k = 1 we have

E (0, 1, α) =
(−1)α+1Bα+1

2(α+ 1)
,

where by Bm we denote the m-th Bernoulli number.

Hence for k ≥ 2, 1 ≤ h < k, (h, k) = 1, it follows that

E

(

0,
h

k
, 0

)

=
1

4
+

i

2
c0

(

h

k

)

,

where

c0

(

h

k

)

= −
k−1
∑

m=1

m

k
cot

(

πmh

k

)

.

This is exactly the cotangent sum that we are going to investigate in this paper.
A very natural question that rises, is why this specific form of the Estermann zeta
function is interesting. One example which demonstrates its importance is the
following.
In 1985, R. Balasubramanian, J. Conrey and D. R. Heath-Brown (see [2]), used
properties of E

(

s, h
k , α

)

to prove an asymptotic formula for

I =

∫ T

0

∣

∣

∣

∣

ζ

(

1

2
+ it

)∣

∣

∣

∣

2 ∣
∣

∣

∣

A

(

1

2
+ it

)∣

∣

∣

∣

2

dt ,

where A(s) is a Dirichlet polynomial.
Asymptotics for functions of the form of I are useful for theorems which provide a
lower bound for the portion of zeros of the Riemann zeta-function on the critical
line (see [8], [9]). Period functions and families of cotangent sums appear in recent
work of S. Bettin and J. B. Conrey (see [3]). They generalize the Dedekind sum and
share with it the property of satisfying a reciprocity formula. They have proved a
reciprocity formula for the Vasyunin sum, which appears in the Nyman-Beurling
criterion (see [1]) for the Riemann Hypothesis.
In 1995 Vasyunin (see [10]), using Riemann sums, proved in a short elegant way
the following theorem.

Theorem 1.2. (Vasyunin) For large integer values of b, we have

c0

(

1

b

)

=
1

π
b log b−

b

π
(log 2π − γ) +O(log b) ,

where γ is the Euler-Mascheroni constant.

In this paper we provide an elementary and self-contained improvement of the error
term in Vasyunin’s asymptotic formula. Namely, we prove the following:

Theorem 1.3. For large integer values of b, we have

c0

(

1

b

)

=
1

π
b log b−

b

π
(log 2π − γ) +O(1) .
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2. Construction and some approximations for c0(1/b)

It is evident that for a, b ∈ N, b ≥ 2, the integer part ⌊a/b⌋ is equal to the
number of integers between 1 and a which are divisible by b. However, it is a basic
fact that

1

b

b−1
∑

m=0

e2πimk/b =

{

1 , if b | k
0 , otherwise .

Hence, it follows that
⌊a

b

⌋

=
1

b

a
∑

k=1

b−1
∑

m=0

e2πimk/b .

But
e2πim/b

e2πim/b − 1
=

1

2
−

i

2
cot
(πm

b

)

,

since

cotx =
i(eix + e−ix)

eix − e−ix
.

So
⌊a

b

⌋

=
L

b
+

1

b

b−1
∑

m=1

(

1

2
−

i

2
cot
(πm

b

)

)

(

e2πima/b − 1
)

,

where

L = lim
x→0

e2πixa/b − 1

e2πix/b − 1
= a .

Thus

⌊a

b

⌋

=
L

b
−

1

b

b−1
∑

m=1

(

1

2
−

i

2
cot
(πm

b

)

)

+
1

b

b−1
∑

m=1

(

1

2
−

i

2
cot
(πm

b

)

)

e2πima/b

=
a

b
−

b− 1

2b
+

i

2b

b−1
∑

m=1

cot
(πm

b

)

+
1

b

b−1
∑

m=1

(

1

2
−

i

2
cot
(πm

b

)

)

e2πima/b

=
a

b
+

1

2b
−

1

2
+

1

2b

b−1
∑

m=1

(

1− i cot
(πm

b

))

e2πima/b ,

since
b−1
∑

m=1

cot
(πm

b

)

= 0 .

Hence, we obtain

xn :=
{na

b

}

=
na

b
−
⌊na

b

⌋

=
na

b
−

(

na

b
+

1

2b
−

1

2
+

1

2b

b−1
∑

m=1

e2πimna/b −
i

2b

b−1
∑

m=1

cot
(πm

b

)

e2πimna/b

)

.

(For some nice applications of fractional parts, see [5].)
We can write

xn =

(

1

2
−

1

2b
−

1

2b

b−1
∑

m=1

e2πimna/b

)

+
i

2b

b−1
∑

m=1

cot
(πm

b

)

e2πimna/b .

3



Let

T =
i

2b

b−1
∑

m=1

cot
(πm

b

)

e2πimna/b .

Then we get

T =
i

2b

b−1
∑

m=1

[

cot
(πm

b

)

cos
(

2πmn
a

b

)

+ i cot
(πm

b

)

sin
(

2πmn
a

b

)]

= −
1

2b

b−1
∑

m=1

cot
(πm

b

)

sin
(

2πmn
a

b

)

+
i

2b

b−1
∑

m=1

cot
(πm

b

)

cos
(

2πmn
a

b

)

.

Therefore,

xn =

[

1

2
−

1

2b
−

1

2b

b−1
∑

m=1

e2πimna/b −
1

2b

b−1
∑

m=1

cot
(πm

b

)

sin
(

2πmn
a

b

)

]

+
i

2b

b−1
∑

m=1

cot
(πm

b

)

cos
(

2πmn
a

b

)

.

But, since xn ∈ R and

b−1
∑

m=1

e2πimna/b =

{

−1 , if b ∤ na

b− 1 , otherwise ,

we obtain the following Proposition.

Proposition 2.1. For every a, b, n ∈ N, b ≥ 2, we have

b−1
∑

m=1

cot
(πm

b

)

cos
(

2πmn
a

b

)

= 0 .

If b ∤ na then we also have

xn =
1

2
−

1

2b

b−1
∑

m=1

cot
(πm

b

)

sin
(

2πmn
a

b

)

.

Thus, for every a, b ∈ N, with b ∤ a, it holds

x1 =
1

2
−

1

2b

b−1
∑

m=1

cot
(πm

b

)

sin
(

2πm
a

b

)

.

Hence, we can write

∑

a≥1
b∤a

b(1− 2x1)

a
=

∑

a≥1
b∤a

1

a

b−1
∑

m=1

cot
(πm

b

)

sin
(

2πm
a

b

)

=
∑

a≥1

b−1
∑

m=1

cot
(πm

b

) sin
(

2πma
b

)

a
.

However, since

(S)
∑

a≥1

sin(aθ)

a
=

π − θ

2
, 0 < θ < 2π
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we obtain the following proposition.

Proposition 2.2. For every positive integer b, b ≥ 2, we have

(1) c0

(

1

b

)

=
1

π

∑

a≥1
b∤a

b(1− 2{a/b})

a
.

If we substitute {a/b} in (1) by a/b− ⌊a/b⌋ and carry out the calculations, we can
express c0(1/b) in the equivalent form

c0

(

1

b

)

=
1

π

∑

a≥1
b∤a

[

b

a

(

1 + 2
⌊a

b

⌋)

− 2

]

Set

GL(b) =
∑

1≤a≤L
b∤a

(

b

a

(

1 + 2
⌊a

b

⌋)

− 2

)

,

then

GL(b) =
∑

1≤a≤L

(

b

a

(

1 + 2
⌊a

b

⌋)

− 2

)

−
∑

1≤a≤L
b|a

(

b

a

(

1 + 2
⌊a

b

⌋)

− 2

)

=
∑

1≤a≤L

(

b

a

(

1 + 2
⌊a

b

⌋)

− 2

)

− b
∑

1≤a≤L
b|a

1

a
.

But,
∑

1≤a≤L
b|a

1

a
=

1

b
+

1

2b
+ · · ·+

1

⌊L/b⌋ b
=

1

b

∑

1≤k≤⌊L/b⌋

1

k
.

Since for every positive real number x it holds

(2)
∑

1≤n≤x

1

n
= log x+ γ +O

(

1

x

)

= log x+O(1),

it follows that
∑

1≤a≤L
b|a

1

a
=

1

b
log

⌊

L

b

⌋

+O

(

1

b

)

Therefore, we obtain the following lemma.

Lemma 2.3. For every b, L ∈ N, with b, L ≥ 2, it holds

GL(b) = − log
L

b
+ b(logL+ γ)− 2L+ 2b

∑

1≤a≤L

1

a

⌊a

b

⌋

+O

(

b

L

)

.

We shall approximate the sum

S(L; b) = 2b
∑

1≤a≤L

1

a

⌊a

b

⌋

up to a constant error and hence improve the asymptotic approximation of c0 (1/b)
by replacing Vasyunin’s error term O(log b) by O(1).
Remark. In the sequel, we always assume that b|L.
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Lemma 2.4.

S(L; b) = 2b
∑

k≤L/b

k

(

log
(k + 1)b− 1

kb− 1
+

1

2
F1(k)−

1

12
F2(k) +O

(

1

k4b4

))

,

where

Fi(k) =
1

((k + 1)b− 1)i
−

1

(kb− 1)i
.

Proof.

S(L; b) = 2b
∑

1≤a≤L

1

a

⌊a

b

⌋

= 2b
∑

k≤L/b

k
∑

kb≤a<(k+1)b

1

a

= 2b
∑

k≤L/b

k

(

log
(k + 1)b− 1

kb− 1
+

1

2
F1(k)−

1

12
F2(k) +

1

120
F4(k)± · · ·

)

.

This proves the lemma, since F4(k) = O(k−4b−4). �

Lemma 2.5. Let

r(b) =
∑

k≥1

k

(

log
(k + 1)b− 1

kb− 1
−

1

k
+

1

2k2
−

1

bk2

)

.

There is an absolute constant C0, such that

r(b) = C0 +O(b−1),

when b tends to infinity.

Proof. The function r is differentiable with respect to b, with

dr(b)

db
= O(b−2).

Thus

r(b) = r(2) +

∫ ∞

2

dr(t)

dt
dt+O(b−1),

= C0 +O(b−1),

where

C0 = r(2) +

∫ ∞

2

dr(t)

dt
dt.

The improper integral exists since

dr(b)

db
= O(b−2).

This completes the proof of the lemma. �

Lemma 2.6. For large integer values of k and b we have
(i)

1

2
F1(k) = −

1

2k2b
+

1

2k3b
−

1

k3b2
+O

(

1

k4b

)

(ii)

−
1

12
F2(k) =

1

6k3b2
−

1

4k4b2
+

1

2k4b3
+O

(

1

k5b2

)

,

where Fi(k) is defined as in Lemma 2.4.
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Proof. (i)

1

2
F1(k) =

1

2

(

1

kb
·

1

1 + b−1
kb

−
1

kb
·

1

1− 1
kb

)

=
1

2kb

(

1−
b− 1

kb
+

(

b− 1

kb

)2

−

(

b− 1

kb

)3

+O

(

1

k4

)

)

−
1

2kb

(

1 +
1

kb
+

1

k2b2
+

1

k3b3
+O

(

1

k4b4

))

= −
1

2k2b
+

1

2k3b
−

1

k3b2
+O

(

1

k4b

)

(ii) By calculating the second derivative of the Taylor expansion of log(1+x) around
x = 0, it follows that

1

(1 + x)2
= 1− 2x+ 3x2 − 4x3 +O(x4), for |x| < 1.

Hence,

−
1

12
F2(k) = −

1

12

(

1

(kb)2
·

1
(

1 + b−1
kb

)2 −
1

(kb)2
·

1
(

1− 1
kb

)2

)

= −
1

12(kb)2

(

1− 2
b− 1

kb
+ 3

(

b− 1

kb

)2

− 4

(

b− 1

kb

)3

+O

(

1

k4

)

)

+
1

12(kb)2

(

1 + 2
1

kb
+ 3

1

(kb)2
+ 4

1

(kb)3
+O

(

1

k4b4

))

=
1

6k3b2
−

1

4k4b2
+

1

2k4b3
+ O

(

1

k5b2

)

�

By the use of the previous results, we shall prove the following lemma.

Lemma 2.7. We have

S(L; b) = 2bC0 + 2L+ (1− b) log
L

b
+ (1− b)γ +O

(

b2

L

)

+O(1).
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Proof. By Lemmas 2.4, 2.5 and 2.6 we get

S(L; b) = 2b
∑

k≤L/b

k

(

log
(k + 1)b− 1

kb− 1
−

1

k
+

1

2k2
−

1

bk2

)

+ 2b
∑

k≤L/b

k

(

1

k
−

1

2k2
+

1

bk2
+

1

2
F1(k)−

1

12
F2(k) +O

(

1

k4b4

))

= 2b
∑

k≤L/b

k

(

1

k
−

1

2k2
+

1

bk2
−

1

2k2b
+

1

2k3b
−

1

k3b2
+O

(

1

k4b

)

+
1

6k3b2
+O

(

1

k4b2

))

+ 2bC0 +O(1)

= 2bC0 + 2L− b

(

log
L

b
+ γ +O

(

b

L

))

+ log
L

b
+ γ +O

(

b

L

)

+O(1)

= 2bC0 + 2L+ (1− b) log
L

b
+ (1− b)γ +O

(

b2

L

)

+O(1).

�

By Lemma 2.3 and Lemma 2.7 we obtain the following proposition.

Proposition 2.8. For integer values of b, such that b|L, we have

GL(b) = b log b+ 2bC0 +O

(

b

L

)

+O

(

b2

L

)

+O(1).

However, by the definition of GL(b) it is evident that

c0

(

1

b

)

=
1

π
lim

L→+∞
GL(b)

and thus by the previous proposition, we obtain the following theorem

Theorem 2.9. For integer values of b, we have

c0

(

1

b

)

=
1

π
b log b+

2bC0

π
+O(1).

But, by Vasyunin’s theorem, we know that for large integer values of b it holds

c0

(

1

b

)

=
1

π
b log b−

b

π
(log 2π − γ) +O(log b).

Therefore,
2C0 = γ − log 2π

and hence we obtain the following corollary.

Corollary 2.10. For large integer values of b, we have

c0

(

1

b

)

=
1

π
b log b−

b

π
(log 2π − γ) +O(1).

The above corollary improves Vasyunin’s Theorem 1.2.
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